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In this work, a classical-quantum correspondence for two-level pseudo-Hermitian systems is proposed and
analyzed. We show that the presence of a complex external field can be described by a pseudo-Hermitian
Hamiltonian if there is a suitable canonical transformation that links it to a real field. We construct a covariant
quantization scheme which maps canonically related pseudoclassical theories to unitarily equivalent quantum
realizations, such that there is a unique metric-inducing isometry between the distinct Hilbert spaces. In this
setting, the pseudo-Hermiticity condition for the operators induces an involution which guarantees the reality of
the corresponding symbols, even for the complex field case. We assign a physical meaning for the dynamics in
the presence of a complex field by constructing a classical correspondence. As an application of our theoretical
framework, we propose a damped version of the Rabi problem and determine the configuration of the parameters
of the setup for which damping is completely suppressed. The experimental viability of the proposal is studied
within a specific context. We suggest that the main theoretical results developed in the present work could be
experimentally verified.
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I. INTRODUCTION

The simplest system with nontrivial dynamics that we can
build in quantum mechanics is the two-level system. But
despite its simplicity, one cannot underestimate the power
of this setup. For instance, two-level models are the best
understood quantum systems and adequately describe several
physically relevant scenarios. Moreover, they play an impor-
tant role in the understanding of more intricate arrangements.
In general, one can treat a quantum two-level system as a
spin- 1

2 particle interacting with an external magnetic field
if the spatial dynamics is not taken into account. Thus, a
two-level system is governed by the Pauli equation in (0 + 1)
dimensions,

i
∂v

∂t
= Ĥv, with Ĥ = σ

2
· F and v =

[
v1(t )
v2(t )

]
. (1)

In Eq. (1), v is a two-component spinor, σ = (σ1, σ2, σ3)
are the Pauli matrices, and F = (F1(t ), F2(t ), F3(t )) represents
an external field.1 Therefore, solving a two-level system is
equivalent to solving (1), to which will be referred as the spin
equation (SE).

Among the exact solutions of the SE, we highlight the
Rabi problem [1,2], which has applications in a wide vari-
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1We are setting γ = −1, where γ = gq/2m with q, m, and g being,

respectively, the charge, mass, and the g factor of the spin- 1
2 particle.

Also, in this description, F has dimension of energy.

ety of fields, such as quantum optics, quantum computing,
condensed matter, molecular, atomic and particle physics.
Two-level systems can also be used as a model for open
systems, those which interact with the environment in which
they are embedded. Although the interaction problem is
well-formulated in classical physics, it is not yet fully com-
prehended at the quantum level. One of the reasons for the
lack of a proper quantum description of the interacting process
is that open systems are often described by non-Hermitian
Hamiltonians [3], and consequently, by nonunitary theories.
Due to the probabilistic interpretation of quantum mechanics,
the notion of a nonunitary theory raises important questions.
Despite that, nonunitary theories have drawn some attention in
the physics community through the study of a certain class of
non-Hermitian operators called pseudo-Hermitian operators
(PHOs). PHOs define the so-called pseudo-Hermitian quan-
tum mechanics (PHQM). In PHQM, the freedom in defining
an inner-product in the physical Hilbert spaces is explored to
recover unitarity. Therefore, one may think that the notion of
nonunitarity arises because one is using the “wrong” inner
product.

The freedom in choosing the inner product has al-
ready been studied [4–9]. These early developments at-
tempted to recover unitarity from systems using what they
called indefinite-metrics quantum theories (the terminol-
ogy “indefinite-metrics” stands for nonpositive-definite inner
products). More recently, non-Hermitian Hamiltonians with
real eigenvalues were considered (see, for example, Ref. [10]).
Later on, a series of papers [11–15] exploring whether
a Hamiltonian Ĥ must be Hermitian were proposed. The
authors argued that a weaker and physically transparent con-
dition for the reality of the spectrum of Ĥ is the presence
of PT symmetry, where P stands for the parity operator
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and T stands for the time-reversal operator.2 Also, it was
shown that if Ĥ has an unbroken PT symmetry, there is an
operator C, commuting with Ĥ , that allows one to define a
positive-definite inner product, with a metric operator given
by η = CPT .

The issue of what are the necessary and sufficient condi-
tions for the reality of the spectrum of a linear operator were
explored in Refs. [16–20]. It turns out that the answer to this
problem propelled the research in PHQM. It was shown that,
albeit relevant, the role played by the PT symmetry and the C
operator is not a fundamental one. Indeed, it can be seen from
PHQM that η = CPT is just an example of a positive-definite
metric operator [21]. In fact, the existence of a preferred met-
ric, and its physical meaning, is an open issue in the PHQM.
There are several contexts where pseudo-Hermitian operators
appear [21]. In special, recent treatments of topological as-
pects of non-Hermitian systems use the framework of PHQM
[22–31].

A subtle point regarding quantization in general, and
quantization in the PHQM framework in particular, is that
canonical transformations, which are transformations on the
level of the algebra of operators, do not necessarily translate
as isometries or unitary transformations between the Hilbert
spaces upon which these operators act [32]. When one is faced
with nonunitary canonical transformations; for instance, in
the infinite-dimensional case, a physical meaning for these
transformations can be established by looking at the classi-
cal limit of the theory [19,21,33]. This procedure is called
η-pseudo-Hermitian canonical quantization.

For the present work, the important observation is that
there is no usual classical analog for a system with fermionic
degrees of freedom. Nevertheless, quantization schemes can
still be defined in the context of pseudoclassical mechanics
[34–36], in which Grassmann variables are used as phase-
space coordinates. In this picture, the Grassmanian degrees of
freedom should be quantized with anticommutation relations,
rather than with commutation relations. The latter is of course
a well-known scheme for quantization of fermionic degrees of
freedom, such as spin.

In this paper, the pseudo-Hermitian treatment will be ex-
tended to the pseudoclassical framework. Despite the existing
treatments concerning pseudoclassical mechanics, its relation
with pseudo-Hermitian theories was not yet fully analyzed.
The aim of this work is to exploit the latter at the level
of canonical transformations, considering both the pseudo-
Hermitian quantum theory and its pseudoclassical limit. For
this purpose, complex external fields, associated with nonuni-
tary systems, will be considered. We then study the classical
correspondence in order to assign a physical meaning for the
complex fields. We construct a covariant quantization scheme
which maps canonically related pseudoclassical theories with
real and complex external fields to unitarily equivalent quan-
tum realizations, such that there is a unique metric-inducing
isometry between the distinct Hilbert spaces. In this setting,
the pseudo-Hermiticity condition for the operators induces an
involution which guarantees the reality of the corresponding

2〈x,Pψ (t )〉 = ψ (−x, t ) and 〈x,T ψ (t )〉 = ψ̄ (x, −t ), where the
bar denotes complex conjugation.

symbols, even in the presence of complex external fields. We
apply these developments to propose a damped version of the
Rabi problem, which could have important implications in
related areas. Furthermore, possible experimental tests for the
theory are proposed.

