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Twisting neutral particles with electric fields
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We demonstrate that spin-orbit coupled states are generated in neutral magnetic spin-1/2 particles traveling
through an electric field. The quantization axis of the orbital angular momentum is parallel to the electric field;
hence both longitudinal and transverse orbital angular momentum can be created. Furthermore, we show that
the total angular momentum of the particle is conserved. Finally we propose a neutron optical experiment to
measure the transverse effect.
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I. INTRODUCTION

Intrinsic orbital angular momentum (OAM) has been ob-
served in free photons [1–3] and electrons [4–6]. Furthermore,
extrinsic OAM states have also been observed in neutrons,
using spiral phase plates [7] and magnetic gradients [8]. In
the latter case spin-orbit coupled states are generated [9]. It
has also been demonstrated that magnetic quadrupoles can
generate spin-orbit states in neutral spin-1/2 particles [10,11].
The aforementioned methods require a beam with exceptional
collimation (0.01

◦
–0.1

◦
divergence) if intrinsic OAM is the

goal. Furthermore, the incident particles must be on the op-
tical axis. These two requirements limit the available flux
to an impractical level. For this reason intrinsic OAM has
not been observed in neutrons to date [12]. The additional
quantum degree of freedom offered by OAM provides utility
in the realm of quantum information [13–15]. Additionally in
neutrons the additional degree of freedom may help improve
existing tests of quantum contextuality [16,17]. Furthermore,
neutrons carrying net OAM may reveal additional information
on atomic nuclei in scattering experiments [18].

In this paper we propose a method by which intrinsic spin-
orbit states can be generated in an arbitrarily collimated beam
of neutral spin-1/2 particles. This removes flux limitations
and allows for the construction of spin-orbit optical equipment
for neutrons. We show that a static homogeneous electric field
polarized along the direction of particle propagation induces
longitudinal spin-orbit states, while a transversely polarized
electric field generates transverse spin-orbit states. The latter
type of OAM has not yet been observed in massive free
particles. Furthermore, we confirm previous results that the
total angular momentum of a particle is conserved in static
electric fields [19]. As shown by Schwinger [20], in an electric
field the particle spin couples to the cross product between
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the electric field strength and the particle momentum. Phase
shifts due to this coupling have been observed in Schwinger
scattering [21–24], the Aharonov-Casher effect [25–27] and in
measurements of the neutron electric dipole moment [28–31],
where it can be a major systematic effect. In dynamical
diffraction from noncentrosymmetric crystals, spin rotations
of up to 90

◦
have been observed [23,30], due to large interpla-

nar fields. Recently the Schwinger coupling has been used to
image electric fields with polarized neutrons [32]. However,
to date no tests for OAM have been conducted.

II. THEORETICAL FRAMEWORK

An observer moving through an electric field, E , will ex-
perience a magnetic field B′. In the low-velocity limit when
v � c the magnetic field can be written as [33]

�B′ = �v × �E
c2

. (1)

Inversely in the laboratory frame a moving magnetic moment
will appear to have a small electric dipole moment �d ′ = �v×�μ

c2 .
Hence a spin-1/2 particle with magnetic moment �μ experi-
ences a Zeeman shift �d ′ · �E = �μ · �B′ when moving through an
electric field. Therefore, the Schrödinger equation is[

− ∇2 − γ

c2 �σ · ( �p × �E )

]
ψ = εψ, (2)

with γ the gyromagnetic ratio and �σ the Pauli matrices. The

wave function is described by a spinor ψ =
(
ψ+(x, y, z)
ψ−(x, y, z)

)
,

where the index ± refers to the spin state parallel or antipar-
allel to the z axis, respectively.

