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We consider the question of characterizing the incompatibility of sets of high-dimensional quantum mea-
surements. We introduce the concept of measurement incompatibility in subspaces. That is, starting from a
set of measurements that is incompatible, one considers the set of measurements obtained by projection onto
any strict subspace of fixed dimension. We identify three possible forms of incompatibility in subspaces: (i)
incompressible incompatibility—measurements that become compatible in every subspace, (ii) fully compress-
ible incompatibility—measurements that remain incompatible in every subspace, and (iii) partly compressible
incompatibility—measurements that are compatible in some subspace and incompatible in another. For each
class, we discuss explicit examples. Finally, we present some applications of these ideas. First, we show that
joint measurability and coexistence are two inequivalent notions of incompatibility in the simplest case of qubit
systems. Second, we highlight the implications of our results for tests of quantum steering.
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I. INTRODUCTION

Quantum theory is built on Hilbert spaces, in which ob-
servables are presented as Hermitian operators and states
as positive unit-trace matrices. This gives the theory a
noncommuting structure, resulting in, for example, various
uncertainty relations and different notions of measurement
incompatibility. In the simplest case of Hermitian operators,
all incompatibility is captured by the concept of noncom-
mutativity, but for more general measurements given by
positive operator-valued measures (POVMs), various possi-
bilities arise. These include measurement disturbance [1],
joint measurability [2–4], and coexistence [5,6]. Of these,
joint measurability is probably the most well known. Loosely
speaking, a set of POVMs is called jointly measurable when
there exists a single parent POVM, from which one can re-
cover the statistics of all POVMs in the set. This concept
has found many applications in quantum information theory,
notably through connections to quantum nonlocality [7–9],
quantum steering [10–12], macrorealism [13], and temporal
and channel steering [14–16], as well as in prepare-and-
measure scenarios [17–23].

Recently, the notion of joint measurability has been investi-
gated for measurements on high-dimensional systems [18,24–
32], which allow, in principle, for stronger incompatibility
compared to the case of qubits. This raises the question of
whether one could define a notion of “dimensionality” for
measurement incompatibility. In particular, given a set of
incompatible POVMs, can the incompatibility be localized
in specific subspaces of lower-dimensional POVMs or is it,

on the contrary, an intrinsic property of the high-dimensional
space? To formalize this problem, we introduce the idea of
measurement incompatibility in subspaces. That is, given a
set of non-jointly-measurable POVMs, we project (i.e., trun-
cate) each POVM onto a lower-dimensional subspace and
investigate the compatibility properties of the resulting set
of projected POVMs. We identify all possible forms of mea-
surement incompatibility under this scenario, which can be
of three types: (i) incompressible incompatibility, i.e., mea-
surements that become compatible in every strict subspace,
(ii) fully compressible incompatibility, i.e., measurements that
remain incompatible in every nontrivial subspace, and (iii)
partly compressible incompatibility, i.e., measurements that
are compatible in some subspace and incompatible in another.
We present explicit examples of all three categories of incom-
patibility in subspaces.

Beyond the fundamental interest, we show that these ideas
have applications. First, taking advantage of an example of
partly compressible incompatibility, we show that the notions
of joint measurability and coexistence (i.e., joint measura-
bility of all binarizations of the involved measurements) are
inequivalent in the simplest case of qubit POVMs. This an-
swers a longstanding open question on the relation between
these notions [5,6]. For binary or extremal measurements,
the concepts are known to coincide, even when using one
extremal continuous-variable measurement in the latter case
[33]. On the contrary, for general measurements in qutrit
systems and beyond, the concepts are known to be inequiv-
alent [34]. We solve the missing qubit scenario. It is worth
noting that there was no reason to expect this result since

2469-9926/2021/103(2)/022203(10) 022203-1 ©2021 American Physical Society

https://orcid.org/0000-0003-3417-4458
https://orcid.org/0000-0001-8046-382X
https://orcid.org/0000-0002-3967-5908
https://orcid.org/0000-0002-6033-0867
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.103.022203&domain=pdf&date_stamp=2021-02-05
https://doi.org/10.1103/PhysRevA.103.022203


ROOPE UOLA et al. PHYSICAL REVIEW A 103, 022203 (2021)

other incompatibility notions, such as noncommutativity and
unavoidable measurement disturbance, are known to be in-
equivalent only from dimension three on [1].

Second, these ideas have an impact on quantum correla-
tions, in particular the notion of quantum steering [35–37],
which is directly connected to measurement incompatibility
[10–12]. We discuss the role of dimension in the context of
this connection. The latter states that a party performing an
incompatible set of measurements can always steer another
party via a well-chosen bipartite quantum state. We point out
that the connection cannot be directly applied to scenarios
where the steered party has a system of lower dimension
compared to that of the steering party.

II. PRELIMINARIES

To introduce measurement incompatibility, we first fix the
notation. A measurement assemblage M = {Max |x}ax,x con-
sists of POVMs, i.e., Hermitian positive semidefinite matrices,
such that for every x, one has

∑
ax

Max |x = 1, acting on a
finite-dimensional Hilbert space. Here, 1 is the identity op-
erator, x labels the choice of measurement, and ax is the
corresponding outcome. POVMs give rise to measurement
statistics in a given quantum state � through the formula
p(ax|x, �) = tr(Max |x�). When there is no risk of confusion,
we substitute ax with a.

This formalism motivates the definition of joint measur-
ability of a measurement assemblage M as the possibility
of obtaining the statistics of any measurement in M from a
common parent measurement [4]. Any outcome of the parent
measurement is a list a of outcomes of single measurements,
and the statistics of a single measurement is obtained by
summing over certain parts of the list. Formally, joint mea-
surability of M is defined as the existence of a parent POVM
{Ga}a such that

Max |x =
∑

ai
i �=x

Ga. (1)

Measurements that do not allow a parent POVM of this form
are called not jointly measurable or incompatible.

