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Suppressing relaxation through dephasing
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We study the nonequilibrium dynamics of a quantum system under the influence of two noncommuting fluc-
tuation sources, i.e., purely dephasing fluctuations and relaxational fluctuations. We find that increasing purely
dephasing fluctuations suppress increasing relaxation in the quantum system. This effect is further enhanced
when both fluctuation sources are fully correlated. These effects arise for medium to strong primary fluctuations
already when the secondary fluctuations are weak due to their noncommuting coupling to the quantum system.
Dephasing, in contrast, is increased by increasing any of the two fluctuations. Fully correlated fluctuations result
in overdamping at much lower system-bath coupling than uncorrelated noncommuting fluctuations. In total, we
observe that treating subdominant secondary environmental fluctuations perturbatively leads, as neglecting them,
to erroneous conclusions.
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I. INTRODUCTION

Open quantum dynamics is a very successful approach to
describe and treat dissipative effects like relaxation, decoher-
ence, and dephasing in quantum systems [1–4]. Dissipation
results therein by coupling the quantum system of interest
to an environmental thermal bath. The later is typically de-
scribed by a set of harmonic oscillators bilinearly coupled
to the system. The according system-bath model is treated
either perturbatively or by numerical exact methods. Thus,
successful treatment of, for example, problems like dephasing
in various qubit realizations [5], energy transfer in photosyn-
thetic complexes [6], and quantum tunneling in macroscopic
molecular spin clusters [7], to name a few, is enabled.

The studied quantum systems vary widely but a simpli-
fied description in terms of a modeling as either harmonic
oscillator or two-state system (TSS) is employed in most
cases. When their coupling to the bath induces transitions
between the system eigenstates, the bath enables relaxation
and we term such a bath as relaxational. The dynamics of
a harmonic oscillator coupled to a relaxational bath can be
solved analytically [8]. In contrast, a TSS coupled to a re-
laxational bath, termed the spin-boson model [2,3], cannot be
solved analytically. Approximate treatments for the weak and
strong coupling limits as well as numerical exact procedures
are, however, available. When the coupling to the bath does
not induce relaxation, the system dynamics still dephases and
we term the according baths as pure dephasing baths in the
following. A TSS coupled to a pure dephasing bath (termed
independent boson model [9]) can be solved analytically.

Typically, there is not a single relevant environmental bath
but many. Charge and flux qubits, for example, experience
noise due to phonons, voltage fluctuations in the various
gates, charged defects and currents through nearby quan-
tum point contacts [5,10,11]. Chromophores in photosynthetic

complexes are disturbed by strong environmental fluctuations
due to intra- and intermolecular vibrations of the photoactive
complexes, vibrations of embedding proteins, solvent fluctua-
tions, and the charge separation in the reaction center [6].

Assuming all baths are at the same temperature, then the
influences of multiple baths are additive, as long as they cou-
ple to the quantum system via operators, which commute. The
simplest case is when all baths couple to the same operator,
for example, the system’s dipole operator. Then, all baths
can be combined to an effective single bath with combined
spectral function. If the baths couple to different but com-
muting operators, the total influence functional is a simple
extension of the well known Feynman-Vernon influence func-
tional for a single bath [12,13]. Terming the influence additive
means that for weak enough coupling, where the dissipative
effects are mainly encaptured in relaxation and dephasing
rates, commuting baths result in relaxation and dephasing
rates which are given by the sum of the respective rates from
each single bath. If, however, the various system operators,
which couple to separate environments, do not commute,
the resulting noncommuting fluctuations in the system can
give rise to peculiar nonadditive effects. For example, at zero
temperature a suppression of the localization phase transition
has been observed [14–16]. Multiple noncommuting baths are
treated when studying molecular energy transfer [17–19], i.e.,
at conical intersections [20–22]. Qubits under the influence
of non-commuting fluctuations, however, have not been stud-
ied, so far, although, to control a qubit, noisy external forces
must couple to various, i.e., explicitly noncommuting system
observables.

We determine the nonequilibrium dynamics of a quantum
two-state system (TSS) under the influence of two noncom-
muting baths, i.e., a relaxational and a purely dephasing bath.
We compare the results with a case where a single bath cou-
ples with the same strengths to both noncommuting system
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operators. This later model reflects a situation where both
baths are fully correlated instead of uncorrelated as one might
expect for independent thermal baths. We employ the nu-
merical exact quasiadiabatic path integral approach (QUAPI)
[23–25] which was extended to treat multiple, i.e., noncom-
muting, baths [13,26,27].