A. Transmission geometry: Longitudinal OAM

First we consider the longitudinal spin-orbit effect. We
assume that the extent of the electric field is semi-infinite and
that it is parallel to the z axis. Hence the Schrödinger equation
can be written as

−∇2ψ± + iC

(
∂

∂y
± i

∂

∂x

)
ψ∓ = εψ±, (3)
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with C = γ Ez

c2 . The incident wave is described by
ψ I

± = f (r, φ)e−ikz. Note that for a nonzero coupling this
effect requires the incident wave function to have a transverse
momentum component. By applying a Fourier transform
over the x and y coordinates the partial differential equation
[Eq. (3)] is simplified to a coupled second-order ordinary
differential equation:

−
(

∂2

∂z2
− k2

r + ε

)
ψ̂± ∓ iCkre∓iφψ̂∓ = 0. (4)

Here we have also transformed the equation to cylindrical
coordinates with k2

r = k2
x + k2

y and kx ± iky = kre±iφ . It
is noteworthy that in the spectral domain the potential
C(kxσy + kyσx ) closely resembles that of the magnetic
quadrupole in real space. This gives an intuitive reason as to
why a static electric field mimics the action of a quadrupole
in reciprocal space. Hence an electric field is more effective
for large divergences (i.e., large kr). We diagonalize Eq. (4)
by applying a transformation of the form ψ̂ = T ψ̂ ′ and
multiplying the Hamiltonian by T −1 from the left:[

−
(

∂2

∂z2
− k2

r + ε

)
∓ Ckr

]
ψ̂ ′

± = 0. (5)

For this particular diagonalization T is given by (ie−iφ −ie−iφ

1 1 ).
The general solution to Eq. (5) is simply a superposition of a
forward- and backward-propagating plane wave for each spin
state,

ψ̂ ′ =
(

t̂1eik+z + t̂2e−ik+z

t̂3eik−z + t̂4e−ik−z,

)
(6)

with k± = √
ε − k2

r ± Ckr . Amplitudes of the backward-
propagating solutions, t̂1 and t̂3, are zero. The general solution
for ψ̂ is simply found by applying the transformation T ψ̂ ′:

ψ̂ =
(

ie−iφ[t̂2e−ik+z − t̂4e−ik−z]
t̂2e−ik+z + t̂4e−ik−z.

)
(7)

To determine the values of t̂2 and t̂4 and the reflection
coefficients r̂± we apply the boundary conditions

ψ̂ (kr, φ, z = 0) = f̂± + r̂±,

ψ̂z(kr, φ, z = 0) = ikz(r̂± − f̂±). (8)

Here the subscript z under ψ denotes the partial derivative
to the z coordinate. f̂±(kr, φ) denotes the two-dimensional
Fourier transform of the incident wave function. This

boundary value problem can be formulated as the following
matrix vector problem:⎛
⎜⎝

1 −1 1 0
1 1 0 −1

k+ −k− −kz 0
k+ k− 0 kz

⎞
⎟⎠

⎛
⎜⎜⎝

t̂2
t̂4

ir̂+eiφ

r̂−

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

−i f̂+eiφ

f̂−
−ikz f̂+eiφ

kz f̂−

⎞
⎟⎟⎠.

(9)

By inverting the above 4×4 matrix we find the transmission
and reflection coefficients,

t̂(2
4) = ∓ikz f̂+eiφ + kz f̂−

(kz + k±)
,

r̂± = ±
(
k2

z − k+k−
)

f̂± ∓ ikz(k+ − k−)e∓iφ f̂∓
(k+ + kz )(k− + kz )

, (10)

which leads us to the solution for the transmitted waves:

ψ̂± = kz f̂± ± ikz f̂∓e∓iφ

(kz + k+)
e−ik+z + kz f̂± ∓ ikz f̂∓e∓iφ

(kz + k−)
e−ik−z.

(11)

Looking at this expression we can see that the total angular
momentum J = S + L of the wave is conserved in a static
electric field, since a spin flip is compensated by a change in
OAM.

f̂±(kr, φ) can be expanded such that f̂±(kr, φ) =∑
� f̂ �

±(kr )ei�φ , where f̂ l
±(kr ) is given by the azimuthal

Fourier transform:

f̂ �
± =

∫ 2π

0
f̂±(kr, φ)e−i�φ dφ. (12)

The solution in real space can be obtained by applying the
Hankel transform to Eq. (11):