The concept of joint measurability is best illustrated with
an example. In a qubit system, let us take a measurement
assemblage corresponding to the noisy versions of the binary
spin measurements σx and σz, i.e., Mμ

±|1 = 1
2 (1 ± μσx ) and

Mμ

±|2 = 1
2 (1 ± μσz ). Here the parameter μ ∈ [0, 1] quantifies

the amount of noise. For these measurements, a natural candi-
date of a parent POVM is given by a procedure, where a 50-50
beam splitter (or a coin) decides between the measurement
directions x + z and x − z [38]. The resulting statistics are
described by the POVM

Gi, j = 1

4

[
1 + 1√

2
(iσx + jσz )

]
, (2)

where i, j ∈ {−1, 1}. It is straightforward to verify that ig-

noring the outcome j = ±1 results in M1/
√

2
±|1 and, similarly,

ignoring the outcome i = ±1 results in M1/
√

2
±|2 . Hence, one

has a joint measurement for the noisy spin measurements
with μ = 1/

√
2. It can be shown that this threshold is indeed

optimal in the sense that there is no parent POVM when
μ > 1/

√
2 [2].

III. MEASUREMENT INCOMPATIBILITY IN SUBSPACES

We are interested in the following problem: given an in-
compatible measurement assemblage M = {Max |x}ax |x acting
in a d-dimensional Hilbert space with 2 < d < ∞, what hap-
pens to the incompatibility when the assemblage is truncated
to an n-dimensional subspace with 2 � n < d? The truncation
is modeled by a projection Pn onto an n-dimensional subspace,
i.e., we are interested in the compatibility properties of the
measurement assemblage,

MU
n = {

PnU
†Max |xUPn

}
ax |x, (3)

where U is some unitary operator acting on the initial d-
dimensional Hilbert space and Pn = ∑n

i=1 |i〉〈i|. Note that in
contrast to truncating quantum states for which the normal-
ization, i.e., unit-trace property, can be altered, for POVMs
the normalization is unaltered when seen as measurements
in the subspace, i.e., the normalization is the identity operator
in the subspace.

We find that there exist three different forms of incompat-
ibility in subspaces. First, compatibility can be present in all
strict subspaces of dimension n, i.e., MU

n being compatible for
every unitary U in the initial Hilbert space. Second, incom-
patibility can be present in all strict subspaces of dimension
n, i.e., MU

n being incompatible for every unitary U . Finally,
there is the possibility of having compatibility for some uni-
tary U and incompatibility for some other unitary V . Note that
compatible measurement assemblages fulfill the first notion
trivially, i.e., a parent measurement Ga of M becomes a parent
measurement PnU †GaUPn for the truncated assemblage MU

n ;
see, also, [31]. To clarify the different types of incompatibility
in subspaces, we discuss each category in detail below.

A. Incompressible incompatibility

We first show the existence of sets of measurements that
become compatible in any strict subspace. Hence incompati-
bility is incompressible here, as it vanishes in every possible
lower-dimensional subspace. Intuitively, this represents the
most fragile form of incompatibility in subspaces.

Formally, we are searching for an incompatible measure-
ment assemblage M, with the property that the truncation
MU

n is compatible for every U and n < d .
Here we provide a method for constructing such assem-

blages for the case d = 3 (and, hence, n = 2). To this end, we
use the connection between measurement incompatibility and
quantum steering. More specifically, we start from the steering
scenario and consider the so-called stronger Peres conjecture
[39]. The latter was recently disproven [40] (see, also, [41,42])
and we make use of these results to construct a measurement
assemblage that is incompressible.

The stronger Peres conjecture states that every bound en-
tangled state admits a local hidden state model [35], i.e.,
cannot lead to quantum steering. In other words, given a
bound entangled state �AB, i.e., an entangled state that cannot
be distilled into a pure entangled state, together with any
measurement assemblage {Aax |x}ax,x, one is conjectured
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to have

σax |x := trA
[(

Aax |x ⊗ 1
)
�AB

] =
∑

ai
i �=x

σa, (4)

where σa are positive operators with the property
∑

a σa =
trA(�AB) =: �B. The operators σa are referred to as the local
hidden states, and with the marginalization in Eq. (4), they
form a local hidden state model for the state assemblage σax |x.
The latter is then called unsteerable. If no such model can be
constructed, the assemblage is steerable. It has turned out that
the existence of a local hidden state model is equivalent to the
joint measurability of the corresponding “pretty good mea-
surements” Max |x := �

−1/2
B σax |x�

−1/2
B [12]. On the contrary, if

σax |x is steerable, then the pretty good measurement is incom-
patible.

With these tools, we are ready to explain our construc-
tion. We start from the counterexample to the stronger Peres
conjecture in the two-qutrit case presented in Ref. [12]. This
features a specific bound entangled state �AB which, com-
bined with well-chosen measurements, leads to a steerable
assemblage. The corresponding pretty good measurements
are therefore incompatible. This set of POVMs is, in fact,
incompressible. That is, a projection onto any possible qubit
subspace will necessarily give a jointly measurable set of
POVMs. To see this, we note that the state assemblage cor-
responding to the truncated measurements can be obtained
from the original steering setup by projecting the steered side
of the bound entangled state to a qubit subspace. As �AB is
positive under partial transposition [43], the state resulting
from the local projection is necessarily a separable state [44].
As separable states can only lead to unsteerable assemblages,
it follows that the corresponding projected pretty good mea-
surements are jointly measurable, which concludes the proof.
Note that we provide a detailed proof in the Appendix.

It is worth mentioning that one can modify the con-
cept of incompressible incompatibility by demanding that a
measurement assemblage becomes compatible under every
Heisenberg channel (a channel that preserves the identity, that
is not necessarily trace-preserving) to a smaller-dimensional
system. Although we will leave open the question of whether
this provides a strict subset of measurement assemblages that
are compatible in every subspace, we note that the Peres
conjecture technique also works in this scenario; see the
Appendix. The channel formulation of incompatibility in sub-
spaces turns out to be relevant when applying the concept to
quantum steering.

