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Heisenberg-limited quantum interferometry with multiphoton-subtracted twin beams
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We propose a Heisenberg-limited quantum interferometer whose input is twin optical beams from which one
or more photons have been indistinguishably subtracted. Such an interferometer can yield Heisenberg-limited
performance while at the same time giving a direct fringe reading, unlike for the twin-beam input of the
Holland-Burnett interferometer. We propose a feasible experimental realization using a photon-number corre-
lated source, such as nondegenerate parametric down-conversion, and perform realistic analyses of performance
in the presence of loss and detector inefficiency.
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I. INTRODUCTION

A general interferometer, typified by the Mach-Zehnder
interferometer (MZI) of Fig. 1, measures the phase differ-
ence between two propagation paths by probing them with
mutually coherent waves. From a purely undulatory stand-
point, a sure way of ensuring such mutual coherence is to
split an initial wave into two waves, for example by use of
a beam splitter. However, the unitarity of quantum evolution
mandates that any two-wave-output unitary have a two-mode
input as well, rather than a classical, single-mode input. Thus,
the quantum description of a “classical” interferometer must
feature an “idle” vacuum field in addition to the initial wave,
and the quantum fundamental limit of interferometric mea-
surements is then dictated by the corpuscular statistics of
the interference between the two inputs of the beam splitter
(Fig. 1). In a classical interferometer, the vacuum fluctuations
at the idle input port limit the phase difference sensitivity
between the two interferometer arms to the quantum limit
of classical interferometry [1], the input beam splitter’s shot-
noise limit (SNL) [2]

�φSN ∼ 〈N〉− 1
2 , (1)

where φ is the phase difference to be measured and N =
Na + Nb is the total photon number operator. This limit is
that of phase noise inside the interferometer and has nothing
to do with, say, the single-mode properties of a coherent-
state (e.g., laser) input |α〉 of photon-number deviation �N =
|α| = 〈N〉1/2 and phase deviation [5] �θ ∼ 〈N〉−1/2 before the
interferometer. In fact, Caves showed that a Fock-state input
|n〉, for which �N = 0 and hence �θ → ∞, still yields the
SNL of Eq. (1) [1].

When both input modes of the interferometer are properly
“quantum engineered,” one can, in principle, reach the ulti-
mate limit, called the Heisenberg limit (HL),

�φH ∼ 〈N〉−1, (2)
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which can clearly be many orders of magnitude lower than
the SNL when 〈N〉 � 1. A recent comprehensive review of
quantum interferometry can be found in Ref. [7]. The first
quantum engineering proposal to break through the SNL was
Caves’s idea to replace the vacuum-state input with a squeezed
vacuum [8], which has since been shown to optimize the
quantum Cramér-Rao bound when the input field is a coher-
ent state [9]. This was demonstrated experimentally [10,11]
and is now the approach adopted for high-frequency signals
(above the standard quantum limit) in gravitational-wave de-
tectors [12,13]. Many other approaches have been investigated
[14,15], such as twin beams [16–21], NOON states [22–26],
or two-mode squeezed (TMS) states. These different schemes
were recently compared in terms of the quantum Cramér-Rao
bound on their phase sensitivity [27].

It is important to recall here the essential result of Es-
cher, de Matos Filho, and Davidovich: operating a realistic,
i.e., lossy, interferometer at the HL requires losses to be no
greater than 〈N〉−1 [28]; i.e., the grand total of the loss can
never exceed one photon, on average. This result had been
obtained earlier by Pooser and Pfister in the particular case
of Holland-Burnett interferometry [29]: using Monte Carlo
simulations for up to n = 10 000 photons, it was shown that
the phase error of a nonideal Holland-Burnett interferometer
scales with the HL if the losses are of the order of n−1, and that
larger losses degrade the scaling to a limit proportional to the
SNL of N−1/2, staying sub-SNL as long as photon correlations
are present in the twin Fock input. This is consistent with
the general result of Escher, de Matos Filho, and Davidovich
for phase estimation [28]. Additionally, in the case of loss,
optimal input states have been numerically calculated whose
form generally depends on the interferometric efficiency and
average photon-number input [30].

A direct consequence is that, if the total photon num-
ber is too large, ultimate-sensitivity interferometry cannot be
Heisenberg limited in the current state of technology: the
most sensitive classical interferometer to date, the Laser In-
terferometer Gravitational-wave Observatory (LIGO), before
the introduction of squeezed light boasted �φSN ∼ 10−11 rad
and is shot-noise limited in some spectral regions, therefore
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TABLE I. Characteristics and performance of different input states, except the NOON state which is a state specified inside the
interferometer. The phase error �φ is the quantum Cramér-Rao bound [27]. The state whose use we propose in this paper is the last one.

Input∗ state Ref. (i) �φ (ii) Fringe 〈Na − Nb〉 (iii) 〈N〉 � 1?

1 |n〉a |0〉b [1]
1√
n

SNL n cos φ yes

2 |α〉a |0〉b [1]
1√〈N〉 = 1

|α| SNL |α|2 cos φ yes

3 |α〉a |0, r〉b [8] 
 e−r

|α| sub-SNL |α|2 cos φ yes

4 |n〉a |n〉b [16]
1√

2n(n + 1)
HL 0 yes [20]

5 |n〉a |n − 1〉b [27]
1√

2n2 − 1
HL

1

2
cos φ possible

6∗a 1√
2

(|n〉a |0〉b + |0〉a |n〉b) [22,23]
1

n
HL ∼ cos(nφ)b unknown

7
1√
2

(|n〉a |n〉b + |n + 1〉a |n − 1〉b) [14]
1√

2n(n + 1) − 1
HL cos φ

2 − sin φ

4

√
n(n + 2) unknown

8
Z∑

k=0

ck |n − Z + k〉a |n − k〉b 

√

Z

n
HL ∼ n

2
sin φ possible

aNOON state, which is specified inside the interferometer.
bThe fringe signal for the NOON state requires n-photon detection.

featuring 〈N〉 ∼ 1022 photons. While a Heisenberg-limited
version of LIGO would only require 〈N〉 ∼ 1011 photons to
reach the same sensitivity, it would also require an unrealistic
loss level of 10−11, the optical coatings on LIGO’s mirrors
“only” reaching already remarkable sub-ppm loss levels [31].

However, the maximally efficient use of photons by
Heisenberg-limited interferometry can still be interesting pro-
vided we take into account this constraint of an ultimate loss
level of 10−6. At this level, a 1064-nm interferometer with
(arbitrarily chosen) 10-ms measurements would be allowed
to reach the 106-photon HL of 1 μrad with only 200 pW,
whereas a classical interferometer would need 1012 photons,
i.e., 200 μW, to have its SNL at 1 μrad. This can be of interest
in situations where low light levels are beneficial, such as
phase imaging of living biological tissue.

A. SU(2) interferometry

In order to motivate the approach of this paper, we review
and compare and contrast some different quantum-enhanced
sensing proposals in Table I. The key points we examine are
(i) whether the input state enables performance at the HL, (ii)
whether a direct interference fringe is observable, and (iii)
whether the 〈N〉 � 1 regime is experimentally accessible. As
will be shown, the new input state we propose in this paper is
the only one that fulfills all three criteria.

The first two cases are interferometry with the vacuum
field in one beam-splitter input port, leading to no quantum
enhancement.