In the next section we introduce the studied model. Sec-
tion III introduces our observables and how to obtain them
from the numerical data. Subsequently, we shortly introduce
our employed method before in Secs. V and in Sec. VI we de-
tail our results. We end with a conclusion. Our main finding is
that even weak secondary noise sources cannot adequately be
treated as an additive influence when multiple environmental
noise sources couple to a quantum system via noncommuting
operators. Our results are important to achieve a proper char-
acterization of environmental noise sources in experiments.

II. MODEL

We study a symmetric TSS with Hamiltonian

HS = −�

2
σx, (1)

coupled to two baths, one, i.e., HSB,z, causing relaxational
fluctuations due to its coupling via σz to the TSS and the other,
i.e., HSB,x , coupled via σx causing pure dephasing fluctuations.
This leads to a total Hamiltonian

H = HS + HSB,z + HSB,x (2)

with

HSB,ν =
M∑

k=1

p2
k,ν

2mk,ν

+ 1

2
mk,νω

2
k,ν

(
qk,ν − ξk,νσν

mk,νω
2
k,ν

)2

(3)

and [qk′,ν ′ , pk,ν] = ih̄δk,k′δν,ν ′ . Herein, the qk,ν and pk,ν are
the position and momentum of mode k with frequency ωk,ν

of bath ν coupled via ξk,ν to the system. The σν are the
corresponding Pauli matrices of the TSS algebra by which
the corresponding bath fluctuations couple to the TSS. For
later convenience we split the coupling ξk,ν = aνλk,ν between
system and bath mode in two factors. All relevant information
about the baths are captured in the spectral densities,

Gν (ω) =
M∑

k=1

λ2
k,ν · δ(ω − ωk,ν )

2mk,νωk,ν

=: γ̃νωe−ω/ωc , (4)

chosen here for simplicity as Ohmic spectra with an exponen-
tial cut-off function and with ν = x or ν = z. Therein, ωc is the
bath cut-off frequency chosen to be ωc = 5� for both baths.
Note that we have not included the mode-independent factor
aν in the definition of the spectral density and that aν will be
chosen throughout the work to obtain γ̃ν = 1. The coupling
strength between the ν fluctuations and the quantum system is
γν = a2

ν γ̃ν .
Our focus is on the question of how far the two baths

influence each other and the resulting dissipative effects are
not the sum of the two baths individual effects. By choosing
the two baths to couple either only to σz or to σx (instead
of bath i coupled via combinations fz,iσz + fx,iσx) simplifies
the analysis of our numerical investigation since for both
separate bath the relaxation and dephasing dynamics are well

studied. Experimentally, one might observe at which sys-
tem operator an environmental fluctuating force acts upon.
It is, however, rather difficult to decide whether these stem
from a single cause or two separate environmental baths.
Therefore, we study additionally fully correlated (FC) fluctu-
ations, i.e., qk,x = qk,z ≡ qk and pk,x = pk,z ≡ pk , where both
fluctuations result from a single environmental source, and
compare with results for uncorrelated fluctuations (UC), i.e.,
[qk,x, pk,z] = 0, which reflects a case with two independent
environmental fluctuation sources.

III. STUDIED OBSERVABLES–DEPHASING AND
RELAXATION RATES

We explicitly study the time evolution of Pz(t ) = 〈σz〉(t )
(which reflects the coherent oscillations of a TSS with Hamil-
tonian (1) between the σz eigenstates) with initially Pz(0) =
1 to investigate dephasing and Px(t ) = 〈−σx〉(t ) (which
reflects the population difference of the two energy eigen-
states) with initially Px(0) = 1 to study relaxation. We em-
ploy a fitting function Pfit

z (t ) = Pstat
z + [x1 + x3sin(�̃(t )t ) +

x2cos(�̃(t )t )]e−x7t with �̃(t ) = (x4 + x5e−x6t ) and Pstat
z =

1 − x1 − x2 and with the xi the fit parameters to describe the
numerical data. The fit function reflects the functional form
obtained for Pz(t ) by an analytical weak coupling approxima-
tion [3]. As expected from weak coupling analytical results we
observe |Pstat

z | � 1 and �̃(t ) � � and x1, x3 � x2 for all stud-
ied cases, i.e., γx � 0.5, γz � 0.5 and temperatures 0.1� �
kBT � 2�. We, thus, extract the dephasing rate x7 = 


