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Two-photon superbunching effect of broadband chaotic light at the femtosecond timescale based on
a cascaded Michelson interferometer
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It is challenging to observe the superbunching effect with true chaotic light. Here we propose and demonstrate
a method to achieve the superbunching effect of g(2)(0) = 2.42 ± 0.02 with broadband stationary chaotic light
based on a cascaded Michelson interferometer (CMI), exceeding the theoretical upper limit of 2 for the two-
photon bunching effect of chaotic light. The superbunching correlation peak is measured with an ultrafast two-
photon absorption detector whose full width at half-maximum reaches about 95 fs. Two-photon superbunching
theory in a CMI is developed to interpret the effect and is in agreement with experimental results. The theory
also predicts that the degree of second-order coherence can be much greater than 2 if chaotic light propagates N
times in a CMI. Finally, a type of weak signal detection setup that employs broadband chaotic light circulating
in a CMI is proposed. Theoretically, it can increase the detection sensitivity of weak signals 79 times after the
chaotic light circulates 100 times in the CMI.
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I. INTRODUCTION

Since Hanbury Brown and Twiss (HBT) first observed the
two-photon bunching effect in 1956 [1–3], it has been well
known that the degree of second-order coherence (DSOC) of
thermal light equals 2 for all kinds of thermal light [4–6],
including blackbody radiation [7–9], broadband amplified
spontaneous emission [10–13], pseudothermal light [14–16],
and so on. Although the superbunching effect of pseudother-
mal light has been observed [17–20], to the best of our
knowledge the superbunching effect of broadband chaotic
stationary light has never been measured. The reason is that
one cannot artificially generate extra intensity fluctuations in
a true chaotic light field as in the pseudothermal light case,
and also the superbunching effect of true chaotic light itself is
difficult to detect due to its femtosecond timescale coherence
time.

The superbunching effect of thermal light is not only
academically interesting, but it also has many important ap-
plications. In recent years, a series of studies on multiphoton
effect enhancement and extreme events enhancement with
bright squeezed vacuum have been reported [21,22]. The au-
thors pointed out that these effects could be used in photon
subtraction experiments [23], ghost imaging [15,24,25], and
experiments that need a high multiphoton effect but low aver-
age intensity [26].
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In this paper, we proposed and demonstrated a method
to achieve the superbunching effect of broadband stationary
chaotic light based on a cascaded Michelson interferome-
ter (CMI). g(2)(0) = 2.42 ± 0.02 of stationary chaotic light
is observed by using ultrafast two-photon absorption (TPA)
detection technology [27,28]. This TPA detector allows us to
measure the superbunching effect of chaotic stationary light
at the timescale of a few femtoseconds. The superbunching
effect reported in this paper is achieved without any nonlinear
process involved. A theory based on two-photon interference
is developed and explains the experimental results very well.
The theory shows that comparing with the ordinary bunching
effect in the HBT interferometer, the superbunching effect
in a CMI comes from the increasing number of two-photon
probability amplitudes involved. Also, the theoretical study
shows that this superbunching effect can reach a much higher
value as the number of cascaded processes increases, which
means that the number of two-photon probability amplitudes
involved increases exponentially. More importantly, the sensi-
tivity of the CMI for small phase changes increases drastically
according to our numerical simulation. Finally, we propose
to use a CMI as a two-photon interferometer for weak signal
detection to enhance the detection sensitivity.

The paper is organized as follows. In Sec. II, we will
develop the quantum theory on the superbunching effect of
chaotic light based on two-photon interference and calculate
its second-order coherence function. The method to realize
the superbunching effect of chaotic light is also proposed. In
Sec. III, with a continuous amplified spontaneous emission
(ASE) incoherent light source, a CMI, and a TPA detector, the
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FIG. 1. Two-photon interference path diagram and the counts of simulated results of the chaotic light in MI. (a) A schematic diagram of
the principle of two photons from chaotic light passing through MI once to trigger a TPA detector. (b) A schematic diagram of the principle
of two photons from chaotic light passing through the MI twice to trigger a TPA detector. The solid and dashed lines represent the photon’s
propagation path. PMT is a TPA detector that simultaneously receives photons from different propagation paths. Part (c) shows the result of
the normalization of the constant terms, corresponding to the first term in Eq. (5). Part (d) shows the superbunching effect of chaotic light,
corresponding to the sum of the second, third, and fourth terms in Eq. (5). Part (e) shows the sum of the high-frequency oscillation terms,
corresponding to the term F (τ ) in Eq. (5). Part (f) shows the sum of all the terms in Eq. (5).

superbunching effect of chaotic stationary light is observed.
The discussions about the physics of superbunching of chaotic
light and its possible application are in Sec. IV.