The third case makes use of Caves’s squeezed input [8] into
the previously unused port of the beam splitter. This benefits
from mature, high-level laser and quantum optics technology,
with large average photon numbers from well-stabilized lasers
[32]. Case 3 benefits from the recent 15-dB squeezing record
[33], but it does require that the phase difference between

the squeezed state and the coherent state be controlled [34].
The gravitational-wave observatories of Advanced LIGO, Ad-
vanced VIRGO, and GEO600 all currently utilize squeezed
light to improve sensitivity [35–37], and Advanced LIGO will
soon implement frequency-dependent squeezing to improve
sensitivity over a larger bandwidth [38].

Case 4 in Table I is the twin Fock-state input first proposed
by Holland and Burnett [16], and which is implementable, to
a good approximation, with large photon numbers by using an
optical parametric oscillator above threshold [20,21,39–41].
The input density operator is then of the form, in the absence
of losses,

ρ =
∑
n,n′

ρn,n′ |nn〉 〈n′n′| , (3)

which can be a pure state (ρn,n′ �→ ρnρ
∗
n′ ), e.g., the TMS

state emitted by a lossless optical parametric oscillator (OPO)
below threshold, or it can be a general statistical mixture
as emitted by a lossless OPO above threshold [42]. It thus
also benefits from the same mature OPO-based squeezing
technology, with a record 9.7 dB reduction on the intensity-
difference noise [41]. Moreover, the phase difference between
the twin beams is irrelevant (being actually very noisy from
being antisqueezed) and thus need not be controlled before the
interferometer. The generalized [43] Hong-Ou-Mandel [44]
quantum interference responsible for twin beams breaking
the SNL was demonstrated experimentally in an ultrastable
phase-difference-locked OPO above threshold [20,45,46],
with several milliwatts of continuous wave laser power.

An inconvenient feature of the Holland-Burnett scheme,
however, is that the direct interference fringe disappears
(〈Na − Nb〉 = 0 in Table I, a property also shared by the
classical input |α〉a |α〉b) in contrast to all previous cases
for which the fringe signal is proportional to the total pho-
ton number. This inconvenience can be circumvented by the
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use of Bayesian reconstruction of the probability distribution
[16,18,29]. Although recently demonstrated for low photon
numbers [47], this requires photon-number-resolved detec-
tion, which has yet to be experimentally accessible for large
photon numbers. Another workaround is to use the variance
of the photon-number difference, which is sensitive to φ

[17] but whose signal-to-noise ratio is bounded by
√

2 [18].
Another idea is to use a heterodyne signal, which presents
high visibility but is restricted to phase shifts ever closer to
zero as the squeezing increases [48]. This was demonstrated
experimentally as heterodyne polarimetry 4.8 dB below the
SNL [21].

Case 5 in Table I is a variant of the twin Fock state, the
“fraternal” twin Fock state [27], which does provide a direct
fringe signal which is Heisenberg limited, but the fringe signal
is still extremely small as it does not scale with the input pho-
ton number. Recently, other variants of this state in the family
|n〉a|m〉b have shown better performance than Holland-Burnett
and NOON states in the presence of loss [49].

Case 6 stands out for several reasons. The NOON state
refers not to an interferometer input state but to a state in-
side the Mach-Zehnder interferometer [22,23]. While it yields
performance at the HL, its experimental generation is ex-
perimentally inaccessible for n � 1; previous experimental
realizations have used postselected outcomes for n = 3 [24]
and 4 [25], a method which fails to scale up to large photon
numbers, though a more scalable method using coherent-
state displacement was also demonstrated [26]. Furthermore,
NOON states are extremely vulnerable to loss [50], although
experimental efforts have attempted to sidestep the issue by
using more loss-tolerant techniques [51]. Last but not least,
the use of a NOON state with n photons requires n-photon de-
tection, which is currently inaccessible in optics experiments
with n � 1 (but may be easier to reach in atomic spectroscopy
[22]).

Case 7 is the theoretical proposal of Yurke, McCall, and
Klauder [14]. It features both performance at the HL and a
strong fringe signal, but an experimental realization has yet to
be determined.

Case 8 features the input proposed in this paper; it is the
only one of the table that features HL performance and a clear
interference fringe signal, and is experimentally feasible with
demonstrated technology for large photon numbers. The state
can be generated by using bright twin beams from which one
or multiple photons have been coherently subtracted.

In addition to the above cases, photon subtraction has been
suggested to be used in other interferometry schemes, such as
interfering a coherent state and photon-subtracted squeezed
vacuum [52] or subtracting a photon from each mode of
a TMS state [53] (distinguishable subtraction, unlike what
we propose here), but these schemes would require either a
parity measurement or large photon-number resolving (PNR)
measurements for end detection, both of which are currently
unfeasible for large photon numbers and will be discussed
further in Sec. VII. As will be demonstrated, our method
can make use of bright twin beams, thus scaling to large
numbers of photons, and provides a directly measurable fringe
with conventional photodiodes. As mentioned, the presence
of a strong fringe mitigates the need for numerically intensive
reconstruction of the measured distribution.

B. A note on SU(1,1) interferometry

We have to our knowledge covered many of the ba-
sic approaches to quantum-enhanced optical interferometry
with SU(2)-based interferometers, but it is also important to
mention SU(1,1) interferometry where the traditional passive
beam splitters are replaced by nonlinear two-mode squeezers.
These devices do not work with intensity difference measure-
ments [54], but must instead rely on other techniques, such
as parity detection, which requires a PNR detector and is
highly susceptible to loss [55]. This weakness to loss can be
mitigated by seeding the input with a coherent state [56] and
the PNR detector can be replaced with a click detector [57],
but in neither case will the detection sensitivity achieve the
HL scaling. Alternatively, both the full SU(1,1) interferometer
and a truncated version [58] can reach the HL with homodyne
detection. Sensitivity below the SNL has been experimentally
demonstrated [59] and this idea has been used to propose
measuring angular displacement [60]. However, the use of ho-
modyne detection on each mode means that the local oscillator
phases on two auxiliary beams must be carefully controlled.
Even if they are well phase locked, an overall additive phase
inside the interferometer may be disguised as the differential
phase we wish to measure with the traditional SU(2) interfer-
ometer. In fact, the use of dual homodyne detection in SU(1,1)
interferometric devices actually lends them the ability to more
generally detect displacements, which prompted Caves to pro-
pose renaming them SU(1,1) displacement sensors [61]. In
this work, we suggest using a squeezer in Sec. V as part of the
state generation process which is reminiscent of the nonlinear-
ity present in SU(1,1) interferometry. However, this is just for
convenience, as any twin-correlated source will work as stated
in Sec. VI C. Squeezing has also been used postinterferometer
as a means to amplify the quantum signal to a classical one
before detection in order to mitigate problems with inefficient
detection [62]. From this point on, we restrict our study to that
of SU(2) interferometry.

This paper is organized as follows. In Sec. II, we introduce
the Schwinger-spin representation and calculate the Cramér-
Rao bound by way of the quantum Fisher information for our
proposed state. Section III demonstrates that the Z-photon
coherently subtracted twin-beam state has phase-sensitivity
scaling with the HL when implemented with a traditional
MZI. We then propose an experimental scheme to generate
the desired state in Sec. IV and derive the result from a
twin-beam input. Section V shows the results of numerical
calculations when all approximations are disregarded, and
Sec. VI discusses practical considerations of loss, detection
imperfections, and the use of click detectors in place of PNR
detectors during state generation. Section VII compares cases
with distinguishable subtraction in place of coherent subtrac-
tion, and then we conclude.