(FC)
d

for fully correlated fluctuations or x7 = 

(UC)
d for uncorrelated

fluctuations. The relaxation rate 
(FC)
r and 
(UC)

r are extracted
similarly by fitting Pfit

x (t ) = Pstat
x + (1 − Pstat

x )e−x8t to the data
and identifying x8 = 
(FC)

r or x8 = 
(UC)
r respectively. The fit

function is chosen to coincide with the functional form ob-
tained for Px(t ) by an analytical weak coupling approximation
[3] focusing on the dominant terms.

These dephasing and relaxation rates are functions of both
coupling strength γx and γz. Note that by fixing γ̃ν ≡ 1 and
choosing ax and az identical for fully correlated or uncor-
related fluctuations we ensure that in lowest order of the
coupling to the bath the dephasing and relaxation rates for
the quantum two-state system are identical for fully corre-
lated and uncorrelated fluctuations. All differences result from
higher order corrections due to medium to strong system-bath
coupling of at least one of the fluctuation sources.

Our model simplifies to the standard spin-boson model
(SBM) for ax = 0 or to an independent boson or pure de-
phasing model (PDM) for az = 0. To further highlight how
correlations modify dissipation we additionally determine
the rates of the SBM and the PDM model for the same
coupling strength and add them: 
�

r/d = 
PDM
r/d (γx, γz = 0) +


SBM
r/d (γx = 0, γz ). This rate would result if the bath influences

would be additive.

IV. METHOD

To determine the nonequilibrium dynamics of the TSS
under the influence of two baths, we employ the QUAPI
approach [26] originally developed for a single bath case
[23–25]. Analytical strong coupling approaches like the Niba
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FIG. 1. The dephasing rates 

(FC)
d for fully correlated (red dia-

monds) and 

(UC)
d for uncorrelated (green circles) fluctuations and


�
d (blue plus symbols) are plotted versus the coupling strength

for the dephasing fluctuations γx for a fixed γz = 0.2 and a high
temperature T = 2�/kB.

[2] cannot simply be extended to treat our model (2) and
(3). The Niba uses the fact that a strong system-bath cou-
pling tends to localize the system in a basis determined by
the systems coupling operator. If two independent bath cou-
ple via two noncommuting system operators this assumption
fails. Thus, we employ a numerical approach. The QUAPI
approach is based on a symmetric Trotter splitting of the
short-time propagator K(tk+1, tk ) (describing time evolution
over a time slice δt) for the full Hamiltonian H . The splitting
is by construction exact in the limit δt → 0, but introduces
a finite Trotter error for a finite time increment, which has
to be eliminated by choosing δt small. The QUAPI scheme
further employs an approximated Feynman-Vernon influence
functional which includes only nonlocal time correlations
between observables in a time window τmem = kmaxδt . Thus
valid results are achieved by finding convergence while in-
creasing τmem but at the same time decreasing δt to minimize
the Trotter error. In the following, only converged results are
presented and discussed. For a discussion to achieve conver-
gence see Refs. [25,26].

V. RESULTS–SUPPRESSED OVERDAMPING

Weak dissipation at finite temperature by any environment
results in exponentially decaying coherences for a TSS, i.e.,
Pz(t ) = cos(�t )e−
d t with dephasing rate 
d . With increasing
system-bath coupling strength the dephasing rate increases
until the dynamics turns overdamped and (small) additional
dynamically behavior (as used in our fit function) emerges.
This overdamping is a fingerprint of strong system-bath cou-
pling.