Intuitively, incompressible incompatibility can be viewed
as a weak form of incompatibility. This can be formalized
more quantitatively by considering a measure of incompatibil-
ity, the so-called depolarizing incompatibility robustness [29].
This measure corresponds to the critical amount of depolariz-
ing noise one needs to add to incompatible measurements to
make them compatible, namely,

ηd
{Aa|x} = max

η,{G j } j

η

subject to
∑

j

δ jx,aG j = Aη

a|x ∀a, x, (5)

G j � 0 ∀ j, η � 1,

where Aη

a|x = ηAa|x + (1 − η)tr(Aa|x )1/d . The measure is
clearly non-negative and it equals one for compatible mea-
surements; the lower it is, the more incompatible the
measurements are. The intuition of the approach below is to
average over all lower-dimensional parent POVMs in order to
get one for the initial measurements; naturally, in the process,
some noise appears so that the resulting parent measurement
actually gives a lower bound on the depolarizing incompati-
bility robustness.

We consider a measurement assemblage {Aa|x}a,x such that
for all projections Pn onto an n-dimensional subspace (n > 1)
of the d-dimensional space in which the measurements live,
there exists a parent POVM G(Pn )

j for the measurement assem-
blage {PnAa|xPn}a,x. Then we have that

G j := d

n

∫
G(Pn )

j dPn (6)

is a parent POVM for the measurements with elements

ηnAa|x + (1 − ηn)
tr(Aa|x )

d
1 with ηn = nd − 1

d2 − 1
, (7)

so that the depolarizing incompatibility robustness admits a
lower bound,

ηd
{Aa|x} �

nd − 1

d2 − 1
. (8)

Note that for n = d , we indeed get the expected trivial bound
of one. We give the proof of the above bound in the case
n = 2, as the general case of n > 1 can be obtained through
an iterative procedure. We decompose any projection P2 into
|ϕ〉〈ϕ| + |ψ〉〈ψ |, where |ϕ〉 and |ψ〉 are orthogonal. Note that
the integration

∫
dP2 used above should always be thought

of as
∫∫

dψdϕ, where |ψ〉 lives in the (d − 1)-dimensional
subspace orthogonal to |ϕ〉. Note also that the integral notation
for operators is a convenient formal tool that nonetheless
needs some caution: it always underpins the complex inte-
grals obtained by sandwiching it with two vectors. Then the
marginals of the proposed parent POVM (6) are∑

j

δ jx,aG j

= d

2

∫ ∑
j

δ jx,aG(P2 )
j dP2 (by linearity)

= d

2

∫
P2Aa|xP2dP2 (by assumption)

= d

2

∫∫
(|ϕ〉〈ϕ| + |ψ〉〈ψ |)Aa|x(|ϕ〉〈ϕ| + |ψ〉〈ψ |)dψdϕ.

(9)

Since |ψ〉 lives in the subspace orthogonal to |ϕ〉, we have that∫ |ψ〉〈ψ |dψ = (1 − |ϕ〉〈ϕ|)/(d − 1). Therefore, we get

∑
j

δ jx,aG j = Aa|x
d − 1

+ d (d − 2)

d − 1
I (Aa|x ), (10)

where

I (M ) :=
∫

|ϕ〉〈ϕ|M|ϕ〉〈ϕ|dϕ. (11)
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Computing the integral (11) requires some care. Consider
a Hermitian operator written in its diagonal basis,

M =
d∑

i=1

λi|i〉〈i|. (12)

In the following, we will make use of the book [45] by Rudin
on function theory on the complex unit ball; since his vocab-
ulary is quite different from ours, we establish the connection
in detail. We start by explaining how 〈i|[I (|i〉〈i|)]|i〉 can be
computed, with the rest being similar. So we aim at evaluating

〈i|[I (|i〉〈i|)]|i〉 =
∫

|〈ϕ|i〉|4dϕ, (13)

which writes, in the language of Ref. [45],∫
|ζ α|2dσ (ζ ), (14)

where the variable ζ = (〈ϕ|i〉) and the multi-index α = (2)
contain only one element in this case. Then, Proposition
1.4.9(1) from [45] guarantees that as |α| = 2,

〈i|[I (|i〉〈i|)]|i〉 = (d − 1)!α!

(d − 1 + |α|)! = 2

d (d + 1)
. (15)

For j �= i, the same argument applies, with z = (〈ϕ|i〉, 〈ϕ| j〉)
and α = (1, 1) now containing two elements so that

〈 j|[I (|i〉〈i|)]| j〉 = 1

d (d + 1)
. (16)

For the off-diagonal elements, Proposition 1.4.8 from
Ref. [45] indicates that they are zero. Combining things to-
gether, we get

I (M ) =
d∑

i=1

λiI (|i〉〈i|) (17)

=
d∑

i=1

λi

|i〉〈i| + ∑
j | j〉〈 j|

d (d + 1)
(18)

= M + tr(M )1

d (d + 1)
, (19)

so that by plugging this expression in Eq. (10), we eventually
get

∑
j

δ jx,aG j = 2d − 1

d2 − 1
Aa|x + d (d − 2)

d2 − 1
tr(Aa|x )

1

d
, (20)

which concludes the proof.
In the generalization to projections with a higher rank, the

following integrals are obtained:

d

n

∫
PndPn = 1, (21)

d

n

∫
PnMPndPn = (nd − 1)M + (d − n)tr(M )1

d2 − 1
, (22)

d

n

∫
tr(PnMPn)PndPn = (d − n)M + (nd − 1)tr(M )1

d2 − 1
.

(23)

Note that dPn is an abusive notation that should be understood
as dϕn . . . dϕ1, where each |ϕk〉 lives in the (d − k + 1)-
dimensional subspace orthogonal to all |ϕ j〉 with j < k.

B. Fully compressible incompatibility

Let us now discuss a completely different form of incom-
patibility in subspaces, namely, sets of measurements that
remain incompatible in every lower-dimensional subspace.
Intuitively, this represents the most robust form of incompati-
bility in subspaces.