ψ± =
∑

�

i−�kze
i�θ

∫ ∞

0

[
f̂ �
± ± i f̂ �±1

∓
(kz + k+)

e−ik+z

+ f̂ �
± ∓ i f̂ �±1

∓
(kz + k−)

e−ik−z

]
J�(krr)krdkr . (13)

It is instructive to look at the solution of Eq. (13) for an
incident wave field, ψ I

±, described by a Bessel beam carrying
no OAM, ψ I

± = b±J (kρr)e−ikzz, with b± the amplitude of the
up- and down-spin states, respectively, and kρ the transverse
momentum component of the incident wave. Hence f̂ � 	=0

± = 0

and f̂ 0
±(kr ) = b±

δ(kr−kρ )
kr

with ε = k2
z + k2

ρ . In this case the
solution is trivial:

ψ0
± = kzb±J0(kρr)

(
e−i

√
k2

z +Ckρz(
kz + √

k2
z + Ckρ

) + e−i
√

k2
z −Ckρz(

kz + √
k2

z − Ckρ

)
)

,

ψ1
± = ±kzb∓J1(kρr)

(
e−i

√
k2

z +Ckρz(
kz + √

k2
z + Ckρ

) − e−i
√

k2
z −Ckρz(

kz + √
k2

z − Ckρ

)
)

, (14)

where ψ0
± and ψ1

± are the components with and without OAM,
respectively, such that ψ± = ψ0

± + e∓iθψ1
±. For a collimated

beam geometry we may use kρ = kz tan(α) ≈ kzα, where α is
the beam divergence. Furthermore, if Ckρ is sufficiently small
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FIG. 1. For various common collimator types, such as two identical pinholes (left), a large exit and a comparatively small pinhole (middle),
and an annulus with pinhole (right), we show the possible beam paths through a hypothetical instrument (top) and the respective divergence
profiles (middle). The paths with the lowest divergence are drawn as dashed orange arrows, while the maximum divergence paths are shown
in solid green. The divergence profiles are used as | f+|2(kr ) in Eq. (17) to determine the probability of finding the particle in the l = 1 OAM
state as a function of the z position in an electric field (bottom). The parameters are chosen such that kz = 1, ε ≈ k2

z , and C = 0.1. We note
that in a real instrument these divergence profiles might represent the incoherent average of all possible incident wave fields and not the actual
transverse incident wave field of a single neutron.

we may linearize the square-root terms in Eq. (14) and obtain
a much simpler expression for the wave function:

ψ± =
[

b± cos

(
γ Ezα

2c2
z

)
J0(kρr)

± b∓ sin

(
γ Ezα

2c2
z

)
e∓iθ J1(kρr)

]
e−ikzz. (15)

A longitudinal beam twister device may be constructed using
a parallel plate capacitor, with the surfaces of the plates nor-
mal to the beam. The voltage required to fully twist the beam
from the � = 0 state into the � = ±1 state is given by

V = πc2

γα
. (16)

These equations are valid for single Bessel beams. How-
ever, Bessel functions are not normalizable [34] and therefore

have infinite coherence, making them unphysical. In a real-
istic setup we always have a normalizable superposition of
Bessel beams, which have finite coherence. This superposition
interferes and results in damping of spin-orbit production, due
to dephasing. This interference can be described by solving
Eq. (13) for an arbitrary divergence profile. Though we can
also determine the probability of the particle being in the mth
OAM state as a function of z without the inverse transform,
Eq. (13), by simply calculating the projection of Eq. (11)
on eimφ and integrating the absolute value squared of this
expression over kr :

Am
± =

∫
|ψ̂m

±|2krdkr =
∫

|ψm
±|2r dr, (17)

with ψ̂m = 〈eimφ |ψ̂〉, the azimuthal Fourier transform
[Eq. (12)] of ψ̂ . Here we have also used Parseval’s theorem
to demonstrate that the value of Am is the same in real and
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FIG. 2. Reflection probability according to Eq. (10), f̂+ = 0 and
f̂− = 1. A wavelength of 2 Å and an electric field of 1010 V/m are
assumed. The blue solid curve corresponds to a spin-flip reflection
which generates OAM, while the red dashed curve shows the non-
spin-flip reflection probability.

reciprocal space. Solutions of Eq. (17) for the most common
divergence profiles, | f |2(kr, φ), are shown in Fig. 1. Here we
see dephasing effects, which cause the contrast of A1

− to wash
out as the wave penetrates deeper into the electric field. As
the transverse wavelength spread is decreased, the dephasing
effects are also reduced. This is analogous to dephasing seen
in magnetic spin-echo instruments due to the longitudinal
wavelength spread [35].