This work is organized as follows: In Sec. II, the ba-
sic theoretical setup is established, with a revision of the
notation used in the present development. In Sec. III, a
classical-quantum correspondence is proposed and explored.
A physical realization of the proposed theoretical framework
is constructed in Sec. IV, where the Rabi problem is extended
and its generalization analyzed. Also in this section, we pro-
pose an experimental arrangement for the verification of the
main theoretical results developed in the present work. In
Sec. V final remarks and future perspectives are presented.
Further details on the pseudoclassical model considered
and the quantization procedure employed are presented in
Appendixes A and B. Units where h̄ = 1 are used in this work,
except where otherwise indicated.

II. PSEUDO-HERMITIAN AND PSEUDOCLASSICAL
FRAMEWORKS

A. Pseudo-Hermitian theories

Simply put, pseudo-Hermitian operators are operators
which are not Hermitian or symmetric with respect to the
canonical or natural inner product, but which are Hermitian
with respect to some (positive-definite) inner product.3 The
treatment of pseudo-Hermitian operators starts with the ob-
servation that non-Hermitian matrices (that is, matrices that
are not equal to their own conjugate transpose) can have real
eigenvalues. It follows that the spectra of the related operators
can be associated with physical observables in the quantum
description of a system. Taking a pseudo-Hermitian operator
as the Hamiltonian of the system, an evolution operator can be
constructed in such way that the time evolution is unitary [21].
This formalism is the base of the pseudo-Hermitian quantum
mechanics.

Pseudo-Hermitian operators in general will not have or-
thogonal eigenvectors corresponding to distinct eigenvalues,
as do Hermitian and normal operators. Despite of this prob-
lem, the familiar probabilistic interpretation of quantum
mechanics can be recovered with a convenient choice of inner
product.

Let us consider the pseudo-Hermitian formalism associ-
ated with the problem at hand. Let H be a finite-dimensional
Hilbert space isomorphic to Cn with the canonical4 inner
product 〈·, ·〉, H � (Cn, 〈·, ·〉). We denote the adjoint of an
operator T with respect to the canonical inner product to
be T †.

3We note that there is a broader definition of pseudo-Hermiticity
where the product is not necessarily positive definite [37]. This char-
acterization takes into account operators whose eigenvalues appear
as complex-conjugate pairs. The restriction to the real spectrum is
sometimes referred to as crypto-Hermitian or quasi-Hermitian [38].

4The canonical inner product 〈., .〉 is defined as 〈z,w〉 = z̄1w1 +
· · · + z̄nwn, where z,w ∈ Cn.
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Now let η : H → H and define

〈x, y〉η ≡ 〈x, ηy〉, ∀ x, y ∈ Cn. (2)

The sesquilinear form 〈·, ·〉η is an inner product in Cn if and
only if

η = P†P (3)

for some invertible P. Let us denote this new Hilbert space
as Hη � (Cn, 〈·, ·〉η ). We denote η as the metric operator.
In this case, an operator T : H → H is pseudo-Hermitian or
η-Hermitian if and only if it is symmetric with respect to
the inner product (2). In other words, T : H → H is pseudo-
Hermitian if and only if it is Hermitian as an operator on Hη.
It follows that an η-Hermitian operator T satisfies

T = η−1T †η. (4)

It should be noticed that the metric operator η is not unique.
In fact, if A is any invertible operator which commutes with
the η-Hermitian operator T , then T is Hermitian with respect
to the inner product 〈·, ·〉η̃ with metric η̃ = A†ηA.

For the specific case of the generic two-level system SE in
Eq. (1), defined in terms of the Hamiltonian operator

Ĥ = 1

2

(
B3 B1 − iB2

B1 + iB2 −B3

)
, (5)

with eigenvalues

E± = ± 1
2

√
B2

1 + B2
2 + B2

3, (6)

one sees that the operator Ĥ is pseudo-Hermitian if and
only if

det(Ĥ ) = − 1
4

(
B2

1 + B2
2 + B2

3

) ∈ R−, (7)

since this corresponds to real eigenvalues [37].
As we will show in Sec. III A, a choice of metric η induces

an isometry M between the Hilbert spaces H and Hη such
that the Hermitian operators on H are mapped to Hermitian
operators on Hη. On the other hand, these operators can be
seen as images of quantization maps on pseudoclassical phase
spaces which are themselves related by canonical transfor-
mations. The symbols of these operators, according to each
quantization map, are real functions in the respective pseudo-
classical phase space.

B. Pseudoclassical theories

Let us introduce the pseudoclassical framework used in
this work. Further comments on this setup are presented in
Appendix A. Consider a Grassmann algebra G3(ξ ) over the
complex field C with generators ξi, i = 1, 2, 3, ξ 2

i = 0, and
the pseudoclassical Lagrangian,

L = i

2
ξiξ̇i − H (ξ ). (8)

By requiring that ξi transform as a vector under O(3), it is
natural to consider a rotational- and parity-invariant theory. In
this case, from the development presented in Appendix A, the
Hamiltonian H must be of the form

H = HB = − i

2
εi jkξiξ jBk, (9)

where Bk transforms as a pseudovector (for instance, like the
magnetic field). Thus, the equation of motion for ξi becomes

ξ̇i = {ξi, H}D(φ) = −εi jkξ jBk . (10)

Where {·, ·}D(φ) is the Dirac brackets over the set of second-
class constraints

φi = πi − i

2
ξi, (11)

and πi the conjugate momenta

πi = ∂L

∂ξ̇i
. (12)

See Appendix A for details. We recognize (10) as the classical
precession equation, like a magnetic moment immersed in a
magnetic field B = (B1, B2, B3).

Of particular interest for the present work is the role of in-
volution and canonical transformations in the pseudoclassical
formalism. For a general function

f (ξ ) = f0 + fiξi + fi jξiξ j + i

3!
k f εi jkξiξ jξk, (13)

as in Eq. (A3) in Appendix A, we define an involution ∗ :
G3(ξ ) → G3(ξ ) such that its action on the generators ξi is
given by

ξ ∗
i = ξi, i = 1, 2, 3. (14)

Therefore, elements of the real subalgebra (those for which
f ∗ = f ) are given by Eq. (13) with f0, fi, k f ∈ R and fi j =
f̄ ji. In particular, the ∗-involution as defined above yields
HB(ξ ) in Eq. (9) to be real when B ∈ R3. That is,

B ∈ R3 ⇐⇒ HB(ξ ) = H∗
B (ξ ). (15)

Suppose we consider a linear canonical transformation
on the pseudomechanical phase space, defined as a map
(ξ, π ) �→ (ζ ,� ), which preserves the symplectic structure
in that the only nonvanishing Poisson brackets between the
new coordinates are {ζi(ξ, π ),� j (ξ, π )} = δi j . Due to the
constraints φ in Eq. (11), we observe that π is propor-
tional to ξ , so we write the linear canonical transformation
simply as

ζi = Rikξk and � j = Rjlπl . (16)

Then, demanding that this transformation is canonical implies
RRT = I, that is, R is an orthogonal matrix. In principle, R can
have complex entries, so R ∈ O(3,C). Furthermore, under
this transformation the Hamiltonian function (9) becomes

HF (ζ ) = − i

2
εi jkζiζ jFk, (17)

where

Fk = (det R)Rkl Bl . (18)

Relation (18) implies that

F 2 = FiFi = (det R)2Ri jRikB jBk = δ jkB jBk = B2. (19)