Formally, we are searching for an incompatible measure-
ment assemblage M, with the property that the truncation
MU

n is incompatible for every U and n � 2. We present a
sufficient criterion for measurements to be of this type when
truncated from dimension d to dimension d − 1. The crite-
rion works for measurements constructed from orthonormal
bases of the Hilbert space, i.e., measurements for which ev-
ery POVM element is of the form |ϕa〉〈ϕa| for some basis
{|ϕa〉}d

a=1.
To derive our criterion, let {|ϕn〉}d

n=1 (with d � 3) be an
arbitrary orthonormal basis of H and {|ϕ′

k〉}d
k=1 another or-

thonormal basis such that

〈ϕn|ϕ′
k〉 �= 0 for all n and k. (24)

Define two d-valued (rank-one) projection valued measures
(PVMs) {Pn}n and {P′

k}k with Pn = |ϕn〉〈ϕn| and P′
k = |ϕ′

k〉〈ϕ′
k|.

They are totally noncommutative,

PnP′
k = 〈ϕn|ϕ′

k〉︸ ︷︷ ︸
�=0

|ϕn〉〈ϕ′
k| �= 〈ϕ′

k|ϕn〉︸ ︷︷ ︸
�=0

|ϕ′
k〉〈ϕn| = P′

kPn, (25)

for all n and k (since the ranges of PnP′
k and P′

kPn are disjoint:
C|ϕn〉 ∩ C|ϕ′

k〉 = {0}). Hence, P and P′ are not jointly mea-
surable.

Let |ψ〉 be an arbitrary unit vector in the d-dimensional
space and define the projection R = 1 − |ψ〉〈ψ | onto the (ar-
bitrary) (d − 1)-dimensional closed subspace RH (i.e., H =
RH ⊕ C|ψ〉). We have three cases.

First, |ψ〉〈ψ | commutes with all Pn’s, i.e., |ψ〉〈ψ | =
|ϕm〉〈ϕm| for some m (since the rank-one projection |ψ〉〈ψ |
must be diagonal in the basis {|ϕn〉}d

n=1). Now, also, R com-
mutes with P so that the projections RPnR constitute a (d −
1)-valued rank-one PVM of RH (since RPmR = 0). More-
over, {RP′

kR}k is a d-valued rank-one POVM of RH (note
that R|ϕ′

k〉 = ∑
n �=m〈ϕn|ϕ′

k〉|ϕn〉 �= 0 for all k). Similarly as
in Eq. (25), one sees that RPnR RP′

kR �= RP′
kR RPnR for all

n �= m and for all k so that the projected observables are not
jointly measurable (recall that a PVM and a POVM are jointly
measurable if and only if they commute).

Second, |ψ〉〈ψ | commutes with all P′
k’s, i.e., |ψ〉〈ψ | =

|ϕ′
�〉〈ϕ′

�| for some �. Exactly as in the preceding item (just
change the roles of the bases, |ϕn〉 ←→ |ϕ′

k〉), one sees that
the (projected) PVM and POVM do not commute and thus are
not jointly measurable.

Third, suppose that |ψ〉〈ψ | is not |ϕn〉〈ϕn| or |ϕ′
k〉〈ϕ′

k| for
any n or k, that is, R does not commute with P or P′. Now
RPnR �= 0 and RP′

kR �= 0 for all n and k (indeed, suppose that,
e.g., 0 = R|ϕn〉 = |ϕn〉 − 〈ψ |ϕn〉|ψ〉, i.e., |ψ〉 = c|ϕn〉, with
c ∈ C such that |c| = 1, i.e., |ψ〉〈ψ | = |ϕn〉〈ϕn|, a contradic-
tion). Hence, both {RPnR}n and {RP′

kR}k are d-valued rank-one
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POVMs (not PVMs) of RH with the minimal Naimark dila-
tions (H, P, R) and (H, P′, R). Assume that they have a joint
POVM {Mnk}n,k , i.e.,

∑d
k=1 Mnk = RPnR and

∑d
n=1 Mnk =

RP′
kR. From Ref. [46], one sees that there are unique numbers

ank � 0 and bnk � 0 such that
∑d

k=1 ank = 1 for all n and∑d
n=1 bnk = 1 for all k, and

Mnk = ankRPnR = bnkRP′
kR. (26)

From RPnR �= 0 �= RP′
kR �= 0, one gets ank = 0 if and only if

bnk = 0.
Since

∑d
k=1 ank = 1 (for all n), we must have anπ (n) �= 0

for some index k = π (n). Hence, for each n = 1, . . . , d , 0 �=
R|ϕn〉 = cnR|ϕ′

π (n)〉, i.e., R(|ϕn〉 − cn|ϕ′
π (n)〉) = 0, for some

complex number cn �= 0. Hence, |ϕn〉 − cn|ϕ′
π (n)〉 belongs to

the kernel of R and is of the form c′
n|ψ〉, c′

n �= 0 [by condition
(24)], so that

|ψ〉 = an|ϕn〉 + bn|ϕ′
π (n)〉 for all n, (27)

where an and bn are some nonzero (by the assumption) com-
plex numbers such that ‖ψ‖ = 1. The constants an and bn

are unique since |ϕn〉 and |ϕ′
π (n)〉 are linearly independent by

condition (24). It is easy to show that π is a permutation
(bijection) on {1, 2, . . . , d} (such that anπ (n) �= 0 for all n);
indeed, if π (n) = π (m), then (bn − bm)|ϕ′

π (n)〉 = am|ϕm〉 −
an|ϕn〉, which forces bn = bm and then am = 0 = an, yielding
a contradiction: |ψ〉 = bn|ϕ′