II. QUANTUM FISHER INFORMATION

The Fisher information is a well-known parameter that pro-
vides a means to quantify the amount of information contained
by a parametrized random variable, and the Cramér-Rao in-
equality formulates an upper bound on the precision of an
estimator in terms of the Fisher information [63,64]. This
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inequality has been extended to the quantum case [65], which
is very useful in determining the bounds on the sensitivity for
quantum interferometry given a specified input state [9], and
is independent of the nature of the estimator. For a standard
MZI, the estimator of interest is the phase difference between
the two arms of the interferometer, for which the quantum
Fisher information of a general pure input state is given by
[9,66]

F = 〈ψin|U †
BSN2

d UBS |ψin〉 − 〈ψin|U †
BSNdUBS |ψin〉2 , (4)

where UBS = exp( iπ
4 (a†b + ab†)) is a balanced beam splitter

and Nd = a†a − b†b is the photon number difference operator.
For the sake of convenience, we adopt for our calculation the
Schwinger-spin SU(2) representation [67] initially proposed
by Yurke et al. for quantum interferometers [14]. A fictitious
spin 
J is defined from a pair of bosonic modes (a, b) as

Jz = 1
2 (a†a − b†b), (5)

Jx = 1
2 (a†b + ab†), (6)

Jy = − i

2
(a†b − ab†), (7)

where a and b are the annihilation operators of each mode.
These operators satisfy the canonical angular momentum
commutation relations of the SU(2) algebra,

[Ji, Jj] = iεi jkJk . (8)

The operator Jz represents the photon-number difference op-
erator between the two modes whereas Jx,y are interference
terms. The ease of working with Schwinger operators is fur-
ther simplified by noting that the common eigenstates of Jz

and J2, | j, m〉, take the form of two-mode Fock states:

| j, m〉 = |na〉a |nb〉b , (9)

where we have

j = 1
2 (na + nb), (10)

m = 1
2 (na − nb). (11)

We can then see that the Fisher information can be expressed
as

F = 4 〈ψin| e(−i π
2 Jx )J2

z e(i π
2 Jx ) |ψin〉

− 4 〈ψin| e(−i π
2 Jx )Jze

(i π
2 Jx ) |ψin〉2 (12)

= 4 〈ψin| J2
y |ψin〉 − 4 〈ψin| Jy |ψin〉2 (13)

= 〈(a†b − ab†)2〉 + 〈a†b − ab†〉2. (14)

This quantity is related to the phase estimation bound by

(�φd )2 � 1

F . (15)

It is important to note that �φd is the general phase difference
measurement whereas the quantum Fisher-limited phase error,
i.e., when the inequality achieves equality, can be achieved
for the correct estimator when φ deviates from an initially
specified optimal value.

For an interferometry scheme using solely a coherent-
state input, the Fisher information can be easily calculated

to yield exactly the expectation value of the input photon
number, F = 〈N〉. This leads to a maximum phase sensitivity
of �φd = 〈N〉−1/2, which is the well-known limit to interfer-
ometric measurement due to quantum noise with a classical
input shown in Table I, case 2. In order to beat this limit, it
becomes necessary to include something other than coherent
states and vacuum as input, such as squeezed light addressed
by case 3 of Table I. Although this will beat the 〈N〉−1/2 scal-
ing, it still cannot achieve the HL and has a maximum scaling
of ∼〈N〉−2/3, which is only achievable with large squeezing
(∼|α|2/3 photons in the squeezed field for |α|2 photons in the
coherent state) [1]. Because of this, reaching the HL requires
the use of other types of quantum states. As a start, consider
the simplest case of the final state in Table I (the Z = 1 case),
the state given by

|ψ (i)〉 = A |n − 1〉a |n〉b + B |n〉a |n − 1〉b , (16)

where |A|2 + |B|2 = 1. Calculating the quantum Fisher infor-
mation for ψ (i) in Eq. (16) gives

F (i) = 2n2 − 4n2Im[A∗B] − 1, (17)

which leads to the inequality(
�φ

(i)
d

)2 � 1

2n2 − 1
(18)

when A = B = 1√
2
. In general, it is possible to achieve the

Cramér-Rao bound by judiciously choosing the ideal mea-
surement scheme [68]. If the ideal measurement is physically
realizable, such as photon-number difference or single-mode
parity, Eq. (18) demonstrates that the maximum sensitivity of
�φd can achieve a Heisenberg-limited scaling of 〈N〉−1.

We now consider the most general state with arbitrary Z:

|ψ〉 =c0 |n − Z〉a |n〉b + c1 |n − Z + 1〉a |n − 1〉b

+ · · · + cZ |n〉a |n − Z〉b

=
Z∑

k=0

ck |n − Z + k〉a |n − k〉b , (19)

where some initial |n〉a |n〉b has been subjected to a coherent
Z-photon subtraction, where the Z photons could have been
removed from either mode in any given combination. Derived
in Appendix B, the Fisher information when all ck are the
same and the mean photon number of the state is much larger
than the number of photons subtracted is determined to be

F (i)= N2

Z
, (20)

where “(i)” represents the use of the condition that N = 2n −
Z � Z . This leads to a bound on the phase sensitivity to be

(�φd )2 � Z

N2
, (21)

which shows the potential to achieve scaling that is pro-
portional to HL. Although the bound given by the Fisher
information is general, true interferometric performance is
dependent upon the measurement scheme. We will now
demonstrate that the class of states given by Eq. (19) fol-
lows the N−1 scaling in a realistic MZI implementation when
subtracting the resultant photodetection currents, and will
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FIG. 1. A Mach-Zehnder interferometer with phase difference φ

between two optical paths. Both beam splitters are balanced. Quan-
tum splitting of input field a implies interference with the vacuum
field b.

also yield a measurable interference fringe scaling with input
photon number. From there, we will provide a feasible exper-
imental scheme based on correlated twin beams and a single
multiphoton subtraction event.

III. MZI IMPLEMENTATION SENSITIVITY

The above discussion demonstrated that the generalized
photon-subtracted states are potentially viable for Heisenberg-
limited interferometry as verified by the quantum Fisher
information, but now it is important to ensure that the same
〈N〉−1 scaling can be reached with a realistic implementation,
such as subtracting photocurrents, and that there is a measur-
able fringe also scaling with 〈N〉 to ensure a sufficient signal
above any electronics noise floor. The standard MZI is shown
for reference in Fig. 1, where �φ is the phase difference
between the arms of the interferometer and the end detectors
measured the respective mean photocurrents, Na and Nb.