Thus, if B is a real field, then from the previous relation
it follows that F 2 is a positive real number for an arbitrary
complex field F.
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Indeed, considering a complex field F, one can define an
involution such that (17) is real with respect to the new in-
volution. Initially, let us look at functions on the Grassmann
algebra G3(ζ ) with generators {ζi}3

i=1, which are given by

g = g0 + g1
i ζi + g2

i jζiζ j + ikg
1

3!
εi jkζiζ jζk. (20)

Then an involution + : G3(ζ ) → G3(ζ ) can be defined, whose
action on generators is given by

ζ+ = ζ ∗, (21)

where the ∗-involution is presented in Eq. (14) and the ζ terms
above are taken as function of ξ . As a result, the even subal-
gebra of G3(ζ ) is given by the functions (20) with g0 ∈ R,
g1 = RR†ḡ1, RT g2R = (RT g2R)†, and kg ∈ R. One can also
show that the even subalgebras of G3(ξ ) and G3(ζ ) are iso-
morphic, since f = f ∗ ⇔ g = g+ where f (ξ ) = g(ζ (ξ )). It
follows that the Hamiltonian function HF (ζ ) in Eq. (17) is
real with respect to the + involution (21), that is,

B ∈ R3 ⇐⇒ HF (ζ ) = H+
F (ζ ). (22)

III. CLASSICAL-QUANTUM CORRESPONDENCE

A. Quantization and Hermiticity

In this section we develop the quantization procedure
employed in the present work. Complementary material is
presented in Appendix B. Analogously to the classical case
(16), let us consider the canonical transformation ζi = Ri jξ j

with R ∈ O(3,C). As described in detail in Appendix B, on
the Grassmann algebras G3(ξ ) and G3(ζ ) we can define quan-
tization maps Q : G3(ξ ) → L(H) and Q′ : G3(ζ ) → L(Hη ).
A natural question is then what is the relation between Q( f )
and Q′(g), where g(ζ ) = f (ξ (ζ )). To address this issue, let us
take P = M−1 in the expression (3), η = P†P, so

η = (MM†)−1. (23)

Then, from Eq. (2), we see that M : H → Hη is the isometry

〈φ,ψ〉 = 〈Mφ,Mψ〉η (24)

for all φ,ψ ∈ C2. Thus, for φ′ = Mφ and ψ ′ = Mψ , one
has

〈φ′, Q′(g)ψ ′〉η = 〈φ,M−1Q′(g)Mψ〉. (25)

Since f and g represent the same classical state (i.e., are
related by a canonical transformation), one has the familiar
relation between the operators of the corresponding functions:

Q′(g) = MQ( f )M−1. (26)

Moreover, let Q′+(g) denote the adjoint of Q′(g) in the
inner product 〈·, ·〉η in Eq. (2). It follows from the definition
(2) that Q′+(g) = η−1Q′†(g)η. Using the results (24) and (26),
it is obtained that Q′+(g) = MQ†( f )M−1. Thus, for real g
[with respect to the + involution presented in Eq. (21)], the
corresponding operator is symmetric, Q′+(g) = Q′(g), since
real g (g+ = g) implies real f ( f = f ∗), and Q†( f ) = Q( f ).
The similarity relation (26) preserves the canonical relation
[see relation (B6) in Appendix B],

[Q(ξi ), Q(ξ j )] = δi j, (27)

and can be regarded as a quantum canonical transformation
induced by the classical canonical transformation (16).

By means of the relation η = (MM†)−1, we see that η →
η if M → MU , for unitary U , U † = U −1. Let us call Q′

U
the quantization map with isometry MU . Then, the relation
between Q′ in Eq. (26) and Q′

U is Q′
U = S+Q′S where S =

M(MU )−1. That is Q′
U is + unitarily equivalent5 to Q′:

〈φ, Q′
U ψ〉η = 〈Sφ, Q′Sψ〉η, (28)

and

〈Sφ, Sψ〉η = 〈φ,ψ〉η. (29)

A unitary representation of the Clifford algebra (27) on C2

is given by the Pauli matrices σi as

Q(ξi ) = σi√
2
. (30)

Then, following the fermionic symmetric ordering [see re-
lation (B1) in Appendix B], the Hamiltonian operator ĤB ≡
Q(HB) [image of (9) by the quantization map Q] is

ĤB = 1
2σ · B. (31)

We recognize ĤB as the Hamiltonian for the spin Eq. (1).
Given a realization of the algebra (27), it is immediate to write
a realization for the operators Q(g(ζ )) using relation (26). For
the particular case of the Hamiltonian function HF in Eq. (17),
one has

Q′(HF ) ≡ ĤF = MĤBM−1. (32)

Since the above relation is a similarity transformation, both
operators ĤF and ĤB have the same eigenvalues, so from this
point of view M is a mere change of basis in C2.

There is a unique realization of the Q′(ζ ) algebra, up to
the sign of det R, such that the Hamiltonian operator in both
quantizations have the same form, and that realization is

Q′(ζk ) = det R
σk√

2
. (33)

In other words, up to a sign, if the Q′ quantization is realized
in the usual representation by Pauli matrices, ĤF is given by
the operator

ĤF = 1
2σ · F. (34)

Thus, starting from this requirement, one fixes the isometry
M that will give (34) from (31), and because of the result
(23), the η-inner product is also fixed. As a result, the Q′-
quantization of HF will give the operator (34). Furthermore,
one sees from this procedure that the isometry M is unique.
In Sec. III B we will provide a systematic way of constructing
the isometry.

In conclusion, ĤB describes a quantum theory of a spin
system interacting with a real field B, such that ĤB = Ĥ†

B .
At the same time, ĤF describes a quantum theory of a spin
system interacting with a complex field F [with Im(F) �= 0],
such that ĤF = Ĥ+

F . In this sense, what we have achieved so
far is to connect the description of a nonrelativistic spinning

5S+ = η−1S†η is the adjoint with respect to the η-inner product.
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particle under a real field B with another one with a complex
field F, such that the respective Hamiltonians are real under
their classic involutions, while the corresponding operators
are symmetric (or Hermitian) with respect to the inner prod-
ucts of the Hilbert spaces whereupon they act. Both fields
are connected by the complex canonical transformation R by
Eq. (18) which implies the important algebraic relation (19).

An important remark following from Eq. (19) should be
stressed here. The condition F 2 ∈ R+ is exactly the condition
(7) that the quantum Hamiltonian needs to fulfill so that it is
pseudo-Hermitian. In other words, the existence of a real field
B, canonically related to a field F with Im(F) �= 0, ensures the
reality of the spectrum of ĤF , according to Eq. (6). This result
implies in the existence of a metric operator η that renders ĤF

Hermitian. Furthermore, the same canonical transformation
connects the two pseudoclassical models whose Hamiltonians
are real with respect to the corresponding involutions.

B. Canonical limit and classical correspondence

Unlike the usual description of pseudo-Hermitian theories,
where the metric operator is not unique, we have seen in
Sec. III A that the metric derived from the isometry (24) is
actually unique. We present in this section a schematic way
to construct this metric operator, which we call “the canonical
limit.”