π (n)〉.
Now, |ψ〉 ∈ ⋂d

n=1(C|ϕn〉 + C|ϕ′
π (n)〉), which we want to

be {0} for all permutations π (a contradiction since ψ �= 0).
Taking 〈ϕm|ψ〉, we have

anδnm + bn〈ϕm|ϕ′
π (n)〉 = a jδ jm + b j〈ϕm|ϕ′

π ( j)〉, (28)

for all n, m, j. In particular, if n �= m �= j, we have
bn〈ϕm|ϕ′

π (n)〉 = b j〈ϕm|ϕ′
π ( j)〉 or

bn

b j
= 〈ϕm|ϕ′

π ( j)〉
〈ϕm|ϕ′

π (n)〉
, (29)

where the left-hand side does not depend on m. If we choose
any n �= j �= k �= n (which is possible since d � 3) and write
J = π ( j), K = π (k), N = π (n) (so that N �= J �= K �= N
since π is bijective), we get

〈ϕm|ϕ′
J〉

〈ϕm|ϕ′
N 〉 = bn

b j
= bn

bk

bk

b j
= 〈ϕo|ϕ′

K〉
〈ϕo|ϕ′

N 〉
〈ϕp|ϕ′

J〉
〈ϕp|ϕ′

K〉 (30)

or

〈ϕm|ϕ′
J〉〈ϕo|ϕ′

N 〉〈ϕp|ϕ′
K〉 = 〈ϕp|ϕ′

J〉〈ϕm|ϕ′
N 〉〈ϕo|ϕ′

K〉, (31)

for all j �= m �= n �= o �= k �= p �= j (which is possible since
d � 3). To conclude, we have to find an orthonormal basis
satisfying (24) and the following (sufficient) condition: for all
N �= J �= K �= N and m �= o �= p �= m,

〈ϕm|ϕ′
J〉〈ϕo|ϕ′

N 〉〈ϕp|ϕ′
K〉 �= 〈ϕp|ϕ′

J〉〈ϕm|ϕ′
N 〉〈ϕo|ϕ′

K〉. (32)

In other words, if conditions (24) and (32) are satisfied,
then P and P′ are incompatible PVMs in a d-dimensional
Hilbert space, with all projections onto (d − 1)-dimensional
subspaces also incompatible.

Example 1. Let d = 3 and {|ϕn〉}3
n=1 be the computational

basis of C3. Now,

|ϕ′
1〉 = 1√

14
(1, 2, 3),

|ϕ′
2〉 = 1√

27
(−5, 1, 1),

|ϕ′
3〉 = 1√

378
(1, 16,−11)

clearly satisfy conditions (24) and (32).
Intuitively, measurements featuring fully compressible in-

compatibility should be very incompatible. The question of
quantifying measurement incompatibility has been recently
formalized [29], and it appears that pairs of measurements
based on two mutually unbiased bases (MUBs) are among the
most incompatible ones. Surprisingly, the following example
shows that a pair of MUBs is not fully compressible (but
only partly compressible). This shows that incompatibility in
subspaces captures a different aspect of measurement incom-
patibility compared to the usual quantifiers.

Example 2. Continuing with the notation from the previous
example, the Fourier connected vectors

|ϕ′
k〉 = 1√

d

d∑
n=1

e
2iπnk

d |ϕn〉 (33)

do not satisfy (32). Now, if d = 3 and we choose |ψ〉 =
1√
3
(1, 1, ω), where ω = exp(2iπ/3), we get

R = 13 − |ψ〉〈ψ | = 1

9

⎛
⎝ 2 −1 −ω2

−1 2 −ω2

−ω −ω 2

⎞
⎠ (34)

and

R|ϕ1〉〈ϕ1|R = 1

9

⎛
⎝ 4 −2 −2ω2

−2 1 ω2

−2ω t 1

⎞
⎠ = R|ϕ′

1〉〈ϕ′
1|R,

(35)
and, similarly,

R|ϕn〉〈ϕn|R = R|ϕ′
n〉〈ϕ′

n|R for all n = 1, 2, 3, (36)

i.e., the projected POVMs {R|ϕn〉〈ϕn|R}n and {R|ϕ′
n〉〈ϕ′

n|R}n

are the same POVM, which makes them trivially jointly
measurable. As a technical note, the truncated POVM
has two minimal Naimark dilations (H, |ϕn〉〈ϕn|, R) and
(H, |ϕ′

n〉〈ϕ′
n|, R), the only difference being the projective mea-

surement in the dilation space, namely, the fact that one can
measure either {|ϕn〉〈ϕn|}n or {|ϕ′

n〉〈ϕ′
n|}n in any subsystem’s

state � to get the same statistics.

C. Partly compressible incompatibility

Together with the two extreme scenarios, it is possible
to have incompatible measurements in dimension d , which
become compatible or incompatible depending on the trun-
cation. Arguably, this represents the least surprising (and
probably most common) form of incompatibility in subspaces.

Formally, we are searching for a measurement assemblage
M that is incompatible, with the property that the trunca-
tion MU

n , with fixed 2 � n < d , is compatible for some U
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and incompatible for some other Ũ . The most naive way of
finding such examples is to add together (as a direct sum)
a compatible and an incompatible measurement assemblage.
Now, projections onto the components of the direct sum yield
measurement assemblages that have different compatibility
properties, i.e., one is compatible and one is incompatible. We
note that this structure can be also realized through the con-
cept of commutativity domain, as characterized by a theorem
of Ylinen [47].

There are, however, less trivial examples and we will
discuss one of them in detail when demonstrating the inequiv-
alence between joint measurability and coexistence for qubit
POVMs.

IV. INEQUIVALENCE OF JOINT MEASURABILITY AND
COEXISTENCE FOR QUBITS

The notion of coexistence of measurement assemblages
goes back to Ludwig [5]. Ludwig’s original formulation is in
the language of measure theory, which we will omit here to
avoid technicalities. Instead, we use the fact that the concept
can be recast as joint measurability of all yes-no questions (or
binarizations) of a given measurement assemblage [4]. Recall
that a binarization of a POVM {Ma}a with respect to an out-
come subset X is a two-valued POVM {∑a∈X Ma,

∑
a/∈X Ma}.