II. THEORY

It is well known that the two-photon bunching effect can
be explained by two-photon interference theory at the single-
photon level [29]. The quantum theory of the bunching effect
of chaotic stationary light in the Michelson interferometer is
studied in Ref. [13]. The method to realize the superbunching
effect of stationary chaotic light can be found by following
the above studies. In the following, the quantum theory on
the bunching effect in the Michelson interferometer is briefly
reviewed, and the quantum explanation of the superbunching
effect of stationary chaotic light in CMI is developed.

Figure 1(a) shows the schematic diagram of the bunching
effect of chaotic light in a Michelson interferometer. We de-
fine a and b as two photons from the chaotic light. Channels
1 and 2 can be defined as paths that the photons reflect from
the two arms of the Michelson interferometer, respectively.
There are four different but indistinguishable ways for pho-
tons a and b to trigger the TPA detector, corresponding to four
two-photon probability amplitudes: Aa1b2, Aa2b1, Aa1b1, and
Aa2b2. The two-photon probability amplitude Aa2b1 indicates
that photon a is reflected by mirror 2 (in arm 2) and photon
b is reflected by mirror 1 (in arm 1) before triggering the
TPA detector together. The other probability amplitudes are
defined similarly. In the language of quantum interference, the
observed two-photon bunching effect of chaotic light in the
Michelson interferometer [10–13] comes from the coherent
interference of these four probability amplitudes. The proba-

bility of TPA detection CTPA is

CTPA = 〈|Aa1b1 + Aa1b2 + Aa2b1 + Aa2b2|2〉. (1)

There are four different and indistinguishable paths trig-
gering the TPA detector. In this way, the two-photon bunching
effect based on the superposition of different probability am-
plitudes is achieved [10,12,13].

The superbunching effect of the broadband chaotic light
can be achieved by adding more different and indistin-
guishable interference paths to trigger the TPA detector.
In our experiment, it is realized by making chaotic light
pass through a CMI. As shown in the schematic dia-
gram in Fig. 1(b), two photons from chaotic light pass
through the same Michelson interferometer twice to trigger
a TPA detector. There are 16 different and indistinguish-
able paths to trigger the TPA detector: Aa11b11, Aa11b12,

Aa11b21, Aa11b22, Aa12b11, Aa12b12, Aa12b21, Aa12b22, Aa21b11,

Aa21b12, Aa21b21, Aa21b22, Aa22b11, Aa22b12, Aa22b21, Aa22b22. The
probability amplitude Aa12b21 indicates that photon a propa-
gates in arm 1 (with mirror 1) when it passes the Michelson
interferometer for the first time, and then it enters the same
Michelson interferometer again and propagates in arm 2 (with
mirror 2). Simultaneously photon b propagates in arms 2 and
1 successively when it passes through the Michelson inter-
ferometer for the first and second time, respectively. Finally,
photon a and photon b trigger the TPA detection event to-
gether. The meanings of the remaining probability amplitudes
are similar.

The probability of TPA detection CTPA is the result of
the coherent superposition of the 16 different and indistin-
guishable probability amplitudes, which can be expressed
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as [30,31]

CTPA=

 ∣∣∣∣∣∣∣
Aa11b11 + Aa11b12 + Aa11b21 + Aa11b22+
Aa12b11 + Aa12b12 + Aa12b21 + Aa12b22+
Aa21b11 + Aa21b12 + Aa21b21 + Aa21b22+
Aa22b11 + Aa22b12 + Aa22b21 + Aa22b22

∣∣∣∣∣∣∣
2
!