The input state, |ψ〉ab, is transformed using the
Schrödinger picture by the interferometer to

|ψ ′〉ab = U †
BSP�φUBS |ψ〉ab , (22)

where P�φ applies the relative phase shift �φ. This is equiva-
lent, in the Schwinger representation, to applying the rotations

|ψ ′〉ab = e−i π
2 Jx eiφJz ei π

2 Jx |ψ〉ab . (23)

However, in order to determine if there is a measurable fringe,
it is necessary to find 〈Na − Nb〉, which is much easier to
find when working in the Heisenberg picture, as it simply
corresponds to the transformed rotation operator, 〈J ′

z〉, where
any operator, O, is transformed by the MZI to become

O′ = e−i π
2 Jx e−iφJz ei π

2 Jx Oe−i π
2 Jx eiφJz ei π

2 Jx . (24)

Using the transformation, we find

J ′
z = cos φJz − sin φJx. (25)

Making use of Eqs. (9)–(11), we can rewrite the state
of interest from Eq. (19) in the Schwinger representation
to be

|ψ〉 =
s∑

m=−s

cm | jm〉 , (26)

where s = 1
2 Z , j = n − s, and from this point forward we

consider all coefficients real and symmetric such that

c∗
m = cm = c−m, (27)

which is the case for the physical state as derived in Ap-
pendix A. Supposing condition (i) that the number of photons
removed from the state by the subtraction process is consid-
erably smaller than the number of photons remaining, i.e.,
j � s, the measurable fringe for the state in Eq. (26) is given
by

j

s
| sin φ|

(i,ii)
� 2|〈J ′

z〉|
(i)
� 2 j| sin φ|, (28)

with “(ii)” denoting the use of results from Appendix A 2
where we bound the closeness of neighboring coefficients
cm, cm+1 obtained from the experimental design. Equation
(28) shows that there is a direct measurable fringe scaling
with j. Now, in order to determine the phase sensitivity when
using J ′

z as a phase estimator, it is necessary to calculate the
quantity

(�φ)2 =
[
�J ′

z

(
∂d

∂dφ
〈J ′

z〉
)−1]2

. (29)

Derived in Appendix B, �φ takes on a minimum value
about the angle φ = 0, yielding an upper bound on the phase
sensitivity of

√
s

j

(i)
� �φmin

(i,ii)
� 2s2

j
. (30)

We note again that s is a small number based on the number of
photons subtracted, so it is simply a constant factor that does
not affect scaling. Together, Eqs. (28) and (30) show that the
general Z-photon subtracted state has sensitivity proportional
to the HL and has a measurable fringe that scales with photon
number, meaning that this class of states is potentially useful
for quantum-enhanced interferometry, provided a physical re-
alization can be found. Such a realization is provided in the
next section, along with a detailed analysis of the possible
performance.

IV. STATE GENERATION

The specific case of Z = 1 has been previously examined
in Ref. [69], where the proposed experimental design is shown
here in Fig. 2(a). By sending each mode of a TMS state to a
highly unbalanced beam splitter, a single photon is subtracted
from one of the modes. However, before the detection occurs,
a third balanced beam splitter is cleverly placed to erase the
identifying path information about from which mode the pho-
ton came. By detecting exactly one photon on the combined
two detection modes, the scheme implements a superposition
of performing the subtraction on each mode to create a super-
position of the type of states given in Eq. (16), which has the
form of ∑

n

cn(|n〉a |n − 1〉b + |n − 1〉a |n〉b), (31)

where the coefficients cn depend on the strength of the initial
TMS state.
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FIG. 2. (a) Scheme using two click detectors to indistinguishably subtract a single photon from two squeezed modes. (b) Simplified version
using a single detector that includes the case of coherent single-photon subtraction, but also extends the method to include coherent Z-photon
subtraction when a PNR detector is used.

Here, we demonstrate that this state, along with all classes
of state given by Eq. (19), can be generated using only a
single detector as per the scheme shown in Fig. 2(b). In this
implementation, instead of mixing both modes with vacuum
to perform the subtraction, an asymmetric scheme is used
where only one mode mixes with vacuum while the other
is mixed with the siphoned-off portion of the first beam. By
tuning the beam-splitter coefficients, it is possible to make
a variety of interesting entangled states beyond the scope of
Eq. (19), but we will show that utilizing beam splitters with
high transmissivity will preserve higher mean photon numbers
of the outputs for any given detected number of photons, Z .

The first step of Fig. 2(b) starts with a TMS input state
given by

|φin〉 = |0,∇〉ab |0〉c = 1

cosh∇

∞∑
n=0

(tanh∇)n |n〉a |n〉b |0〉c ,

(32)
where ∇ is the squeezing parameter. The state is sent to the
beam splitters each with real reflectivity and transmissivity
coefficients such that t2

i + r2
i = 1. Next, the mode c is sent

to a PNR detector to measure Z photons and project the
remaining modes into the desired state. The output state for
the general case is derived in Appendix A and may be use-
ful for engineering interesting two-mode quantum states, but
the most desirable case for use in sensitive interferometric
measurements occurs when both beam splitters are highly
transmissive such that t � r. This leads to the approximate
output state, conditioned on a detection of Z photons, to be

|φout〉 ∝
∞∑

n=0

(t2 tanh∇)n
Z∑

kmin

√(
n

k

)(
n

Z − k

)(
Z

k

)

× eikϕ |n + k − Z〉a |n − k〉b , (33)

where ϕ is the phase difference between the two input modes
to the second beam splitter (t2, r2) and kmin = Max(0, Z − n).
This state is simply a superposition of the general class of
states given in Eq. (19), where for each |nn〉 term, the Z
photons have been coherently subtracted from both modes
in every possible configuration. When ϕ is set to zero, the
coefficients exactly follow the properties specified above in
Eq. (27). An important point to note is that the value of n in
each input |nn〉 term is determined by the initial squeezing, but

modified by the beam-splitter transmissivity to yield a new
decreased effective squeezing, tanh∇ → t2 tanh∇. Regard-
less of the initial squeezing value, this reduction in squeezing
means that only values of t ≈ 1 will allow for useful inter-
ferometric measurements as large n is desirable. Cases with
t deviating from unity may still work for interferometry ap-
plications if a large value of Z is measured; however, this
is prohibited by challenges in performing such a large PNR
measurement.

V. SQUEEZED INPUT

Numerical simulations were performed using the PYTHON

package QUTIP [70] to determine the minimum resolvable
fringe from an MZI according to Eq. (29), where the input
state was a TMS state that had undergone photon subtraction
as per Fig. 2(b).

The results are shown in the top panel of Fig. 3, where Z
varies from one to three photons as the initial squeezing is
increased, and both beam splitters are taken to be equivalent
with reflectivity r1 = r2 ≡ r. All cases beat the shot-noise
limit, but it is clear that decreasing the reflectivity leads to a
larger quantum enhancement, and larger values of Z increase
the overall phase sensitivity. This behavior may seem odd,
as looking at Eq. (30) shows that the overall scaling of the
sensitivity is slightly worse as Z increases; however, detecting
a larger number of photons acts to increase the mean pho-
ton number of the resultant state before the interferometer,
and higher-order error terms from the use of beam splitters
with nonvanishing reflectivity drop off more quickly with
increasing Z . For input states with lower mean photon number,
postselecting on a larger Z can actually beat the HL set by the
states heralded at smaller Z . However, this comes at the cost
of diminishing success rates.

By comparing Figs. 3(a) and 3(b), it is clear that for the
relatively large value of r = 0.2 the weak beam-splitter ap-
proximation employed earlier is no long valid for smaller Z , as
the state with Z = 1 is only marginally better than the classical
case. However, decreasing the reflectivity to r = 0.1 suffices
to give a quantum advantage that scales when increasing the
input energy for all detected values of Z . This highlights the
importance of choosing an optimal beam-splitter coefficient
that pairs with the desired postselection value, Z , to yield
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FIG. 3. Minimum phase sensitivity for a photon-subtracted state where a PNR detector has detected Z photons during state generation
where beam-splitter reflectivities are (a) r1 = r2 = 0.1 and (b) r1 = r2 = 0.2. States are normalized to their respective HL (lower dotted line)
with upper dotted lines showing the respective shot-noise levels. Probability to successfully detect Z photons vs input state squeezing for the
beam-splitter coefficients (c) r1 = r2 = 0.1 and (d) r1 = r2 = 0.2 are also shown.

increased sensitivity while balancing success rates for a given
input state.