Besides giving the explicit form of the metric, the canon-
ical limit also furnishes a physical interpretation to our
pseudo-Hermitian setup. Vectors related by the isometry M
describe the same physical system. In other words, the Hilbert
spaces H � (C2, 〈·, ·〉) and Hη � (C2, 〈·, ·〉η ) represent two
physically equivalent quantum descriptions (quantizations) of
the same classical model, with two classical description that
differ by a canonical transformation. Therefore, in order to
give correct measurable results, the states must be handled
with the appropriate metric.

Let us consider an orthonormal basis {φ±} in H. So, the
states φ± ∈ H were prepared (or measured) by the observer
associated with the canonical metric in his quantum descrip-
tion. While the states

φ′
± = Mφ± (35)

were prepared by an observer associated with the η metric.
The states {φ′

±} form a orthonormal basis of Hη. One ob-
server does not agree about the orthogonality of the states
prepared by the other. Thus these observers are using different
measurement apparatus to construct the quantum description
(of the same system). The use of the canonical metric on
the state φ′

± (or the metric η on φ±) is physically mean-
ingless. In the present work, the states whose probabilities
must be calculated with the η metric are denoted by primes.
The physical description by the observer associated with the
metric η is compatible with the presence of an (effective)
complex field F and the observer associated with the canonical
metric measures a real field B. In other words, we distinguish
the observables ĤF : Hη → Hη and ĤB : H → H. For every
operator A acting on H there is an equivalent operator A′ =
MAM−1 acting on Hη.

The classical and quantum descriptions of both observers,
especially their notion of orthogonality, must coincide when

Im(F) → 0. To achieve this requirement it is necessary to
choose φ′

± and φ± in Eq. (35) to be, respectively, the eigen-
vectors of ĤF = Ĥ+

F and ĤB = Ĥ†
B .

Let us consider with more attention the limit Im(F) → 0.
Following the proposal presented in Ref. [39], we postulate
that there are three real dimensionless parameters {αi} such
that

Im (Fi ) = αiVi. (36)

The parameters {αi} measure how far the Hamiltonian ĤF is
from being canonically Hermitian. Thus, we are interested
in systems where the canonical Hermiticity of ĤF is broken
continuously, namely, with a well-defined limit αi → 0. This
is a reasonable requirement considering future applications in
concrete physical scenarios, where the {αi} are expressed in
terms of measurable quantities.

Considering Eq. (36), ĤF becomes Hermitian with respect
to the canonical inner product, and both theories (defined by
ĤB and ĤF ) will differ at most by a unitary transformation. To
implement this requirement, for a given F, we choose the real
field B such that

lim
αi→0

F = lim
αi→0

B ∈ R3. (37)

We stress that, due to relation (18), the real-valued field B also
depends on {αi}. Thus, in order to relate F and B in the regime
of vanishing αi, the limit αi → 0 must be considered for both
fields in Eq. (37). As we will see in a future example, Eq. (37)
gives us a prescription such that, when αi → 0,

φ′
± → φ± �⇒ M → I �⇒ η → I. (38)

In summary, the canonical limit is defined to be the prescrip-
tion (37), together with the unique isometry which defines η

and relates the eigenvectors of ĤF and ĤB.
We turn now our attention to the classical correspondence

of two quantum theories: one with a non-Hermitian Hamilto-
nian, and another with a Hermitian Hamiltonian. From now
on we will assume that non-Hermitian operators are those for
which there is no inner product with respect to which they are
Hermitian.

We construct the classical correspondence by taking mean
values of operators. The dynamical variables are real numbers
that we expect to be related with the measurable behavior of
the system. As will see, for non-Hermitian Hamiltonians this
averaging procedure does not recover the classical equations
of motion. On the other hand, the classical equations of mo-
tion are recovered for pseudo-Hermitian Hamiltonians.

To show the above statement, let us first consider the fol-
lowing non-Hermitian Hamiltonian Ĥ ,

Ĥ = 1
2σ · [Re (F) + i Im (F)], (39)

which is non-Hermitian by construction since its eigenvalues
are not real. We generally define the classical correspondence
as the normalized mean value (with the appropriate inner
product) of the spin operators {σi}; that is,

ni ≡ 〈ψ, σiψ〉
〈ψ,ψ〉 , n2 = 1. (40)

In the present case, because the Hamiltonian is non-Hermitian
and there is no suitable inner product, we used the canon-
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ical inner product. For ψ a solution of the time-dependent
Schrödinger equation, we have

ṅi = 1

〈ψ,ψ〉
[

i〈ψ, (Ĥ†σi − σiĤ )ψ〉 − ni
d

dt
〈ψ,ψ〉

]
, (41)

or, in a vector notation,

ṅ = −n × Re (F) − n×[n × Im (F)]. (42)

It follows that, when the external field is real; that is, when
Im(F) = 0, relation (42) coincides with Feynman’s results in
Ref. [40]. Also, in this case the result (42) reproduces the
precession Eq. (10) of the pseudoclassical theory. However,
for Im(F) �= 0, Eq. (42) has an additional term that leads to
damping of the dynamics of n.

The damping term cannot be obtained classically from
the Lagrangian (8) simply taking the external field to have
imaginary entries from the very start. The reason is that real
and complex fields provide the same equation of motion (10).

At this point, we should mention that, when dealing with
a real field B, one has the usual physical interpretation for
the spin Eq. (1), that is, of a charged particle interacting with
an external magnetic field. However, when dealing with a
complex field, this notion does not hold. Therefore, in order
to give a physical meaning for a complex field, we can look at
Eq. (42) as

ṅ = −n × Feff , with Feff = Re (F) + n × Im (F). (43)

In Eq. (43), Feff plays the role of an effective field in the
precession equation. Therefore, when there is damping, the
system interacts with the environment in such manner that
all the resulting combinations of external and internal fields
produce an effective field, which can be represented as a
complex external field. In the following section we will give a
concrete example.

Consider now the case where Ĥ is pseudo-Hermitian and
therefore F 2 ∈ R+. We will show that in this case the theory
is unitary, and there are no damping terms in the equations of
motion. Let 〈·, ·〉η be the inner product with respect to which
Ĥ is Hermitian. Then the classical correspondence gives

ni(t ) = 〈ψ, σiψ〉η
〈ψ,ψ〉η

= 〈ψ, σiψ〉η, (44)

rather than Eq. (40). In this case Ĥ+ = Ĥ and we have

ṅi(t ) = i〈ψ, [Ĥ , σi]ψ〉η = −εi jkn j (t )Fk, (45)

or, in a vector notation,

ṅ = −n × F. (46)

The previous equation corresponds to the pseudoclassical
equations of motion (10) even when the external field has an
imaginary part. The pseudoclassical equations of motion are
recovered from the classical correspondence with the identifi-
cation n → ζ.

We conclude that a non-Hermitian Hamiltonian does
indeed describe damping. On the other hand, when the Hamil-
tonian is pseudo-Hermitian, the external field fulfills the
condition (19) and the system does not present a damping
behavior. In particular, starting with a non-Hermitian Hamil-
tonian, we can change the parameters of the effective field

G3 (ξ) PCM

w/ B ∈ R
3

classical correspondence←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Q-quantization

QM

⏐
⏐ R

⏐
⏐ ⏐

⏐ M
⏐
⏐

G3 (ζ) PCM

w/ F ∈ C
3

classical correspondence←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Q -quantization

PHQM

FIG. 1. Commutative diagram illustrating the classical-quantum
correspondence proposed. PCM denotes pseudoclassical mechan-
ics, QM is short for the quantum theory with Hamiltonian Q(HB )
and Hilbert space H � (C2, 〈·, ·〉), while PHQM is short for the
quantum theory with Hamiltonian Q′(HF ) and Hilbert space Hη �
(C2, 〈·, ·〉η ).