, (2)

where 〈· · · 〉 represents the ensemble average of all events. The
probability amplitude can be written as

Aamibn j = eiϕa Kamie
iϕbKbn j, (3)

where ϕa and ϕb are the initial phase of photon a and photon b.
Kami and Kbn j represent the Feynman propagators of different
photons, where i, j, m, n = 1, 2. The true thermal light source
has a certain spectral distribution, which is different from
the single frequency of the laser. In this case, the Feynman
propagator from the thermal light can be expressed as [32]

K (r2, t2; r1, t1) =
∫ ω0+ 1

2 �ω

ω0− 1
2 �ω

f (ω)e−i[ω(t1−t2 )−k̄12·r̄12]dω, (4)

where f (ω) is the spectral distribution function of the light
source that assumed the rectangular spectrum distribution. ω0

is the center frequency and �ω is the spectral bandwidth. All
these parameters depend on the spectral characteristics of the
light source we used. t1 and t2 represent the time at which the
photon arrives at r1 and r2, respectively, so t1 − t2 is the time
difference between the photon from r1 and r2. �k12 represents
the vector of light waves where the photons are from r1 to r2,
and �r12 represents the difference between the position vectors
of the photons from r1 to r2.

Here we only concentrate on the temporal correlation of
thermal light for simplicity. So substituting Eqs. (3) and (4)
into Eq. (2), we obtain

CTPA = 18(�ω)2 + 18(�ω)2 + 2(�ω)2 sinc2(�ωτ )

+ 32(�ω)2 sinc2

(
1

2
�ωτ

)
+ F (τ ). (5)

The normalized simulation results are shown in Fig. 1,
where the background of the constant term is 1. 18(�ω)2

is the constant term corresponding to Fig. 1(c), while
18(�ω)2 + 2(�ω)2 sinc2 (�ωτ ) + 32(�ω)2 sinc2 ( 1

2�ωτ )
is the two-photon interference between different two-photon
probability amplitudes, which leads to a background of
18(�ω)2 and a peak value of 34(�ω)2 when τ = 0. This is
the superbunching effect because the peak value will never
surpass a background of 18(�ω)2 in the ordinary bunching
effect. The superbunching effect in the CMI is due to the
fact that the two-photon probability amplitude involved in the
two-photon interference is more than those in the Michelson
interferometer; the normalized function of second-order
coherence is shown in Fig. 1(d). F (τ ) is the high-frequency
oscillation term, which is present in Fig. 1(e), where F (τ ) =
32(�ω)2 cos (2ω0τ ) sinc2 ( 1

2�ωτ ) + 2(�ω)2 cos (4ω0τ ) ×
sinc2(�ωτ ) + 96(�ω)2 cos(ω0τ ) sinc( 1

2�ωτ ) + 24(�ω)2×
cos (2ω0τ ) sinc (�ωτ ) + 32(�ω)2 cos (ω0τ ) sinc ( 1

2�ωτ ) ×
cos (2ω0τ ) sinc (�ωτ ). The result of Fig. 1(f) signifies the
sum of all the terms corresponding to the whole detection
event CTPA. The normalizing of the second-order coherence

FIG. 2. Experimental setup of superbunching thermal light based
on CMI. M0, M1, M2, and M3 are 1550 nm dielectric mirrors, where
M1 is fixed on a precise motorized linear translation stage (MS). PMT
is a GaAs photomultiplier tube.

function is given by

g(2)(τ ) = 1 + 16

9
sinc2

(
1

2
�ωτ

)
+ 1

9
sinc2(�ωτ ), (6)

where sinc(x) = sin(x)/x. When τ equals zero, g(2)(τ ) =
2.89, which means the superbunching effect of the broadband
chaotic light can be observed in the CMI scheme.

III. EXPERIMENTAL IMPLEMENTATION AND RESULTS

The method of observing the superbunching effect of
chaotic stationary light is to make the chaotic light pass
through a CMI. In the CMI, the two-photon interference effect
is enhanced and the superbunching effect can be observed.
The detailed theoretical analysis is in Sec. II, and in this
section we will focus on how to realize the CMI and report
the experimental results.