VI. PRACTICAL CONSIDERATIONS

A. PNR detector loss

In a realistic implementation, one might think that the
state generation is highly sensitive to PNR detector efficiency.
However, provided any imperfections in the detector are not
too drastic, the present scheme is tolerant to this inefficiency.
Instead of projecting mode c of the intermediate state fol-
lowing the beam splitters onto an ideal measurement of Z
photons, consider a detector positive operator-valued measure
(POVM) given by

D(Z ) =
∞∑

l=Z

(
l

Z

)
ηZ (1 − η)l−Z |l〉 〈l| , (34)

where the detector has efficiency η and the device registers
a detection of Z photons. The output density matrix will be
given by

ρ ∝ Trc[Dc(Z )(|ψ〉 〈ψ |)abc], (35)

where |ψ〉 is the state following both beam splitters given by
Eq. (A4). This leads to

ρ ∝
∞∑

l=Z

(
l

Z

)
ηZ (1 − η)l−Zρl , (36)

where ρl is the density matrix of the pure state for an l-photon
detection given in Eq. (A5). However, taking r1 = r2 ≡ r and
r � 1 yields

ρ ≈
∞∑

l=Z

(
l

Z

)
ηZ (1 − η)l−Z

( r

t

)2l
ρ ′

l (37)

∝
∞∑

l=Z

(
l

Z

)(
r2(1 − η)

t2

)l

ρ ′
l , (38)

where ρ ′
l = |ψ ′

l 〉 〈ψ ′
l | is an unnormalized pure state with

|ψ ′
l 〉 =

∞∑
n=0

(t2 tanh∇)n

cosh∇

l∑
kmin

√(
n

k

)(
n

l − k

)(
l

k

)

× eikϕ |n + k − l〉a |n − k〉b . (39)

Equation (38) reveals that even for values of η deviating
significantly from unity, we have a final state that is approxi-
mately pure, i.e., ρ ≈ ρ ′

Z when r2(1 − η) � 1, since all terms
with l > Z in the sum can be neglected. This regime can
always be reached by decreasing r until the approximation
holds. However, it is important to note that an imperfect
detector reduces the success probability of the scheme by a
factor of ηZ .

B. Click–no-click detector

In a similar manner to the above discussion, the PNR
detector can be safely replaced with a click–no-click detector
without ill effect. Since we showed above that the effects of
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FIG. 4. Minimum phase sensitivity (blue) for a photon-subtracted state with beam-splitter reflectivities r1 = r2 = 0.1 and input state |n, n〉,
where the PNR detector has been replaced by an ideal click detector. Efficiency η determines the combined transmission of the interferometer
and end detector efficiencies and is (a) η = 1, (b) η = 0.95, and (c) η = 0.9. The shot-noise and HL bound the shaded region, and the red
dotted line shows the Cramér-Rao bound for the large-N limit with Z = 1 given by Eq. (18).

losses during state generation can be considered negligible
if the beam-splitter reflectivity is tuned correctly, here we
consider an ideal click detector with perfect efficiency. In the
case where the detector reads no signal, then the POVM is
simply the vacuum as before. In the case of a registered click,
the POVM is given by

Dclk =
∞∑

l=1

|l〉 〈l| . (40)

Now, the output density matrix is simply a mixture of all
possible detected states with Z � 1,

ρ ∝
∞∑

l=1

P(l )ρl , (41)

where each of the pure states in the mixture is weighted by
the probability of the number of photons that actually went to
the detector. Since the quantities of interest are 〈J ′

z〉 and �J ′
z,

we can use the linearity of Eq. (41) along with the results of
Appendix B to see that

〈J ′
z〉 = − sin φ

∞∑
l=1

Tr[Jxρ] (42)

∝ − sin φ

n
(43)

for each component state in the mixture, ρl . We also know that
the maximum phase sensitivity is achieved about the angle of
φ = 0, so the only necessary term from �J ′

z is �Jz. Thus, we
can find that

(�Jz )2 =
∞∑

l=1

Tr
[
J2

z ρ
]

(44)

(i)
�

∞∑
l=1

l2

4

( r

t

)2(l−1)
, (45)

which leads to a phase sensitivity about φ = 0 of

�φ ∝ 1

n
. (46)

These results can be easily understood by realizing that
each of the possible pure state components in the mixture that
results from the click detection has phase sensitivity scaling

with the HL around the same reference phase of φ = 0. Addi-
tionally, the high unbalancing of the beam splitters makes the
components in the mixture diminish with increasing l .

The results from this section are experimentally significant
in that not only does the detector not need the ability to re-
solve photon numbers, but the imperfect efficiency negligibly
degrades the purity of the resultant state, provided that there
is precise control in ensuring the beam-splitter reflectivity is
small.

C. General OPO output

The general output of an arbitrary twin-beam source, such
as obtained from an above-threshold OPO, can be described
as a mixture of the form

ρ =
∑
n,n′

ρn,n′ |nn〉 〈n′n′| . (47)

Despite being a mixture, we show in Appendix C that the
indistinguishable multiphoton subtraction protocol also works
for this input and leads to a Heisenberg-limited output with
phase sensitivity scaling as �φ ∼ 〈N〉−1. The intuition behind
this result follows similar reasons for why a click–no-click
detector also fails to ruin Heisenberg-limited sensitivity; al-
though the input is a mixture, each |ni, ni〉 component from
the initial twin beam is formed into a superposition with phase
sensitivity of ∼n−1

i about the reference angle of φ = 0. Since
all of the components of the mixture are Heisenberg limited
at the same reference phase, then so is the entirety of the
mixture. As such, when considering imperfections such as
loss, simulations with the input state |n, n〉 can be reliably
used to gauge the effectiveness of the process for an arbitrary
twin-beam source with mean photon number n.

Figure 4 compares the phase sensitivity of a photon-
subtracted state with an |n, n〉 input for the realistic scenario
of a heralding PNR detector replaced by a click detector,
and when the interferometer has losses. As shown in the
previous section, inefficiencies in the click detector channel
can be accounted for by choosing a small enough beam-
splitter reflectivity, so the click detector here is considered
ideal for simplicity. Additionally, if we assume that losses on
both interferometer arms are identical, then the losses can be
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commuted and combined with detection losses to result in a
single overall efficiency of η in each arm [71].

Each plot shows the phase sensitivity along with the large-n
limit given by the Cramér-Rao bound for a single photon
subtraction given by Eq. (18) (red dotted line). When the
beam-splitter reflectivities are small enough for the approxi-
mation to apply, as in Fig. 4(a), it can be seen that the phase
sensitivity readily follows the Cramér-Rao bound, which
scales with the HL up to a constant factor. This constant factor
comes from the fact that since each mode in the twin beam has
n input photons, the total number of photons in the system is
2n, leading to a HL of (2n)−1; however, the ideal scaling with
the single-photon subtracted state goes as n−1. The second and
third panels demonstrate that realistic interferometric losses
do not drastically reduce the phase sensitivity, such as occurs
with states less resilient to loss, such as NOON states. As
shown in Fig. 4(b), the slope of the phase sensitivity still
scales better than 〈n〉−1/2 for η = 0.95, and it is possible to
achieve considerably larger overall η in practical experiments
with advanced low-loss optical coatings and highly efficient
detectors [31]. Figure 4(c), with η = 0.9, shows how larger
losses on the order of 〈N〉−1 bring the resultant phase sensitiv-
ity away from the HL and back to scaling with the shot noise,
in agreement with the general result of Escher, de Matos Filho,
and Davidovich [28].