Equation (16) demonstrates that for particles with a di-
vergence of 1

◦
propagating through a capacitor we require

a voltage drop of 88.4 GV to put a neutron into an OAM
state with � = ±1. Obviously this is not feasible. For colder
particles it is possible to use zone plates which consist of
concentric rings of periodically spaced absorber material
to increase the transverse momentum kr , thereby decreas-
ing the required voltage drop. Such Fresnel lenses have
been produced for the purpose of imaging with very cold
neutrons [36].

B. Reflection geometry: Quasitransverse OAM

Next we consider waves interacting with an electric field
interface at grazing incidence angles. This results in a more
pronounced coupling, due to a larger kr and a smaller value for
kz. The OAM carried by the transmitted and reflected waves
in this case is quasitransverse to the wave vector �k. Since the
quantization axis of the OAM is normal to the interface, the
incident wave must be described by an infinite superposition
of OAM modes. Nonetheless, the mean OAM of the trans-
mitted and reflected waves can be raised or lowered by one
unit of h̄ with respect to the incident OAM. The reflection
probability |r±|2 as a function of incident angle is shown in
Fig. 2, for an electric field of 1010 V/m (found in electric
double layers [37,38]), a neutron wavelength of 2 Å, and an
initial spin aligned along the −z direction. We can deduce that
the optimal angle of reflection is around 0.001

◦
. Hence this

method of OAM generation is likely not feasible due to flux
limitations.

C. Transmission geometry: Transverse OAM

The flux limitations can be overcome by considering trans-
mission through a transversely polarized electric field which
leads to the generation of transverse spin-orbit states. To
demonstrate this we consider the time-dependent Schrödinger
equation for a neutral spin-1/2 particle in an electric field:[

− ∇2 − γ

c2 �σ · ( �p × �E )

]
ψ = −i

∂

∂t
ψ. (18)

Again we assume that the electric field is polarized along
the z direction. However, this time we consider a field which
extends infinitely in space. To reduce the problem to an or-
dinary differential equation we apply an unbounded Fourier
transform to the spatial coordinates. In cylindrical coordinates
this leads to

εψ̂± ∓ iCkre∓iφψ̂∓ = −i
∂

∂t
ψ̂±, (19)

where ε now denotes the kinetic energy parameter k2
r + k2

z .
Once again we diagonalize this set of equations using the
transform ψ̂ = T ψ̂ ′:

[ε ∓ Ckr]ψ̂ ′
± = −i

∂

∂t
ψ̂ ′

±. (20)

Applying the initial conditions ψ̂±(t = 0) = â±(kr, φ, kz ) we
can determine the homogeneous solution of Eq. (19),

ψ̂± = eiεt [a± cos(Ckrt ) ± a∓ sin(Ckrt )e∓iφ], (21)

which appears almost equivalent to Eq. (15). If the wave
propagates along the y direction the value of kr , which may
be approximated by ky, is a factor 102–103 larger than in
the longitudinal case [Eq. (15)]. Hence the required electric
field integral to raise or lower the mean OAM is reduced to
a more practical level. The incident wave in this case must
be described by an infinite superposition of transverse OAM
modes. Upon being transmitted through an ideal beam twister
device the mean � value of this superposition will be raised
or lowered by 1. In this paper we assume that â± can be
approximated by a Gaussian model. The standard deviation
in the kx direction can be expressed in terms of a symmetry
factor R and the standard deviation in the ky direction by σy:

σx = Rσy, such that â± = e
− (ky−k′

y )2

σ2
y e

− k2
x

R2σ2
y , with k′

y the mean
momentum in the y direction. This Gaussian can be expanded
in its various OAM components by means of the azimuthal
Fourier transform. Upon passing through an appropriate elec-
tric field the index � is raised or lowered by 1. Using this and
Eq. (17) the amplitude of the � = 1 OAM mode, A1, can be
calculated. We may also define an OAM bandwidth in terms
of the standard deviation

σ� =
√〈

L2
z

〉 − 〈
Lz

〉2
(22)

with 〈Lz〉 = ∑
� �A� and 〈L2

z 〉 = ∑
� �2A�. Both the OAM

amplitude A1 and the OAM bandwidth σ� are shown as a
function of the reciprocal longitudinal coherence length σy

and the symmetry factor R in Fig. 3. One can see that a small
coherence length (large σy) leads to a larger amplitude A1

and a tighter bandwidth σ�. Analogously a large symmetry
factor R (i.e., a large beam divergence) corresponds to a larger
amplitude A1 and a small bandwidth σ�.
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FIG. 3. (a) The amplitude of the first OAM mode A1 and (b) the
logarithm of the OAM bandwidth σ� of a twisted Gaussian wave
packet plotted as a function of the reciprocal coherence length σy

and the symmetry factor R, assuming k′
y = 1.

In Fig. 4 we show one such Gaussian wave packet carrying
transverse OAM in real space. The wave packet with OAM
appears to be displaced along the transverse axis, while along
the longitudinal axis the wave packet is shifted by π/2.

III. PROPOSED METHODOLOGY

Based on the previous theoretical analysis we propose a
proof-of-concept experiment with neutrons to demonstrate
that magnetic neutral spin-1/2 particles can obtain quanta of
transverse OAM when traversing an electric field polarized
perpendicular to the flight direction. The beam twister device
will consist of a 1-m-long evacuated flight tube loaded with
two electrodes 1 mm apart. A voltage is applied across the
electrodes to generate the experimentally highest possible
field in a high-vacuum environment (107–108 V/m). Such a
beam twister can generate an OAM carrying wave with an
amplitude between 2% and 20%. To measure the OAM we
propose an experiment similar to that in Ref. [39], which
was designed for photons. The experimental setup would

FIG. 4. Surface plots of the real parts of Gaussian wave packets
in real space, with k′

y = 1, σ 2
y = 0.1, and R = 1 carrying (a) no

orbital angular momentum and (b) one unit of transverse orbital
angular momentum.

employ two supermirrors to spin-polarize and analyze the
beam, two beam twisters to generate and analyze spin-orbit
coupling, and a set of three mirrors in between the two beam
twisters as a means of rotating the image and inverting the
OAM quantum number. This image rotation implies that the
quantization axis of the transverse OAM is rotated around
the propagation axis. If the dove prism is positioned such
that the OAM is flipped the second beam twister will fail
to properly decouple the spin-orbit states, thereby leading to
destructive interference at the detector. On the other hand,
the prism may also be rotated into a position which does not
alter the OAM. In this case the second beam twister success-
fully decouples the neutron spin-orbit states and constructive
interference is seen at the detector. Hence by rotating the
dove prism at a constant frequency a time-dependent modu-
lation will be seen in the neutron intensity. Since the effects
of all components described in this setup are wavelength
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FIG. 5. Simplified schematic of the proposed proof-of-concept experiment to demonstrate the generation of transverse OAM by electric
fields. The setup consists of (a) a polarizing supermirror, (b) an electric beam twister, (c) a set of nonpolarizing mirrors which can be rotated
around a common beam axis, (d) another beam twister with opposite polarity, and (e) a supermirror for spin polarization analysis.

independent, the experiment can exploit the high thermal
flux of a white neutron beam. The proposed setup is shown
in Fig. 5.

IV. CONCLUSION

We have provided a theoretical framework which predicts
that magnetic neutral spin-1/2 particles propagating through
a static electric field acquire OAM parallel to the electric
field axis. Furthermore, we have illustrated a proof-of-concept

experiment which could verify the generation of transverse
OAM in neutrons transmitted through an electric field.
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