(43) such that the condition F 2 ∈ R+ [with Im(F ) �= 0] is
satisfied. In this case, there is a configuration of F such that
the damping is completely suppressed. In the following we
use this property to propose a possible measurable effect. For
F 2 ∈ R+, we can summarize the results in the commutative
diagram presented in Fig. 1. We emphasize that the classical-
correspondence map in the diagram means that we are able
to formally obtain the pseudoclassical equations of motion
after the identification of n with corresponding Grassmann
variable, either ξ or ζ.

To consolidate the physical meaning to this correspon-
dence, as well as the physical interpretation of a complex field,
let us introduce a concrete scenario in the next section.

IV. PHYSICAL REALIZATION IN THE RABI PROBLEM

A. Preliminary results

Now, we present some explicit examples and physical re-
alizations for the previous development, by considering the
simplified case when

F2 = B2 = 0. (47)

As we will see, this particular restriction captures the essential
points to be studied in the present work.

Let us examine the following matrix:

R = 1

B2
1 + B2

3

⎛
⎝F1B1 − B3F3 0 F1B3 + B1F3

0 −B2
1 − B2

3 0
F1B3 + B1F3 0 −(F1B1 − B3F3)

⎞
⎠.

(48)
As one can explicitly check, R ∈ SO(3,C) for arbitrary com-
plex vectors F and B is an explicit solution to the equation
Fk = Rkl Bl . In other words, det(R) = 1 and R preserves the
symplectic structure (A12) commented in Appendix A. In the
particular case (48), one has additionally R = R−1. Moreover,
one can show that Eq. (19) under the restriction (47),

F 2
1 + F 2

3 = B2
1 + B2

3, (49)

is a sufficient condition for the existence of R. As shown in
Sec. II B, for B ∈ R3, the Hamiltonians

HB(ξ ) = −i(B1ξ2ξ3 + B3ξ1ξ3) and

HF (ζ ) = −i(F1ζ2ζ3 + F3ζ1ζ2) (50)

are real in the sense of the involutions,

HB(ξ ) = H∗
B (ξ ) and HF (ζ ) = H+

F (ζ ). (51)
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Following our prescription for the canonical limit, we now
use the eigenvectors of ĤB and ĤF in order to construct the
metric operator η. Maintaining the convention of using primes
to indicate the states whose probabilities must be calculated
with the η metric, we write the eigenvectors φ′

± of ĤF , with
eigenvalues EF ±, as

φ′
± = 1

F1

(
F3 ± EF

F1

)
, EF ± = ±EF

2
= ±1

2

√
F 2

1 + F 2
3 ,

(52)
and the eigenvector φ± of ĤB, with eigenvalues EB±, as

φ± = 1

B1

(
B3 ± EB

B1

)
, EB± = ±EB

2
= ±1

2

√
B2

1 + B2
3. (53)

From Eq. (49) we see that EF = EB ≡ E . The isometry can be
read off from relation (35) for the eigenvector φ± and φ′

±,

M = 1

F1

(
B1 F3 − B3

0 F1

)
, (54)

and the metric operator (23) in Hη will be given by

η = 1

B2
1

( |F1|2 F̄1(B3 − F3)
F1(B3 − F̄3) B2

1 + |B3 − F3|2
)

. (55)

As expected from the general theory, one has the Hermiticity
conditions ĤB = Ĥ†

B and ĤF = Ĥ+
F . Besides, by the canonical

limit, if B = F we have M = I, η = I, ĤB = ĤF .
Assuming that the operator ĤF is time-independent, the

dynamics is simply obtained by exponentiation of ĤF . For
instance, if one wishes to evaluate a transition amplitude be-
tween the eigenvectors of σ3ψ± = ±ψ±, that is, the states of
“spin-up” ψ+ and “spin-down” ψ− in H, we can construct
the corresponding states in Hη using the isometry M. This
transition amplitude can be written as

〈ψ ′
+, ψ ′(t )〉

η
= 〈ψ ′

+, exp(−iĤF t )ψ ′
−〉η = −i

B1

E
sin

(
E

2
t

)
,

(56)

where ψ ′
± = Mψ±. We note the oscillatory behavior of

Eq. (56), which is a characteristic property of unitary theories.
Let us illustrate the above with the example of the Rabi

oscillations in an assumed damped two-level system [41]

F1 = V ∈ R, F2 = 0, F3 = iα, α2 < V 2. (57)

The F field can be obtained from the canonical transformation
(48) starting from any one of the following real B fields and
rotations thereof:

B1 = B2 = 0, B3 = ±
√

V 2 − α2,

B1 = ±
√

V 2 − α2, B2 = B3 = 0. (58)

However, the canonical limit (37) implies the specific choice

B1 = sgn(V )
√

V 2 − α2, B2 = B3 = 0. (59)

As one can directly check, the Hamiltonian ĤF is Hermitian
according to the metric (55), that is, it satisfies ĤF = η−1Ĥ†

F η.
Given the configuration for B in (59), one can verify the
canonical limit (37) limα→0 η = I. The transition amplitude

(56) between spin-up and spin-down states reads

〈ψ ′
+, exp(−iĤF t )ψ ′

−〉
η

= −i[sgn(V )] sin

(√
V 2 − α2

2
t

)
.

(60)

Apart from the factor 1
2 , due to our particular choice of

constants (see footnote 1), the oscillation frequency of the
amplitude (60) agrees with the one in Ref. [41]. However,
unlike in Ref. [41], here the evolution is unitary and states
do not lose their normalization condition under time evolu-
tion. In general, there is a critical value αc of α for which
Im[E = (V 2 − α2)1/2] �= 0 if α > αc. In the illustrative exam-
ple presented in this section, this critical value αc = V can be
read from Eq. (57). In some descriptions, the value αc can be
associated with a possible phase transition [39]. In this article,
conditions (49) and EF = EB ∈ R are assumed.

B. Rabi problem and the Gilbert damping term

Let us now consider the more elaborate Rabi problem [1,2].
This is a two-level system, consisting of a single electron fixed
in the space, in interaction with an external magnetic field
given by

BR = (B cos (ωt ), B sin (ωt ), Bz ), (61)

with B, Bz, and ω real constants. We can eliminate the second
component of the B field by changing to a rotating reference
frame with the help of the rotation

Rz(ωt ) = exp

(
iωσ3t

2

)
. (62)

In this rotating reference frame we have

B1 = B, B2 = 0, B3 = δ, δ = Bz − ω, (63)

and time-independent Hamiltonian

ĤR = 1
2 (δσ3 + Bσ1). (64)

The transition amplitude between spin-up and spin-down
states (σ3ψ± = ±ψ±) is given by the Rabi oscillations

〈ψ+, exp(−iĤRt )ψ−〉 = −i
B

�R
sin

(
�R

2
t

)
,

�2
R = B2 + δ2. (65)

The δ factor is called detuning, while �R and ω = Bz denote
the Rabi frequency and resonance frequency, respectively.