VII. DISTINGUISHABLE SUBTRACTION WITHOUT
COHERENCE

Thus far we have focused solely on the state we pro-
pose, the Z-photon coherently subtracted twin-beam state.
However, it is illustrative to compare with the case where Z
photons have been distinguishably subtracted from a twin-
beam state without preserving coherence. One example of this
is the case explored previously by Carranza and Gerry [53],
where a single photon had been subtracted from each mode of
a TMS state. As discussed in Sec. VI, the coherent photon
subtraction presented in this article will yield a state with
HL sensitivity for any twin-beam correlated photon input, but
for the comparison here, we consider the input to be a TMS
state and the subtraction process to be ideal with beam-splitter
reflectivity r → 0. In this case, the beam-splitter operator can
be approximated to first order as

UBS = eθ (a†b−ab† ) ≈ 1 + θ (a†b − ab†), (48)

where r = sin θ � 1. A distinguishable subtraction of z1 pho-
tons in mode a and z2 photons in mode b transforms the TMS
input to

|φout〉 ∝ c〈z1| d〈z2|(1 + θ (a†c − ac†)

+ θ (b†d − bd†)) |0,∇〉ab |00〉cd

∝
∞∑

n=0

n!(tanh∇)n

√
(n − z1)!(n − z2)!

|n − z1〉a |n − z2〉b . (49)

Although subtracting photons from the TMS state has the
interesting effect of increasing the average photon number of
the remaining distribution as noted previously [53,72], each
term of the superposition has only one Fock-basis component
in each mode. Each term takes the form of cnm |n〉 |m〉, which

FIG. 5. Minimum phase uncertainties for two-mode squeezed
states of squeezing parameter ∇ = 0.9 with indistinguishable and
distinguishable photon subtraction where Z total photons have been
subtracted. Solid lines indicate distinguishable subtraction with Z =
1 (red triangles) indicating a photon was subtracted from just one
of the two modes and Z = 2 (green circles) showing the case where
one photon was subtracted from each mode. Dotted lines with mark-
ers indicate indistinguishable subtraction between the two modes.
Phase sensitivity was calculated using Eq. (50) (parity detection) for
cases with distinguishable subtraction and with Eq. (29) (intensity
difference detection) for indistinguishable subtraction. The Z = 0
curve (blue asterisks) represents the phase sensitivity calculated from
parity detection of an unaltered two-mode squeezed state. (a) Phase
sensitivity for each state normalized to the Heisenberg limit (black
dot-dashed line) with the shot-noise limit for each state shown as
an unmarked dashed line of the corresponding color. (b) Raw phase
sensitivity comparison of the states.

does not yield an intensity difference fringe scaling with the
photon number unless n � m, which is experimentally unfea-
sible with photon subtraction due to the low probability of
subtracting large numbers of photons. Because of this, states
of the form of Eq. (49) will require a different measurement
scheme to reach the HL scaling. Introduced by Bollinger et al.
[22] for trapped ions and later for optical interferometry by
Gerry [73], measuring the parity of one output mode, 
b =
(−1)b†b, allows for reaching HL sensitivity with these types
of input states. With the parity detection scheme, the phase
uncertainty becomes

(�φ
)2 = 1 − 〈
b〉2

|∂〈
b〉/∂φ|2 . (50)
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Optical parity detection is currently an experimental chal-
lenge and requires large PNR measurements unless the
measured state is of Gaussian nature [74]. Even without this
obstacle, the nature of parity predisposes the measurement
to be highly susceptible to loss and external noise as the
presence or absence of just one photon flips the value of
the measurement. This effect is shown in Fig. 5(a), where
the phase sensitivity is normalized to the Heisenberg limit
(black dot-dashed line) and plotted for several states as the
overall interferometric efficiency decreases from η = 1 to η =
0.90. Solid curves show the phase sensitivity for the state in
Eq. (49) with squeezing parameter ∇ = 0.9 where no photons
were subtracted (blue), a single photon was subtracted from
one of the two modes (red), and the case where one photon
was subtracted from each mode (green). The SNL for each
curve is shown as a dashed line in the corresponding color.
Additionally, Fig. 5 shows the phase sensitivity of the coher-
ently subtracted TMS states with ∇ = 0.9, Eq. (33), in fine
dotted lines with colors corresponding to the total number
of subtracted photons (red for Z = 1, green for Z = 2). For
these states, the phase sensitivity is evaluated with intensity
difference detection as per Eq. (29). Note that the state for
Z = 0 is unchanged from the input TMS state to leading order
in r. When there is no loss (η = 1), it can be seen that all of the
states considered have phase sensitivity nearing the HL, and in
fact, parity detection with a pure TMS state can actually beat
the HL as noted by Anisimov et al. [75]. However, even for
small losses well below 〈N〉−1, the states with parity-based de-
tection veer from the HL and quickly become worse than the
classical sensitivity bound, unlike the class of states proposed
in this article. This behavior is well in line with the results
of Ref. [55]. Figure 5(b) shows the phase sensitivity for each
state on a true scale without normalization and demonstrates
three key points:

(i) Increasing the number of subtracted photons acts to
increase the overall mean photon number of the remaining
distribution and thus increases phase sensitivity.

(ii) In the absence of loss, both types of states achieve HL
sensitivity if the correct measurement scheme is used.

(iii) Finally, for nonzero losses the phase sensitivity of
schemes relying on parity detection is quickly degraded
whereas the states utilizing an intensity difference measure-
ment retain much of their sensitivity.

VIII. CONCLUSION

We have proposed and studied a nontrivial modifica-
tion of the twin-beam input for Heisenberg-limited quantum
interferometry, which features coherently indistinguishable
multiphoton subtraction that leads to a superposition of pho-
ton subtractions. This modification brings about a strong
fringe signal—absent from the unmodified twin-beam input—
while preserving Heisenberg-limited operation. The loss
behavior is consistent with what is now well known about
Heisenberg-limited interferometry. The experimental imple-
mentation should be feasible with state-of-the-art technology,
for example using a stable OPO above threshold [20,45,46]
and photodetectors with single-photon sensitivity. Detectors
with PNR capability may improve the phase sensitivity of
the resultant photon-subtracted state by detecting Z > 1, but
this is not a requirement, and reasonable experimental losses
still result in phase sensitivity beating the standard quantum
limit. We believe it is possible to operate at no more than 106

photons per detection time bin, so as to be compatible with
the lowest achievable optical losses and splitting ratios.
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APPENDIX A: EXPERIMENTAL STATE DERIVATION

The input state is

|φin〉 = |0,∇〉ab |0〉c = 1

cosh∇

∞∑
n

(tanh∇)n |n〉a |n〉b |0〉c . (A1)

The overall state is transformed by the beam splitters and projective PNR measurement to become

|φout〉 = c 〈Z|UacUbc |φin〉 , (A2)

where Ubc = exp [θ1(bc† − b†c)], and Uac = exp [θ2(ac†e−iϕ − a†ceiϕ )] to allow for an additional phase of ϕ between mode
a and the reflected mode c from the first beam splitter, where reflectivities and transmissivities ri = sin θi, ti = cos θi. Note
that the second beam-splitter operation, Uac, will act between mode a and the transformed mode c from the output of the first
beam-splitter operation. With this in mind, the first beam splitter transforms the input state to