For jointly measurable assemblages, the parent POVM gives
an answer to all questions before binarization, so clearly joint
measurability implies coexistence. The problem of identifying
scenarios in which these two notions do not coincide has
formed its own research program. In certain cases, including
projective, binary, and extremal measurements, these two no-
tions coincide [3,46,48]. Up to now, two classes of examples
of coexistent measurement assemblages that are incompatible
have been reported [34,46]. These classes work for systems
whose dimension is three or larger. Here, we extend one of
these classes to the missing qubit case. Our solution goes as
follows. Take two POVMs on a qutrit system that are known
to be incompatible and coexistent [46]:

Ai := 1
2 (1 − |i〉〈i|), i = 0, 1, 2, (37)

Bj :=
{ 1

2 | j〉〈 j|, j = 0, 1, 2
1
2 |ψ j−3〉〈ψ j−3|, j = 3, 4, 5,

(38)

where {|i〉}2
i=0 is the computational basis and |ψ j〉 =

1√
3
(|0〉 + ω j |1〉 + ω2 j |2〉) with ω = exp(2iπ/3) is its Fourier-

connected basis. These measurements are coexistent, as every
binarization of the measurement given by Eq. (37) gives an
element ( j = 0, 1, 2) of the measurement in Eq. (38). This
shows that B functions as a parent measurement for all bi-
narizations of both measurements. More precisely, we note
that joint measurability can be equivalently formalized as the
existence of a POVM {Gλ}λ and classical postprocessings, i.e.,
probability distributions, p(a|x, λ) such that

Ma|x =
∑

λ

p(a|x, λ)Gλ. (39)

To see that this definition is equivalent to our main definition,
one can define a joint measurement from the right-hand side
of Eq. (39) through Ga = ∑

λ �x p(a|x, λ)Gλ. As any POVM

is a joint measurement of its own binarizations in the sense of
Eq. (39), and as the binarizations of the measurements given
by Eq. (37) and Eq. (38) are binarizations of the latter, we
have proven their coexistence. As the incompatibility of these
measurements is proven in [46] and can also be deduced from
the subsequent discussion, we omit the proof here.

To find the desired qubit example, we analyze the com-
patibility of these measurements in the two-dimensional
subspace spanned by |ψ0〉 and |ψ1〉. Under the projection P2 =
|ψ0〉〈ψ0| + |ψ1〉〈ψ1| to this subspace, the POVMs transform
as follows:

Ai �→ 1
6 |ψ0 + ω̄i+1ψ1〉〈ψ0 + ω̄i+1ψ1|
+ 1

6 |ψ0 + ω̄i+2ψ1〉〈ψ0 + ω̄i+2ψ1|, (40)

Bj �→

⎧⎪⎨
⎪⎩

1
6 (|ψ0 + ω̄ jψ1〉〈ψ0 + ω̄ jψ1|), j = 0, 1, 2

P2BjP2 = Bj, j = 3, 4

0, j = 5.

(41)

We let Ã and B̃ be the matrix representations of the restrictions
of the POVMs A and B in the basis {|ψ0〉, |ψ1〉}. Indeed,

Ã0 = 1

2

(2

3
1 − 1

3
σx

)
, (42)

Ã1 = 1

2

(2

3
1 + 1

6
σx + 1

2
√

3
σy

)
, (43)

Ã2 = 1

2

(2

3
1 + 1

6
σx − 1

2
√

3
σy

)
, (44)

B̃0 = 1

2

(1

3
1 + 1

3
σx

)
, (45)

B̃1 = 1

2

(1

3
1 − 1

6
σx − 1

2
√

3
σy

)
, (46)

B̃2 = 1

2

(1

3
1 − 1

6
σx + 1

2
√

3
σy

)
, (47)

B̃3 = 1

2

(1

2
1 + 1

2
σz

)
, (48)

B̃4 = 1

2

(1

2
1 − 1

2
σz

)
. (49)

We note that Ã and B̃ are coexistent due to the fact that they
are projections of a coexistent measurement assemblage. For-
mally, the former parent of the binarizations is truncated to a
parent of the projected assemblages. To prove incompatibility
of the truncated measurement assemblage, we note that the
operators {B̃0, B̃1, B̃2, B̃3} are linearly independent and one
can write B̃4 as their linear combination,

B̃4 = B̃0 + B̃1 + B̃2 − B̃3. (50)

Using Eq. (50) and assuming that Ã and B̃ are jointly measur-
able, we get (as B̃ is rank one) [46]

Ãi =
4∑

j=0

pi j B̃ j = (pi0 + pi4)B̃0 + (pi1 + pi4)B̃1

+ (pi2 + pi4)B̃2 + (pi3 − pi4)B̃3. (51)

As the operators on the right-hand side are linearly indepen-
dent, we get, for Ã0, the coefficients p00 = p03 = p04 = 0
and p01 = p02 = 1 and, for Ã1, the coefficients p11 = p13 =
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p14 = 0 and p10 = p12 = 1. This is already a contradiction
as p02 + p12 = 2 > 1. Hence the truncated measurements are
coexistent, but not jointly measurable.

Note that a final coarse graining can be applied without
losing this feature, namely, one can group the first two out-
comes of B̃ so as to get a four-valued measurement. The
coexistence is obviously preserved in the process, and the
incompatibility can be shown by computing the depolarizing
incompatibility robustness [see Eq. (5)], which is approxi-
mately 0.9830. Hence, we have constructed a counterexample
for the coexistence problem in the qubit case including one
three-outcome and one four-outcome POVM. However, one
might wonder whether there exists a smaller counterexample,
i.e., one with less outcomes. We have not been able to find any
projection preserving the incompatibility of the example from
Ref. [34], which features two and three outcomes. We have
also explored this question numerically via a seesaw method
consisting of two semidefinite programs, but have not found
such examples.