As we have seen in Sec. III B, a damped precession is
characteristic of a nonunitary evolution. Indeed, we can see
that the damping term in Eq. (42) arises exactly from the
imaginary part of field, which is what breaks the Hermiticity
of the Hamiltonian. Therefore, one can consider a damped
version of the Rabi problem by introducing an imaginary term
in the field (63). For this reason, we choose the external field
to be

F1 = 1 + iα

1 + α2
B, F2 = 0, F3 = 1 + iα

1 + α2
Bz − ω, α ∈ R.

(66)
In the limit α → 0, this field configuration reduces to the
original Rabi problem characterized by (63) in the rotating
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frame. For arbitrary values of the parameters B, Bz, ω, α,
the Hamiltonian ĤF is non-Hermitian, resulting in a damped
behavior.

The time-dependent field configuration for the damped
Rabi setup in the nonrotating frame is

FR = (F1 cos (ωt ), F1 sin (ωt ), F3) = 1 + iα

1 + α2
BR, (67)

which reduces to the original Rabi problem described by BR

in (61) when α is set to zero. We can now obtain the classical
correspondence, which we interpret as the behavior of the
damped system as actually measured. Substituting the field
configuration (67) in Eq. (42), we have

ṅ = − 1

1 + α2
n × BR − α

1 + α2
n×(n × BR). (68)

A physical interpretation can now be provided for the pa-
rameter α. The above equation describes a damped precession
of the magnetic moment. As is well known, this phenomenon
can be adequately described by the Landau-Lifshitz-Gilbert
(LLG) Eq. [42], which consists of introducing an ad hoc term
in the undamped equation of motion. The LLG equation, for
the unit magnetization n̂, subject to a magnetic field B, has the
form [43]

dn̂
dt

= − 1

1 + α2
n̂ × B − α

1 + α2
n̂ × (n̂ × B), (69)

where α is the Gilbert damping parameter. By comparing the
LLG Eq. (69) with the relation (68) obtained via classical
correspondence, we see that the α parameter introduced in
Eq. (66) can be identified with the Gilbert damping parameter.

Even though we have just addressed the damped Rabi
problem, the identification of α with the Gilbert damping term
is valid for a general effective field F in the form

F = 1 + iα

1 + α2
B, (70)

for any B ∈ R3. This follows from the fact that the classic
correspondence Eq. (42) is exactly the LLG equation for the
field configuration (70).

C. The pseudo-Hermitian version of the Rabi problem

In this section we choose the parameters B, Bz, ω, and α

such that the restriction (49) is satisfied, so that ĤF is (pseudo)
Hermitian, Ĥ+

F = ĤF . We introduce the notation

F ≡ F1 = 1 + iα

1 + α2
B and � ≡ F3 = 1 + iα

1 + α2
Bz − ω (71)

to label the field components satisfying the condition (49).
Now the classical Hamiltonian

HF = −i(Fζ2ζ3 + �ζ1ζ2) (72)

is real (H+
F = HF ). The specific choice of parameters can be

found from Eq. (7), i.e., from Im(F 2 + �2) = 0,

B2 + δ2 − α2ω2 + δω(1 − α2) = 0. (73)

It follows that

F 2 + �2 = −δω = B2
1 + B2

3. (74)

Even though B has not yet been determined, the eigen-
values (53) of ĤB are known, because of relation (49). The
Hamiltonian ĤF has the eigenvectors φ′

± and eigenvalues E±:

φ′
± = 1

F

(
� ± �

F

)
, E± = ±�

2
, �2 = F 2 + �2. (75)

From Eq. (74), for δω > 0 the eigenvalues are purely imagi-
nary; however, we only consider the case where δω < 0, that
is, the case of real eigenvalues. Considering that the limit
α → 0 implies

� → δ, F → B, � → �R, (76)

we use the canonical limit to construct the eigenvectors φ± of
ĤB, which has the same eigenvalues E±:

φ± = 1

B

(
δ ± �R

B

)
. (77)

After calculating the eigenvectors in (75) and (77), one can
determine the isometry M,

M = 1

F�R

(
B� ��R − δ�

0 F�R

)
, (78)

and the metric operator η,

η = 1

B2�2

( |F |2�2
R F̄�R(δ� − ��R)

F�R(δ� − �̄�R) B2�2 + |δ� − ��R|2
)

.

(79)

The expression for η in (79) satisfies the canonical limit
η → I when α → 0. The explicit form of ĤB can be obtained
from result (26), i.e., ĤB = M−1ĤFM. Moreover, one can
determine the B field,

B = �

�R
(B, 0, δ), (80)

and the canonical transformation R from Eq. (48).
To obtain the pseudo-Hermitian version of the damped

Rabi problem in the original (nonrotating) frame, one must
rotate back the reference frame with the rotation R′

z =
MRzM−1, where Rz(−ω) is given in Eq. (62), that is,

Ĥ ′
F = i

∂R′
z

∂t
(R′

z )−1 + R′
zĤF (R′

z )−1 = MĤ ′
BM−1, (81)

with

Ĥ ′
B = 1

2�R

(
δ� + ω�R B� exp (−iωt )

B� exp (iωt ) −(δ� + ω�R)

)
. (82)

As expected, Ĥ ′
B is the field obtained from (80) by the usual ro-

tation (62). The Hamiltonian Ĥ ′
F keeps its pseudo-Hermiticity.

In the canonical limit, not only we verify that Ĥ ′
F → Ĥ ′

B, but
we also recover the Hamiltonian associated with the Rabi
problem in the nonrotating frame (61).

Let us consider the dynamics of this model. Using Eq. (79)
we can determine the transition amplitude (56) between spin-
up and spin-down states,

〈ψ ′
+, exp(−iĤF t )ψ ′

−〉η = −i
B

�R
sin

(
�

2
t

)
. (83)

The frequency ω = Bz (δ = 0 ⇒ � = 0) represents a critical
point, which can be associated with symmetry breaking. From
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relations (74) and (73) we have

�2 =
{
�2

R + α2

1−α2

(
�2

R − ω2
)

for α �= ±1

|δ�R| for α = ±1.
(84)

In summary, when condition (49) holds, the theory is unitary,
and there is no damping term in the equations of motion.

Previous results can furnish possible measurable effects.
The main point is that ĤF is non-Hermitian, and thus there
would be a damping term in the equations of motion for
any value of the external field, except if (73) is valid. When
condition (73) is satisfied, the damping effect disappears and
the evolution of the system becomes unitary. From Eq. (74)
we see that, when ω > 0, the pseudo-Hermitian regime can
only be reached for δ < 0. This means that it is not possible
to suppress damping with a frequency below the resonance
frequency of the usual Rabi problem. In addition, we can use
Eq. (73) to determine, for example, B as a function of the other
parameters:

B2 = Bz[ω(1 + α2) − Bz] for B, Bz, α �= 0. (85)

We interpret the condition (85) as the configuration of the
B field which injects energy in the system at the same rate
the system dissipates energy. In this case, the damping effect
is completely suppressed and the classical limit is again a
precession movement described by (46), and not by the LLG
Eq. (69).