Ubc |φin〉 =
∞∑
n

(tanh∇)n

√
n! cosh∇

Ubcb†n
U †

bc |n〉a |0〉b |0〉c

=
∞∑
n

(tanh∇)n

√
n! cosh∇

(t1b† + r1c†)n |n〉a |0〉b |0〉c =
∞∑
n

(tanh∇)n

n! cosh∇

n∑
k

(
n

k

)
t k
1 rn−k

1 a†n
b†k

c†n−k |0〉a |0〉b |0〉c . (A3)
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Now, applying the second beam-splitter yields the state

∞∑
n

(tanh∇)n

n! cosh∇

n∑
k

(
n

k

)
t k
1 rn−k

1 b†k
(t2a† + eiϕr2c†)n(t2c† − e−iϕr2a†)n−k |0〉abc

=
∞∑
n

( − r1r2
2 tanh∇

)n

n! cosh∇

n∑
k

(
n

k

)( t1
r1r2

)k

b†k
n∑
j

(
n

j

)( t2
r2

) j

×
n−k∑

m

(
n − k

m

)
(−1)m+k

( t2
r2

)m

(eiϕ )k+m− ja† j+n−k−m
c†n− j+m |0〉abc . (A4)

Projecting output mode c onto the PNR detection event of Z photons means that the only terms in the above sums that survive
occur when j = n + m − Z . It is also important to note that the maximum value of j is n, so the remaining sum over m goes
from zero to mmax = Min(n − k, Z ). These substitutions lead to

|φZ〉 = rZ
2

√
Z!

tZ
2 cosh∇

∞∑
n=0

(−t2r1r2e−iϕ tanh∇)n
n∑

k=0

√
(2n − k − Z )!√

k!

(−eiϕt1
r1r2

)k

×
mmax∑
m=0

(
n

n + m − Z

)( t2
r2

)2m (−1)m

m!(n − k − m)!
|2n − k − Z〉a |k〉b

∝
∞∑

n=0

cn

n∑
k=kmin

dn,k |n + k − Z〉a |n − k〉b , (A5)

where kmin = Max(0, Z − n), cn = (t1t2 tanh∇)n, and the coefficient dn,k is

dn,k =
√

(n + k − Z )!√
(n − k)!

( r1r2

−eiϕt1

)k
Min(Z,k)∑

m=0

(
n

n + m − Z

)( t2
r2

)2m (−1)m

m!(k − m)!
. (A6)

The form of the general case in Eq. (A5) shows that, after all is said and done, we have a superposition over n of two-mode
superpositions that are desirable for quantum enhanced interferometry, where the cn terms depend on a new effective squeezing,
which is reduced from the original value by the transmissivity of the two beam splitters. The success probability to create this
state after a given Z PNR detection is given by

P(Z ) = Z!

(cosh∇)2

( r2

t2

)2Z ∞∑
n=0

n∑
k=kmin

c2
nd2

n,k (A7)

1. Highly unbalanced beam splitters

If we consider the case where both beam splitters are identical and highly transmissive with r1 = r2 ≡ r and r � 1, then
examining Eq. (A6) shows that only the term with m = k contributes to the coefficient dn to leading order. Furthermore, since
the sum over m is truncated at mmax = Min(k, Z ), the sum over k in Eq. (A5) can be effectively truncated at Z to the same order
of approximation. The output state then becomes

|φZ〉 ∝
∞∑

n=0

(t2 tanh∇)n
Z∑

kmin

√(
n

k

)(
n

Z − k

)(
Z

k

)
eikϕ |n + k − Z〉a |n − k〉b , (A8)

with an approximate success probability of

P(Z ) ≈ r2Z

(cosh∇)2

∞∑
n=0

(1 − 2nr2)(tanh∇)2n
Z∑

kmin

(
n

k

)(
n

Z − k

)(
Z

k

)
. (A9)

2. Coefficients

Here we verify several properties of the coefficients of the experimental state. In the case of a highly unbalanced beam splitter,
then for a given n, the experimental state takes the form of Eq. (19) with coefficients having the form shown in Eq. (A8) to be

ck ∝
√(

n

k

)(
n

Z − k

)(
Z

k

)
eikϕ, (A10)
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where all ck have the same proportionality constant from normalization. Setting ϕ = 0 ensures that all ck are real. When writing
the state in the Schwinger representation, these coefficients become

cm ∝
√(

n

m + s

)(
n

s − m

)(
2s

m + s

)
, (A11)

where s = Z
2 and m = k − s, from which it is clear to see that

cm = c−m. (A12)

Now, how do neighboring coefficients relate? Calculating the ratio between neighbors yields

cm+1

cm
= s − m

s + m + 1

( n − s − m

n − s + m + 1

)1/2

, (A13)

which leads to the bounds of

1

2s

(i)
� cm+1

cm

(i)
� 2s, (A14)

where “(i)” denotes the use of the approximation that n � s. This ratio is useful when calculating terms that appear in expectation
values, and can be used to determine a bound on the sum of all pairs of neighboring coefficients to be

1

2s

(i)
�

s−1∑
m=−s

cmcm+1 � 1, (A15)

where the upper bound can be derived from the Cauchy-Schwarz inequality. Similarly, the ratio between next-neighboring
coefficients has the bound

cm+2

cm

(i)
� 1

s(2s − 1)
, (A16)

which leads to bounding the sum of next-nearest-neighboring coefficients to be

1

2s2 − s

(i)
�

s−2∑
m=−s

cmcm+2 � 1. (A17)

APPENDIX B: GENERAL MULTIPHOTON SUBTRACTED STATE

Here we derive the Fisher information for the general case of the state given by Eq. (19). All of the relevant terms are

〈a†b〉 =
Z−1∑
k=0

ckc∗
k+1

√
(n − k)(n − Z + k + 1),

〈ab†〉 =
Z−1∑
k=0

c∗
k ck+1

√
(n − k + 1)(n − Z + k),

〈a†abb†〉 =
Z∑

k=0

|ck|2(n − Z + k)(n − k + 1)),

〈aa†b†b〉 =
Z∑

k=0

|ck|2(n − Z + k + 1)(n − k)),

〈a†a†bb〉 =
Z−2∑
k=0

ckc∗
k+2

√
(n − k)(n − k − 1)(n − Z + k + 1)(n − Z + k + 2),

〈aab†b†〉 =
Z−2∑
k=0

c∗
k ck+2

√
(n − k + 1)(n − k + 2)(n − Z + k)(n − Z + k − 1).

If we take a case where the number of photons removed from the state is small compared to the total, i.e., n � Z , then, denoting
the use of this approximation as (i), the Fisher information is

F (i)= 2
Z∑

k=0

n2|ck|2 −
Z−2∑
k=0

n2(ckc∗
k+2 + c∗

k ck=2) +
(

Z−1∑
k=0

nckc∗
k+1

)2
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+
(

Z−1∑
k=0

nc∗
k ck+1

)2

−
Z−1∑
k=0

Z−1∑
k′=0

n2(ckc∗
k+1c∗

k′ck′+1 + c∗
k ck+1ck′c∗

k′+1). (B1)

If we now make assumption (ii) that all of the coefficients are the same, ck = 1√
Z

, then

F (i,ii)= 4n2

Z
, (B2)

so the Cramér-Rao inequality leads to

(�φd )2 � Z

N2
, (B3)

where N = 2n − Z .