The experimental setup for observing the superbunching
effect of broadband chaotic light is shown in Fig. 2. The
light source is a continuous amplified spontaneous emission
(ASE) incoherent light. Its center wavelength is 1550 nm
with a bandwidth of 30 nm. L1 and L2 are two convergent
lenses with focal lengths of 10 and 25.4 mm, respectively.
P0 is a linear polarizer with a horizontal direction. QWP1

and QWP2 are two quarter-wave plates with an angle of 45◦
between the optical axes and the polarization direction of the
incident light. The broadband light is collimated by L1 and
it passes through P0, which causes the unpolarized chaotic
light to be horizontally polarized and enter the Michelson
interferometer for the first time. After passing through the
nonpolarizing beamsplitter cube (BS), two split light beams
pass through QWP1 and QWP2, they are reflected back from
M1 and M2, and then they pass through QWP1 and QWP2

again, respectively. At that moment the polarizations of two
beams changed from horizontal to vertical. Then all vertically
polarized light will be reflected to M3 by a polarizing beam-
splitter cube (PBS). The light reflected by M3 will go into the
Michelson interferometer for the second time. By manipulat-
ing the polarization of light beams, we realize the function
of a CMI. Finally, after the light interferes in the Michelson
interferometer the second time, the vertically polarized light
becomes horizontally polarized because of QWP1 and QWP2.
Then two horizontally polarized light beams reflected from
M1 and M2 pass through the PBS, a spherical lens (L2), and
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FIG. 3. (a) The measurement results of the broadband chaotic
light bunching effect when light passes through the Michelson in-
terferometer. (b) The measurement results based on the broadband
chaotic light superbunching effect when light passes through the
Michelson interferometer twice in succession. The red line is a graph
of all counting results of the TPA detector. The black solid line is
the result of filtering out high-frequency terms after numerical signal
processing. The insets in (a) and (b) illustrate the enlarged detail of
the interferogram near 0 fs, respectively.

a high pass filter (HF) to trigger an H7421-50 Hamamatsu
GaAs-photomultiplier tube (PMT) operated in two-photon ab-
sorption mode [10]. During the experiment, the dark counts
is 80 per second. The spherical lens and the high-pass filter
with a cutoff wavelength of 1300 nm are used to eliminate the
single-photon counting of the PMT and make sure the PMT is
working in TPA mode.

To make a comparison between the ordinary bunching
effect [10–12] and the superbunching effect of broadband
stationary chaotic light, we first measured its photon bunching
effect. This is realized by removing the PBS and M3 from
the setup shown in Fig. 2. The setup is a standard Michelson
interferometer without the PBS and M3, and chaotic light will
only circulate once before it is detected by the TPA detector.
The second-order coherence function of the bunching effect is
measured by scanning one arm of the interferometer-scanning
M1 on a mortor stage (MS). The TPA counts are recorded
versus the time delay difference between two arms. The ex-
perimental results are shown in Fig. 3(a). The red line is the
measured second-order coherence function which full width
at half-maximum (FWHM) is about 123 fs, and the visibility
of the second-order interference pattern can reach 99.2%. The
black solid line is the result of filtering out the high-frequency
oscillation terms, and its peak-to-background ratio is about
1.44, which corresponds to the second-order coherence func-
tion g(2)(0) = 1.87 ± 0.02 obtained after normalization. The
oscillating TPA counts near the maximum of the correlation
peak are shown in greater detail in the inset of Fig. 3(a).
From the point of view of quantum mechanics [13], the mea-
sured bunching effect comes from the interference of four
two-photon probability amplitudes, as shown in Eq. (1). The
results can also be explained in classical intensity fluctuation
correlation theory [10]. Those studies facilitated the develop-
ment of measuring the superbunching effect based on chaotic
stationary light.

In the next step, the PBS and M3 are put back into the setup
to constitute the CMI as shown in Fig. 2. In this setup, chaotic
light will circulate twice in the CMI before being detected by
the TPA detector. In doing so, the two-photon interference
paths increase and the two-photon interference effect is en-

hanced. The experiment results are shown in Fig. 3(b). The red
line is the measured second-order coherence function whose
FWHM is about 95 fs and the visibility of the second-order
interference pattern can reach 99.8%. The black solid line is
the result of removing the high-frequency oscillation term by
numerical filtering, and its peak-to-background ratio is about
1.71, which corresponds to the second-order coherence func-
tion g(2)(0) = 2.42 ± 0.03 obtained after normalization. The
oscillating TPA counts near the maximum of the correlation
peak are shown in greater detail in the inset of Fig. 3(b).

Comparing the results of Fig. 3(a) and 3(b), we can see that
the superbunching effect of broadband stationary chaotic light
was observed in a CMI at the femtosecond timescale.