Below we explain the seesaw algorithm for a pair of
POVMs {Ai}ma

i and {Bj}mb
j , but it can be extended to the

case of three or more measurements. The algorithm starts
by sampling two random POVMs, which we denote as
{A(0)

i }ma
i {B(0)

j }mb
j . For this pair of POVMs, we construct an

incompatibility witness as follows:

max
Xi,Yj ,N

ma∑
i

tr
(
XiA

(0)
i

) +
mb∑
j

tr
(
YjB

(0)
j

)

subject to Xi � 0, ∀i ∈ [ma],

Yj � 0, ∀ j ∈ [mb],

Xi + Yj � N, ∀i ∈ [ma], j ∈ [mb],

trN = 1, N† = N. (52)

This is the dual semi-definite program (SDP) to the general-
ized incompatibility robustness [21].

Let us denote the solutions to the above SDP as {X (1)
i }ma

i

and {Y (1)
j }mb

j . Now, the second SDP in our seesaw algorithm
is designed to look for coexistent POVMs, which would max-
imize the witness {X (1)

i }ma
i and {Y (1)

j }mb
j . This SDP reads as

follows:

max
Gλ

ma∑
i

tr
(
X (1)

i Ai
) +

mb∑
j

tr
(
Y (1)

j B j
)

subject to Gλ � 0 ∀λ,∑
λ

D(Sa|λ)Gλ =
∑
i∈Sa

Ai ∀Sa ⊂ [ma],

∑
λ

D(Sb|λ)Gλ =
∑
j∈Sb

B j ∀Sb ⊂ [mb],

∑
λ

Gλ = 1,

ma∑
i

Ai = 1,

mb∑
j

B j = 1. (53)

In the above SDP, the coexistence of POVMs {Ai}ma
i {Bj}mb

j
is ensured by joint measurably of every binarization of the
latter. With a slight abuse of notations, the postprocessing
functions D(Sa|λ) should satisfy D(Sa|λ) + D([ma] \ Sa|λ) =

1 ∀λ and D(Sb|λ) + D([mb] \ Sb|λ) = 1 ∀λ. As usual, these
postprocessing functions can be taken to be deterministic. The
POVMs {Ai}ma

i {Bj}mb
j are auxiliary variables of the SDP in

Eq. (53) since they are defined as linear functions of Gλ.
However, we are interested in these POVMs which come from
the solutions of the SDP given by Eq. (53). Let us denote
these solutions as {A(1)

i }ma
i {B(1)

j }mb
j . The final step of defining

the seesaw algorithm is the imputing {A(1)
i }ma

i {B(1)
j }mb

j to the
SDP in Eq. (52) and iterating the process until the value of the
objective function converges to some point. If, at any point,
the solution of the SDP in Eq. (52) returns a value larger than
1, an example of incompatible coexistent POVMs {Ai}ma

i and
{Bj}mb

j is found.
With this method, we were able to find numerical examples

for various dimensions of Hilbert space as well as various
configurations. For instance, for d = 3 and the simplest case
of one binary and one trinary POVM, the algorithm converges
to examples for about 1% of the initial random samples of
the POVMs {A(0)

i }ma
i and {B(0)

j }mb
j . For a higher number of

outcomes, the algorithm was more likely to find examples.
However, in the qubit case, the algorithm could find only a
weakly incompatible example for two POVMs with three and
four outcomes. Due to the low value of incompatibility, we
could not give an analytical form of this example.

Finally, note that a similar seesaw algorithm has been
previously used to find examples of quantum states with in-
teresting entanglement properties [49].

Note also that the incompatibility of the above example
is only partly compressible since there exist projections onto
qubit subspaces such that the resulting pair of measurements is
compatible. For instance, under the projection P2 = |0〉〈0| +
|1〉〈1|, the incompatibility is lost.

V. IMPLICATIONS FOR QUANTUM STEERING

Shifting our focus to the connection between joint mea-
surability and steering, we pose a question on the role of
dimension in this particular result. Namely, it is known that
any incompatible measurement assemblage on one party leads
to a steerable state assemblage on the other party given that
one possesses a suitable catalyst state. The known catalyst
states have full Schmidt rank. Hence, one can raise the ques-
tion of what happens if the dimension of the steered party is
bounded. Our examples of incompatible measurements that
are compatible in every subspace allow one to answer this
question. Namely, one can see the shared state in a steering
experiment as a Heisenberg channel (i.e., completely positive
identity-preserving map) that maps one party’s measurements
to the pretty good measurements on the other party (up to
transposition), i.e., Aax |x �→ MT

ax |x, according to [50]

��AB (Aax |x ) = �
− 1

2
B trA[(Aax |x ⊗ 1)�AB]T �

− 1
2

B , (54)

where the transpose is taken in the eigenbasis of �B =
trA(�AB). This channel is the Choi channel of �AB. Clearly, any
incompatible measurement assemblage that becomes compat-
ible under any channel to a smaller-dimensional system does
not enable steering when the steered party’s dimension is
smaller than the other party’s dimension.
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VI. CONCLUSIONS

We have developed the concept of measurement incompat-
ibility in subspaces. We showed that this question leads to
a rich structure, as truncated measurements can feature very
different compatibility properties.

In particular, we have shown the existence of sets of
POVMs that have incompressible incompatibility, i.e., they
become jointly measurable in every possible subspace. We
provided an example for this in dimension d = 3, with projec-
tions for every qubit subspace (n = 2). It would be interesting
to find other examples and see if this is possible in general,
that is, for every d and n < d . Here the higher-dimensional
counterexamples to the Peres conjecture of Ref. [42] might
prove useful.

Another direction would be to characterize the sets of
POVMs featuring different forms of incompatibility in sub-
spaces. The set of sets of POVMs with incompressible
incompatibility should be convex. What about others? Can
one formalize witnesses for detecting different forms of in-
compatibility in subspaces?

It would also be interesting to see if incompatibility in
subspaces is connected to the idea of compression with respect
to a set of measurements [51] or to genuine high-dimensional
steering [32].

Finally, we discussed some applications of these ideas.
First, we used an example of partly compressible incompat-
ibility to show the inequivalence of joint measurability and
coexistence in the simplest qubit case. We also discussed
the consequences for steering tests. We conclude by not-
ing that there are also other types of correlations that are
closely related to various forms of measurement incompat-
ibility, such as preparation contextuality, Bell nonlocality,
violations of macrorealism, and channel steering. We believe
that our framework can lead to a better understanding of these
concepts and their applications.