We studied the coherent dynamics of a TSS with an
relaxational bath with fixed coupling strength γz = 0.2 at
temperature T = 2�/kB and analyzed the dephasing rate as
function of additional pure dephasing fluctuations. Figure 1
shows the according dephasing rate as function of γx. Adding
increasing uncorrelated (green circles) pure dephasing fluc-
tuations results in a linear increase of the dephasing rate up
to the largest studied coupling strength of γx = 0.5. No over-
damping in the according Pz(t ) data is observed. In striking
contrast, we observe overdamping when adding increasing
fully correlated (red diamonds) pure dephasing fluctuations
for γx � 0.25. This is reflected in Fig. 1 by a decreasing
dephasing rate after an increase for smaller γx.
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FIG. 2. The ratio (
(FC)
d − 
�

d )/
�
d for fully correlated (red

diamonds) and (
(UC)
d − 
�

d )/
�
d for uncorrelated (green circles)

fluctuations are plotted versus the coupling strength for the dephasing
fluctuations γx for a fixed γz = 0.2 and for three temperature.

Fully correlated fluctuations result from a single source,
for which the total system-bath coupling strength actually is
γ = γx + γz. Interestingly, overdamping is achieved for γ �
0.45 and neither pure dephasing nor relaxational fluctuations
alone of this strength would overdamp the dynamics (data
not shown). We additionally determined the rates of the pure
dephasing and the relaxational fluctuations alone and added
these to obtain 
�

d . A linear increase with γx almost identical
with the uncorrelated case is observed (blue + symbols in
Fig. 1). Thus, the overdamping observed is not an affect of
any of the two fluctuations being strong enough but of the
correlations between them.

Similar behavior is observed at lower temperatures. Fig-
ure 2 shows the ratios (
(UC)

d − 
�
d )/
�

d and (
(FC)
d −


�
d )/
�

d versus γx for three different temperatures. For T =
2�/kB (dashed lines) we again observe the sharp decline of
the dephasing rate at γx � 0.25. The same decline is observed
at T = �/kB (dotted line) at γx � 0.35 and for T = 0.5�/kB

(full lines) we do not observe such a sharp decline within the
studied γx range. Before the sharp decline of the dephasing
rate we find in both, the uncorrelated and the fully correlated,
cases deviations from the additive behavior in a range of ±5%
which is nonmonotonic over the studied γx range. For temper-
atures T < 0.5�/kB we observe deviations, i.e., reductions,
of 


(UC)
d to roughly 10% below 
�

d .
The same behavior is observed for smaller γz but

the coupling strengths to reach overdamping increase
and, thus, quickly drop out of the regime we are
able to study. For 0.2 < γz � 0.5 the results are very
similar to the given data and overdamping is reached
for γx � 0.2.

Figure 3 shows the dephasing rates for a fixed coupling
strength of the pure dephasing fluctuations, i.e., γx = 0.5,
and increasing relaxational fluctuations. For lowest γz � 0.01
all three cases show identical behavior. For further increas-
ing γz, both 
�

d and 
UC
d show linear increasing behavior.

Again, adding fully correlated relaxational fluctuations shows
strikingly different behavior. The dephasing rate decreases
strongly, roughly by a factor of 2. Surprisingly, for 0.01 �
γz � 0.2 the dephasing rate decreases although Pz(t ) exhibits
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FIG. 3. The dephasing rates 

(FC)
d for fully correlated (red dia-

monds) and 

(UC)
d for uncorrelated (green circles) fluctuations and


�
d (blue plus symbols) are plotted versus the coupling strength

for the relaxational fluctuations γz for a fixed γx = 0.5 and a high
temperature T = 2�/kB.

an initial oscillation minimum and full overdamping is not
reached. Overdamped dynamics is observed only for γz � 0.2.
Thus, the fully correlated relaxational fluctuations suppress
the dephasing of the pure dephasing fluctuations even when
the dynamics is not fully overdamped yet. In Fig. 4 we have
plotted Pz(t ) versus time to highlight the actual dynamic
behavior of the cases for which we discussed the rates in
Fig. 3. The same behavior is also observed for lower tem-
peratures and smaller fixed γx but the suppression starts at
larger γz.

VI. RESULTS–SUPPRESSED RELAXATION

Pure dephasing fluctuations alone cannot cause relax-
ation. Only relaxational fluctuations allow energy exchange
between TSS and bath leading for weak dissipation at fi-
nite temperature to an exponential decay towards thermal
equilibrium occupation numbers, i.e., Px(t ) = Px(0)e−
r t +
P(eq)

x (1 − e−
r t ). With this functional form we are able to
fit all according numerical data for Px(t ) and to extract the
relaxation rate 
r . Figure 5 shows the relaxation rate 
(FC)

r
for fully correlated (red diamonds) and 
(UC)

r for uncorre-
lated (green circles) fluctuations plotted versus the coupling
strength for the relaxational fluctuations γz for a fixed γx =
0.5. Additionally, 
�

r is shown by the blue plus symbols.