MZI fringe and phase sensitivity

Using the Schwinger representation to determine the observables when the general Z-subtracted state from Eq. (26) is input
into a MZI, we start by finding the expectation value of Jx and Jz. We find that

〈Jz〉 = 0,

〈Jx〉 = 1

2

s∑
m=1−s

c∗
m−1cm

√
( j + m)( j − m + 1) + 1

2

s−1∑
m=−s

c∗
m+1cm

√
( j − m)( j + m + 1)

=
s−1∑

m=−s

cm+1cm

√
( j − m)( j + m + 1)

(i)= j
s−1∑

m=−s

cm+1cm, (B4)

where we have used that all cm ∈ R, cm = c−m, and have used approximation (i) that j � s. From here, we can estimate
the value of the remaining sum by making use of the bounds on cm+1

cm
, denoted by (ii), for all of the coefficients derived in

Appendix A 2. This leads to the result that

j

2s

(i,ii)
� 〈Jx〉

(i)
� j. (B5)

The observable fringe is given by the expectation value of 2Jz at the output, where

|〈J ′
z〉| = | cos φ〈Jz〉 − sin φ〈Jx〉| j

2s
| sin φ|

(i,ii)
� |〈J ′

z〉|
(i)
� j| sin φ|. (B6)

The end result above shows that the measurable fringe scales with the mean photon number of the state. When calculating �φ,
the Heisenberg transformations yield

∂d

∂dφ
〈J ′

z〉 = − sin φ〈Jz〉 − cos φ〈Jx〉, (B7)

(�J ′
z )2 = (cos φ�Jz )2 + (sin φ�Jx )2 − sin φ cos φ(〈{Jz, Jx}〉 − 2〈Jz〉〈Jx〉). (B8)

Deriving the quantities individually, we have

(�Jz )2 = 〈
J2

z

〉 =
s∑

m=−s

m2|cm|2 < s2, (B9)

where the inequality is obtained by replacing all m2 with the maximum value of s2. We also find that〈
J2

x

〉 = 1

4

〈
J2
+ + J2

− + 2
(
J2 − J2

z

)〉

= 1

2

s∑
m=−s

|cm|2( j2 + j − m2) + 1

2

s−2∑
m=−s

cmcm+2

√
( j + m + 2)( j − m − 1)( j + m + 1)( j − m)

(i)= j( j + 1)

2
− s2

2
+ 1

2
( j2 − s2)

s−2∑
m=−s

cmcm+2,

j2

2

(
1 + 1

s(2s + 1)

)
+ j

2

(i,ii)
�

〈
J2

x

〉 (i)
� 1, (B10)
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where the final inequality is obtained by bounding the sum in the second-to-last line with the ratio of next-nearest-neighboring co-
efficients derived in
Appendix A 2. This leads to the variance

(�Jx )2 ∼ O( j2). (B11)

The other necessary terms are

〈{Jz, Jx}〉 =
s−1∑

m=−s

(2m + 1)cm+1cm

√
( j − m)( j + m + 1) ≈ 〈Jx〉, (B12)

2〈Jz〉〈Jx〉 = 0, (B13)

which when combined with Eqs. (B6), (B9), and (B11) lead to an overall value for the phase difference estimator given by
Eq. (29) to be

(�φ)2
(i)
� (s cos φ)2 + (�Jx sin φ)2 + sin φ cos φ〈Jx〉

( j
2s cos φ)2

. (B14)

This takes on a minimum value when φ = 0 to yield the upper bound

�φmin

(i,ii)
� 2s2

j
, (B15)

which scales with the HL up to a constant factor. By taking the upper limit of 〈Jx〉 from Eq. (B5), the lower bound on �φ when
φ = 0 is

√
s

j

(i,ii)
� �φmin. (B16)

APPENDIX C: PHASE SENSITIVITY FOR A GENERAL TWIN-BEAM INPUT

In this section, we show that our photon subtraction protocol also works for the most general twin-beam statistical mixture,
e.g., as produced by an OPO above threshold. The density operator in the Fock basis is given by

ρab =
∑
n,n′

ρn,n′ |nn〉 〈n′n′| . (C1)

The two beam-splitter operations are given by

Uac′Ubc = exp[θ2(a†c′ − ac′†)] exp[θ1(b†c − bc†)] =
∑

j,k

θ k
1 θ

j
2

j!k!
(a†c′ − ac′†) j (b† − bc†)k, (C2)

where c′ = c cos θ1 − b sin θ1 is the transformed vacuum mode from the first beam-splitter input. Because the input state, ρab,
consists solely of vacuum in the input mode c, and we are postselecting the transformed mode c on a detection of Z photons,
we need only consider terms of the form cxc†(x+Z ) and c†(x+Z )cx. To further simplify, we can assume the highly unbalanced
beam-splitter regime, where both θ1 � 1 and θ2 � 1, in which case we need only consider terms with c†Z . Thus, to leading
order in θ , we have j + k = Z and

Uac′Ubc ≈
Z∑

k=0

rk
1rZ−k

2

k!(Z − k!)
(−at1)Z−k (−b)kc†Z , (C3)

where r1 = sin θ1 ≈ θ1 and r2 = sin θ2 ≈ θ2. Sending the twin-beam input through the unbalanced beam splitters and detecting
Z photons in mode c leads to

ρout = Trc[(|Z〉〈Z|)cUac′Ubcρab ⊗ |0〉〈0|U †
bcU

†
ac′] (C4)

= Trc

[
(|Z〉〈Z|)c

Z∑
k,k′

rk+k′
1 r2Z−k−k′

2 t2Z−k−k′
1

k!k′!(Z − k)!(Z − k′)!

∞∑
n,n′

ρn,n′aZ−kbkc†Z |n, n, 0〉〈n′, n′, 0|a†(Z−k′ )b†k′
cZ

]
(C5)

∝ (r2t1)2Z
∞∑

n,n′
ρn,n′

Z∑
k,k′

Ck,k′ |n − Z + k, n − k〉〈n′ − Z + k′, n′ − k′|, (C6)
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where Cn,n′ contains all of the remaining binomial coefficients,

Cn,n′ =
[(

n

k

)(
Z

k

)(
n

Z − k

)(
n′

k′

)(
Z

k′

)(
n′

Z − k′

)]1/2( r1

t1r2

)k+k′

. (C7)

Writing the output in the Schwinger representation, we have

ρout =
∞∑
j, j′

ρ j, j′

s∑
m,m′=−s

C′
m,m′ | j, m〉〈 j′, m′|, (C8)

where s = Z
2 . From here, the calculations for the Schwinger operators follow the form of Appendix B for each of the

superpositions within the mixture, leading to the finding that, about the interferometric phase φ = 0, we have that (�J ′
z )2 � s2.

Additionally, following the arguments of Appendix A 2, we find that 〈Jx〉 � javg

2s , where javg is the average value of j in the
statistical mixture. These values lead to the determination that about φ = 0,

�φ = (�J ′
z )∣∣ ∂

∂φ
〈J ′

z〉
∣∣ |φ=0

(i,ii)
� 2s2

javg
, (C9)

and hence the general twin-beam source is sufficient to achieve phase-sensitivity scaling proportionally with the HL.
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