IV. DISCUSSIONS

A. N-order superbunching effect of chaotic light

Based on the above work, we know that the increasing
number of times propagating through Michelson interfer-
ometer is actually adding different and indistinguishable
two-photon interference paths. This is why we observed the
superbunching effect of the broadband chaotic light in the
CMI. When the beam passes N times through the Michel-
son interferometer, the whole TPA detection event can be
expressed as

CTPA =
〈∣∣∣∣∣

4N∑
i, j=1,2

Aai1i2...in,b j1 j2... jn

∣∣∣∣∣
2〉

, (7)

where Aai1i2...in,b j1 j2... jn is the probability amplitude of photons
a and b passing through N times the arms of the Michelson in-
terferometer, respectively, i1, i2 · · · , in, j1, j2 · · · , jn = 1, 2.

However, the number of terms of probability amplitude
would increase to as many as 4N for the calculation of DSOC
after transferring N times through Michelson interferometer.
A method was proposed based on the calculation of the co-
efficient of the constant Cc and second-order coherence terms
Ci. As the number of times passing through the Michelson
interferometer is increased, there will be more and more high-
frequency oscillation terms that need to be filtered out, and
it will not make any contributions to the calculation of the
second-order coherence function. Therefore, we only calcu-
late the coefficients of Cc and Ci, which are straightforwardly
related to the second-order coherence function.

After derivation, when the chaotic light transfers N times
through the Michelson interferometer, the coefficient of con-
stant terms Cc can be expressed in the TPA detection event as

Cc =
(

N∑
n=0

(
Cn

N

)2

)2

. (8)

Similarly, the coefficient of second-order coherence terms Ci

is statistically calculated as

Ci =
N∑

m=1

2

(
N−m∑
n=0

Cn
NCm+n

N

)2

. (9)

The specific derivations of Cc and Ci can be found in
Appendix A and B.
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FIG. 4. Ratio of two-photon interference terms of thermal light
after transferring N times through the Michelson interferometer un-
der different conditions. The black rectangle represents RP/B. The
red circle represents FP/B. The blue triangle represents g(2)(0), which
is the degree of the second-order coherence of the two-photon
superbunching.

To further study the N-order chaotic light superbunching
effect, Cc and Ci are derived in Eqs. (8) and (9). When the
beam passes through the Michelson interferometer N times,
the peak-to-background ratio of the interference pattern (in-
cluding high-frequency parts) of the whole TPA detection is

RP/B = 16N

Cc
. (10)

Then the peak-to-background ratio of the two-photon interfer-
ence pattern after filtering out the high-frequency oscillation
terms is

FP/B = 1 + Ci

Cc
. (11)

Naturally, the degree of the second-order coherence is

g(2)(0) = 1 + 2
Ci

Cc
. (12)

The numerical simulations of Eqs. (10), (11), and (12)
are shown in Fig. 4, where RP/B increases linearly, and FP/B

and g(2)(0) increase logarithmically with the increase of N .
When N = 50, FP/B = 8.90 ± 0.01, RP/B = 157.87 ± 0.02,
and g(2)(0) = 16.79 ± 0.01 can be obtained. Moreover, it is
obvious that the increasing trend of g(2)(0) will gradually slow
down with the increase of propagation times N . Principally as
the number of times passing through the Michelson interfer-
ometer increases, the first-order interference terms inside will
increase exponentially. Therefore, the increasing oscillation
terms will lower the visibility and slow down DSOC growth.
Nonetheless, it does not prevent us from achieving the super-
bunching effect of chaotic light.

B. A type of weak signals detection setup based on
multiphoton interference

From the above sections, we notice that the superbunching
effect in the CMI could enhance the sensitivity of phase de-
tection. This is because multiple circulation of chaotic light in
the CMI leads to multiphoton interference. Hence we propose

FIG. 5. The oscillatory behaviors of a TPA interferogram under
different propagation times. The black, red, and blue circles repre-
sent details of the TPA detection event when chaotic light transfers
through the CMI once, twice, and thrice, respectively. The inset in
Fig. 5 represents the trend of the TPA peak count as propagation
time increases.