(FC)

r (red full line) and 
(UC)
r (green dashed line) are further-
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FIG. 4. Pz(t ) versus time is shown for fixed coupling strength
γx = 0.5 of pure dephasing fluctuations at temperature T = 2�/kB

and for various coupling strengths γz for relaxational fluctuations.
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FIG. 5. The relaxation rates 
(FC)
r for fully correlated (red dia-

monds) and 
(UC)
r uncorrelated (green circles) fluctuations and 
�

r

(blue plus symbols) are plotted versus the coupling strength for the
relaxational fluctuations γz (lower three curves) for a fixed γx = 0.5
and versus the coupling strength of purely dephasing fluctuations
γx (upper two curves) for a fixed γz = 0.5. The temperature is T =
2�/kB.

more plotted versus the coupling strength of purely dephasing
fluctuations γx for a fixed γz = 0.5. In all cases, temperature
is T = 2�/kB.

The relaxation rate 
�
r = 
SBM

r/d (γx = 0, γz ) (note that

PDM

r (γx, γz = 0) = 0) increases linearly with γz (blue +
symbols in Fig. 5) in the studied range of coupling strengths
which reflects a dominating lowest order effect in the
coupling to the relaxational bath. Additional strong but
uncorrelated purely dephasing fluctuations with γx = 0.5 sur-
prisingly, diminish this linear increase (see green circles in
Fig. 5). The relaxation rate still increases almost linearly
with γz but shows roughly a 10% reduction below 
�

r . A
much weaker even sub-linear increase is observed when
purely dephasing and relaxational fluctuations are fully cor-
related. At strongest investigated coupling, i.e., γz = 0.5 =
γx, a reduction of the relaxation rate by a factor of 2 is
observed.

Thus, purely dephasing fluctuations suppress relaxation.
This is highlighted by the green dashed line in Fig. 5 which
shows the relaxation rate due to a relaxational bath with
γz = 0.5 versus the coupling strength γx to an additional un-
correlated pure dephasing noise source. A clear roughly linear
decrease of the relaxation rate is observed with increasing
γx. A much stronger suppression of relaxation is achieved by
fully correlated pure dephasing fluctuations (red full line in
Fig. 5).

At lower temperatures we observe qualitatively the same
behavior but the suppression of the relaxation is quantitatively
smaller. Figure 6 plots the ratio 
(UC)

r /
�
r and 
(FC)

r /
�
r

versus γx for three different coupling strengths 
z at a low
temperature of T = 0.2�/kB. With increasing dephasing fluc-
tuations we observe a monotonic reduction of the relaxation
rate. The effect is roughly a factor of 2 stronger for fully cor-
related fluctuations. An increase of the reduction is observed
with increasing γz.
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VII. CONCLUSION

In summary, we have investigated the influence of non-
commuting fluctuations on the dissipative non-equilibrium
dynamics of a quantum system at finite temperatures T �
�/kB. Using the numerical exact quasiadiabatic path integral
approach we determined the dissipative dynamics of a quan-
tum two-state system under the influence of a relaxational as

well as an purely dephasing noise source and extracted the
relaxation and dephasing rates.

We observe a decrease of the relaxation rate when purely
dephasing fluctuations are increased. Thus, dephasing fluctua-
tions suppress relaxation. This effect is enhanced substantially
when both fluctuations, i.e., the relaxational and purely de-
phasing ones, are fully correlated or in other terms stem from
the same physical origin. In contrast, dephasing rates are
always increased by increasing any of the two fluctuations.
However, fully correlated fluctuations result in overdamping
at a lower total system-bath coupling than uncorrelated non-
commuting fluctuations do. This, in turn, allows us to increase
the dephasing rate by adding an additional independent non-
commuting noise source in a two-state system beyond what
is possible by increasing the system-bath coupling of a single
dephasing source.

Our findings emphasize that even weak secondary noise
sources cannot simply be neglected nor their influence be
treated additive to the dominant dissipative influence when the
two environmental noise sources couple to a quantum system
via noncommuting operators. This, in turn, complicates accu-
rate characterization of noise sources disturbing, for example,
qubits.
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