D. Experimental viability

We now consider the experimental implementation of the
ideas introduced. In the arrangement presented in the previous
section, the suppression of damping may be identified with
the so-called steady-state precession or self-sustained preces-
sional motion (SSPM) [44], where an effective field cancels
the spin damping, generating a constant angle precession.
Although the direct measurement of the local magnetization
is a challenge in an actual laboratory experiment, the spin
dynamics can be controlled and determined by a current-
induced magnetization. The magnetization itself is controlled
by a combination of the external field and the current electrons
spin-transfer-induced precession of magnetization.

By varying the applied magnetic field and the direct current
irradiated with high-frequency microwaves, it is possible to
control the precession frequency, obtaining values from the
order of 1 up to 100 GHz or larger. In fact, the irradia-
tion induces microwave currents, which are equivalent to the
arrangement where currents are fed to the contact through
electric leads [45].

The high-frequency dynamics of the magnetization can
be measured directly by detecting high-frequency voltage
oscillations [46]. This current-induced magnetization is dif-
ferent from the setup we have considered, since it is related
to spin-transfer torque. However, we are interested in the
macrospin model with uniform magnetization. In this case,
a description of the magnetization dynamics using a modified
LLG equation that can be written in the form (43) is largely
equivalent [47].

A concrete example where the SSPM can be detected are
the so-called spin valves. A simple spin valve is formed by
two conducting magnetic materials, the free layer and the

reference layer, separated by a (metallic or insulator) spacer.
The electric resistance of the device can be controlled through
the relative alignment of the magnetization in the layers. The
spins of the electron current are adjusted by a hard and thick
magnetic layer called the reference layer, while the layer
where magnetization will be manipulated is called the free
layer. A typical setup uses a pinned antiferromagnet reference
layer coupled to a ferromagnetic free layer.

In this device an applied current generates a spin torque
that, under specific conditions, can cancel the Gilbert damping
term in the LLG equation resulting in an undamped precession
(46). Namely, for the spin valve, the modified LLG equation
assumes the form [44]

dn̂
dt

= − 1

1 + α2
n̂ × B − α

1 + α2
n̂ × (n̂ × B)

+ an̂ × (n̂ × P), (86)

where P is a fixed unit vector in the magnetization direction
of the pinned layer in the spin valve and the torque coefficient
a depends on the applied current and may also depend on
the angle between the magnetization directions of the pinned
and free layers [48]. The effective field B in Eq. (86) is the
combination of the exchange field, the anisotropy field, the
demagnetization field, and the applied external field. A quali-
tative and quantitative discussion of Eq. (86) can be found in
Refs. [44,47] and references therein.

It is possible to show [43] that the effect of the new term in
the modified LLG Eq. (86) is simply to change the effective
magnetic field to

B = (Bx, By, Bz ) −→ (Bx − iaPx, By + iaPy, Bz + iaPz ). (87)

That is, the effect of the spin-transfer-induced is equivalent
to the addition of an imaginary term to the magnetic field
already present in the original LLG equation. Therefore, by
choosing the magnetization direction of the reference layer in
the z direction, that is P = (0, 0, 1), the spin-transfer-induced
effect can be taken into account with the change

Bz → Bz + ia. (88)

Repeating our previous development using the new field Bz, it
is straightforward to show that condition (85) becomes

B2 = ω(1 + α2)Bz − B2
z +

a

α
[αa − Bz(1 − α2)+ω(1 + α2)].

(89)
Constraint (89) reduces to (85) for a = 0.

The SSPM solution of the modified LLG Eq. (86) can be
calculated using a perturbative method based on Melkinov
integrals [49]. The theoretical analysis can be experimentally
verified by measurements of voltage oscillations related to
the dynamics of the magnetization, as previously discussed.
We believe that the parameters of the SSPM solution for the
field B, obtained in this experimental setup, can be compared
with the constraint (89). This should be a nontrivial test of the
formalism developed in the present work.

V. FINAL REMARKS

In this work, a classical-quantum correspondence for a
pseudo-Hermitian system with finite energy levels is proposed

022201-9



RAIMUNDO, BALDIOTTI, FRESNEDA, AND MOLINA PHYSICAL REVIEW A 103, 022201 (2021)

and analyzed. A dictionary connects particles subjected to
real and complex fields (B and F), related by a canonical
transformation. The quantization map ensures Hermiticity of
operators, whose symbols are real functions in the respec-
tive pseudoclassical phase space. The commutativity of the
quantization map relates canonical transformations between
symbols to unitary transformations between the correspond-
ing operators. In particular, the Hamiltonians associated with
B and F are real under their classic involutions, and the corre-
sponding operators are symmetric (or Hermitian) with respect
to the inner products of the Hilbert spaces whereupon they
act. An important point in our development is the notion that
there is no fundamental distinction between Hermitian and
pseudo-Hermitian (Hamiltonian) operators, or even between
ordinary quantum mechanics and pseudo-Hermitian quantum
mechanics for that matter, as long as the relations summarized
by Fig. 1 are satisfied. That is, as long as the possibility of a
metric redefinition which reestablishes Hermiticity in quan-
tum theory can be seen as a consequence of a proper choice of
coordinates in the pseudoclassical theory. The only nontrivial
physical statement is that some non-hermitian operators can
become pseudo-Hermitian under certain regimes.

Furthermore, we show that there is a unique isometry
between the Hilbert spaces (Cn, 〈·, ·〉) and (Cn, 〈·, ·〉η ) that
preserves the representation of the Clifford algebra chosen in
both settings (real and complex), implying a unique metric.
A systematic way of constructing this metric is provided.
In addition, we apply the classical correspondence to the
two-level quantum system coupled to a complex field. For
non-Hermitian Hamiltonians, this correspondence describes
damping and does not recover the classical equations of
motion. When the Hamiltonian is pseudo-Hermitian, this
correspondence does not imply damping and the classical
equations of motion are recovered. Indeed, a common claim
in the literature is that a complex Hamiltonian for a spin-
1
2 particle always leads to spin precession with damping.
We have shown that this is not necessarily true. Hamiltoni-
ans associated with complex fields, which are non-Hermitian
with the usual inner product, do not necessarily generate
damping.

As a concrete development, we propose a damped version
of the Rabi setup, considering a complex field associated with
a non-Hermitian Hamiltonian. We identify the parameter that
controls the intensity of the imaginary part as the Gilbert
damping parameter of the Landau-Lifshitz-Gilbert equation.
In this setup, we find a specific configuration of the parameters
where the damping is completely suppressed. In this case,
the classical correspondence describes again a precession
movement for the spinning particle. We interpret this arrange-
ment as the configuration where the applied field completely
compensates the damping effect. It may be identified with
the so-called steady-state precession [44], where an external
field cancels the spin damping, generating a constant angle
precession. The steady-state regime could be observed with
measurements involving ferromagnetic resonance methods
[50]. We believe that the presented developments could be ver-
ified in laboratory tests. For instance, using an experimental
setup based on spin valves, the modified LLG constraint (89)
can be checked. This would be a nontrivial test of the theoret-
ical formalism introduced.