Note added. Recently, we became aware of the recent and
independent work in Ref. [52].
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APPENDIX: THE STRONGER PERES CONJECTURE

In this Appendix, we show how to construct incompatible
measurements that are compatible in every two-dimensional
subspace. In Ref. [40], the authors have proven the existence
of bound entangled steerable quantum states, hence providing
a counterexample to the stronger Peres conjecture [39]. These

states are given as

�AB = λ1|ψ1〉〈ψ1| + λ2|ψ2〉〈ψ2|
+ λ3(|ψ3〉〈ψ3| + |ψ̃3〉〈ψ̃3|), (A1)

where

|ψ1〉 = (|12〉 + |21〉)/
√

2,

|ψ2〉 = (|00〉 + |11〉 − |22〉)/
√

3,

|ψ3〉 = m1|01〉 + m2|10〉 + m3(|11〉 + |22〉),

|ψ̃3〉 = m1|02〉 − m2|20〉 + m3(|21〉 − |12〉),

(A2)

and mi � 0. As noted in Ref. [40], this family of states can be
made invariant under partial transposition on Alice’s side by
choosing

λ1 = 1 − 2 + 3m1m2

4 − 2m2
1 + m1m2 − 2m2

2

,

λ3 = 1

4 − 2m2
1 + m1m2 − 2m2

2

,

λ2 = 1 − λ1 − 2λ3.

(A3)

For positivity of the states, one has to check the limits on mi.
The states in Eq. (A1) are steerable (at least for a certain

range of parameters) with two measurements on Alice’s side
given by two MUBs [40],

|ϕ1,2|1〉 = (1/
√

3,−1/
√

6,±1/
√

2),

|ϕ3|1〉 = (1/
√

3,
√

2/3, 0),

|ϕ1|2〉 = (1, 0, 0),

|ϕ2|2〉 = (0, ω/
√

2, iω/
√

2),

|ϕ3|2〉 = (0, ω/
√

2,−iω/
√

2), (A4)

where ω = exp(2iπ/3).
For our purposes, the steerability of the state assemblage,

�a|x := trA[(|ϕa|x〉〈ϕa|x| ⊗ 1)�AB], (A5)

together with the partial transpose invariance of the state in
Eq. (A1) are crucial. Namely, if one maps Bob’s side of
the shared state into any qubit subspace, one is left with a
separable state and, consequently, an unsteerable assemblage.

To take this idea a bit further, recall that steerability is
very closely related to joint measurability of POVMs. The
connection is given by renormalization of state assemblages,
i.e., mapping �a|x into Ba|x := �

−1/2
B �a|x�

−1/2
B , where �B =

trA(�AB). Note that here the state �B is possibly inverted only
on a subspace and, hence, the resulting POVMs Ba|x are, in
general, defined on a system of dimension less than or equal
to Bob’s original dimension.

Whereas the state assemblage in Eq. (A5) originates from
the state �AB, the normalized state assemblage (or POVMs)
{Ba|x}a|x originates, up to a constant, from the filtered state
(1 ⊗ �

−1/2
B )�AB(1 ⊗ �

−1/2
B )/N , where N is the dimension of

the support of �B. As the original state �AB is invariant under
partial transposition on Alice’s side, so is the filtered state.
Putting the known connection between steerability and joint
measurability together with the fact that the filtered state is
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positive partial transpose (PPT) and that PPT states in C3 ⊗
C2 are separable, we arrive at the following observation:

Observation. There exists an incompatible measurement
assemblage in a qutrit system that becomes compatible un-
der any restriction [i.e., completely positive, trace-preserving
(CPTP) mapping] to a qubit system.

Proof. Filter the state from Eq. (A1) with �
−1/2
B on Bob’s

side. Choosing the parameters as in Eq. (A3) results in a PPT
state (because the state is invariant under partial transposition
on Alice’s side). Performing the measurements from Eq. (A4)
on Alice’s side leads to a filtered version of a steerable as-
semblage. This essentially corresponds (i.e., modulo possible
normalization constant due to the filter) to the pretty good
measurements associated to the original state assemblage,
which are incompatible. Hence, the filtered assemblage is
steerable.

Mapping this state assemblage into any two-dimensional
subspace gives an assemblage which originates from the fil-
tered state together with a local map on Bob’s side. As the
resulting state is invariant under partial transposition on Al-
ice’s side, one gets a PPT state in C3 ⊗ C2, which is separable
and consequently can only lead to unsteerable assemblages.

Hence, the restricted assemblage is unsteerable for any CPTP
map acting on Bob’s side.

To see the connection to joint measurability, notice that
Bob’s side of the filtered state is maximally mixed and, hence,
the pretty good measurement link between joint measurability
and steering corresponds to multiplication with a constant. To
be more precise, take the assemblage from Eq. (A5) and write

Ba|x := �
−1/2
B �a|x�

−1/2
B = trA

[
(|ϕa|x〉〈ϕa|x| ⊗ 1)�filt

AB

]
, (A6)

where �filt
AB = (1 ⊗ �

−1/2
B )�AB(1 ⊗ �

−1/2
B ). These observables

are, by definition, not jointly measurable. Mapping these ob-
servables into any two-dimensional subspace gives

�†(Ba|x ) = trA
[
(|ϕa|x〉〈ϕa|x| ⊗ 1)(1 ⊗ �†)

(
�filt

AB

)]
. (A7)

Note that the positive operator (1 ⊗ �†)�filt
AB is not normalized.

However, the trace of this operator is equal to two. Putting
this together with the PPT invariance, we see that the state
assemblage �̃a|x := 1

2�†(Ba|x ) is unsteerable. The steering
equivalent observables of this assemblage are simply �†(Ba|x )
as Bob’s side of the state (1 ⊗ �†)�filt

AB/2 is 1
212, where 12 is

the identity operator in C2. �
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