The classical-quantum correspondence for two-level
pseudo-Hermitian systems may have practical applications.
Precise manipulation of the spin has several technological
consequences and a description of damping process is es-
sential in this manipulation. For example, in the emerging
technologies of spintronic devices. In nowadays applications,
the dynamics of the magnetization in the digital storage
process is described by the LLG equation and any devia-
tion from this description should have practical implications.
The possibility of suppressing the damping behavior could
lead to a faster and more energy-efficient spin manipu-
lation. Phenomena in the steady-state precession regime
also have consequences in processes involving magnetic
resonance [51].

Recent developments of the pseudo-Hermitian setup sug-
gest interesting perspectives for the theoretical framework
presented here. Effects involving non-Hermiticity enhances
the dynamics of the topological-phase transitions, bringing up
new effects considering the scenarios involving the usual Her-
mitian framework [52]. Topological properties of the theory
can be explored, by evaluating quantities such as the Berry
phase. A second-quantization approach of the semiclassical
damped Rabi problem proposed in the present work can be
investigated following a treatment in the same lines as the one
presented in Ref. [53].

Finally, the developed formalism might be extendable to
lattice systems [54]. In this case topological phase transitions
in the exceptional points could be investigated, as done for
optical lattices [55], as well as Anderson localization and
mobility edges in non-Hermitian systems [56]. Another topo-
logical phenomenon that can be explored in this context is the
non-Hermitian skin effect [57]. In this case, the suppression
of the damping, described in this work, may have some rela-
tionship with the elimination of the non-Hermitian skin effect
described in Ref. [31].
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APPENDIX A: PSEUDOCLASSICAL MODEL

In this Appendix we give a brief presentation of a simple
nonrelativistic model for a spinning particle in the context of
pseudoclassical mechanics. Following Ref. [36], one consid-
ers a phase-space formulation where dynamical variables are
functions on a Grassmann algebra, such that, upon quantiza-
tion, their Poisson brackets provide the correct commutation
relations.

The Grassmann algebra Gn(ξ ) is an algebra over the com-
plex field C whose generators ξi, i = 1, . . . , n satisfy the
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relations

ξiξ j + ξ jξi = 0. (A1)

Functions f (ξ ) on Gn(ξ ) are polynomials in the generators ξi.
Hence, one can define a derivative operator acting on mono-
mials and, by extension, on functions, as the right-derivatives

∂

∂ξi
ξi1ξi2 · · · ξik =

k∑
j=1

(−1)k− jδii j ξi1ξi2 · · · ξi−1ξi+1 · · · ξik .

(A2)
For our purposes, it is enough to consider Grassmann al-

gebras with three generators; that is, n = 3. Thus, a general
function f (ξ ) on the Grassmann algebra G3(ξ ) is given by

f (ξ ) = f0 + fiξi + fi jξiξ j + i

3!
k f εi jkξiξ jξk, (A3)

where f0, fi, fi j, k f ∈ C and fi j = − f ji. Odd-parity func-
tions f are sums of homogeneous terms with odd numbers of
the Grassmann generators, and we write Pf = 1. Even-parity
functions f are those containing even number of generators,
and we write Pf = 0.

A relevant nonrelativistic pseudoclassical model is given
by the action

S =
∫ t f

ti

L(ξ, ξ̇ )dt, L = i

2
ξiξ̇i − H (ξ ), (A4)

where H (ξ ) is some even function of the {ξi}, PH = 0. One
can proceed as in usual mechanics and define the conjugate
momenta

πi = ∂L

∂ξ̇i
= i

2
ξi, (A5)

with the derivatives always taken from the right, as defined
in Eq. (A2). As a result, one finds the canonical Hamiltonian
function

Hc(ξ, π ) = H (ξ ) +
(

πi − i

2
ξi

)
ξ̇i. (A6)

There is a natural Poisson bracket in the coordinates (ξ, π ).
Let f and g be functions of the Grassmann variables of definite
parity. Then, the Poisson bracket between them is defined as

{ f , g} = ∂ f

∂ξi

∂g

∂πi
− (−1)Pf Pg

∂g

∂ξi

∂ f

∂πi
, (A7)

where derivatives are taken from the right as usual. Thus, the
Poisson brackets between the canonical pairs are

{ξi, π j} = {π j, ξi} = δi j . (A8)

It should be noticed that the Eq. (A5) are constraints, which
we denote as

φi = πi − i

2
ξi. (A9)

Their conservation in time fixes the velocities {ξ̇i}:

{φi, Hc} = 0 ⇒ ξ̇i = i
∂H

∂ξi
. (A10)

Therefore, according to Dirac’s terminology for con-
strained systems, the model (A4) is a second-class theory; that

is, there are no first-class constraints and the dynamics is com-
pletely determined on the constraint surface φ = 0. Following
Dirac’s quantization scheme for second-class theories [58],
we first define the Dirac brackets over the set of second-class
constraints φ as

{ f , g}D(φ) = { f , g} − { f , φi}C−1
i j {φ j, g}, (A11)

where C−1
i j denotes the inverse matrix to Ci j = {φi, φ j} =

−iδi j , and again f and g are parity-definite functions of the
Grassmann variables. Thus the nonvanishing Dirac brackets
between canonical variables are

{ξi, ξ j}D(φ) = −iδi j, {πi, π j}D(φ) = i

4
δi j, {ξi, π j}D(φ) = 1

2
δi j .

(A12)

One can use the constraints φ to eliminate the momenta from
the description, so that one is only left with coordinates ξi.

APPENDIX B: QUANTIZATION

Exceptionally in this Appendix we restore h̄. Let us define
a quantization map Q : G3(ξ ) → L(H), where G3(ξ ) is the
Grassmann algebra with generators {ξi}3

i=1 and L(H) is the
set of bounded linear operators on the Hilbert space H =
(C2, 〈·, ·〉). It suffices to define the map on monomials, fol-
lowing the antisymmetrization rule

Q(ξ1ξ2 · · · ξn ) = 1

n!

∑
perm

(−1)σ (perm)Q(ξi1 )Q(ξi2 ) · · · Q(ξin ),

(B1)
and extend it linearly to all functions. Furthermore, the quan-
tization map Q is required to map the unit to the identity in
H, Q(1) = I. In our case, the above requirements imply the
following for general classical functions:

Q( f ) = f0I + fiQ(ξi ) + fi jQ(ξi )Q(ξ j )

+ i
1

3!
k f εi jkQ(ξi )Q(ξ j )Q(ξk ). (B2)

It should be noticed that the quantization map Q satisfies

f = f ∗ �⇒ 〈x, Q( f )y〉 = 〈Q( f )x, y〉. (B3)

That is, for real functions f , Q( f ) is symmetric, Q†( f ) =
Q( f ). The map Q is also required to satisfy the correspon-
dence principle

{ f , h}D(φ) = lim
h̄→0

1

ih̄
[Q( f ), Q(h)], (B4)

where [·, ·] is a Z2-graded commutator:

[Q( f ), Q(h)] = Q( f )Q(h) − (−1)Pf Ph Q(h)Q( f ), (B5)

for all homogeneous functions f and h. Thus, one has for
the dynamical variables {ξi}3

i=1 the basic anticommutation
relations

[Q(ξi), Q(ξ j )] = h̄δi j . (B6)

The above development is standard procedure on the program
of quantization of pseudoclassical models. Details can be
found, for example, in reference textbooks [58,59].
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