to employ chaotic light circulating in the CMI to increase the
sensitivity for weak signal detection. The insets in Figs. 3(a)
and 3(b) illustrate the enlarged detail of the interferogram
near 0 fs. It is obvious that the peak counts of chaotic light
circulating twice in the CMI are higher than those circulating
once in the MI (11.05 and 7.34, respectively). The numerical
simulation is shown in Fig. 5 corresponding to the measure-
ment results of the insets of Fig. 3. The black, red, and
blue circles represent the details of the TPA detection event
when chaotic light transferred through the CMI once, twice,
and thrice, respectively. When τ equals zero, the theoretical
TPA peak counts are 8, 14.22, and 20.48 separately and the
period of the interference pattern is 2.55 fs. The specific
theoretical derivation of chaotic light transferring through the
CMI thrice is similar to Sec. II above. There are 64 differ-
ent and indistinguishable two-photon interference paths that
can be described by Eq. (7). Using Eq. (A3) in Appendix
A and Eq. (B5) in Appendix B, the coefficients of the con-
stant terms Cc and the second-order coherence terms Ci are
400 and 524, respectively. It is convenient to get g(2)(0) =
3.62 from Eq. (12) when chaotic light transfers through
the CMI thrice. The simulation shows that the relative TPA
counts will change from 0 to 8, 14.22, and 20.48 separately
when the phase changes from 0 to π . The TPA peak counts
will increase with the increase of propagation times, which
means the weak signal is amplified under the same phase
variation.

Based on the derivation of Cc and Ci, we found that the
meaning of the TPA peak counts is the same as Eq. (10)
other than the different background. Therefore, the TPA peak
counts can be expressed as 2RP/B. The inset in Fig. 5 illus-
trates that the TPA peak counts increase linearly with the
increase of propagation time. When N = 100, the TPA peak
counts equals 629.89, which means the signal amplifies 79
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times compared with chaotic light circulating in the CMI
once. The enhancement effect is expected to increase with
the light circulating more times in the CMI. It should be
emphasized that the enhancement effect is the result of multi-
photon interference. As the number of times passing through
the Michelson interferometer increases, the interference terms
will increase exponentially. In our design, the circulation
of chaotic light in the CMI provides more and more two-
photon probability amplitudes interfering with each other. It
not only realizes the superbunching effect of the broadband
chaotic light, but it also significantly increases detection sen-
sitivity, which provides a solution for the detection of weak
signals.

V. CONCLUSIONS

In summary, the two-photon superbunching effect of
broadband chaotic light is proposed and demonstrated at a
femtosecond timescale based on the CMI. DSOC of chaotic
light was measured as 2.42 ± 0.03. Two-photon interference
theory, which describes the superbunching effect of the broad-
band chaotic light in a cascade MI, has also been developed.
Furthermore, we demonstrated the expression of DSOC by
deriving the coefficients of the constant and second-order
coherence terms when beams whose variational trends will
increase with increasing N passed through a Michelson in-
terferometer N times. Also, our numerical simulation shows
that the N-order CMI dramatically improve the sensitivity of
detecting small phase changes. A type of weak signal de-
tection setup could be designed based on the superbunching
effect reported in the paper. As this kind of superbunching
chaotic light is simple to realize and control, it will lay a good
foundation for future research on a two-photon interferometer
for weak signal detection.
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APPENDIX A: THE COEFFICIENT OF THE CONSTANT
TERMS Cc OF CHAOTIC LIGHT TRANSFERRING

THROUGH THE MICHELSON
INTERFEROMETER N TIMES

When chaotic light transfers through a Michelson inter-
ferometer (MI) N times, there are 4N kinds of different and
indistinguishable two-photon interference paths. The whole
two-photon absorption detection event can be expressed as
Eqs. (7).

There will be 16N terms after a modulus
square. Any one of them can be expressed
as Aai1i2···in,b j1 j2··· jn A∗

ap1 p2···pn,bq1q2···qn
, where

i1, i2 · · · in, j1, j2 · · · jn = 1, 2, p1, p2 · · · pn, q1, q2 · · · qn =
1, 2, A∗

ap1 p2···pn,bq1q2···qn
is the complex conjugate of

Aai1i2···in,b j1 j2··· jn , and a and b represent two photons from
the chaotic light, respectively. These symbols indicate
whether each photon travels through channel 1 or channel
2 through the MI. For example, in indicates that the photon
passes through channel i when it passes through MI N times.

Here we take Aai1i2···in,b1 j2··· jn A∗
ap1 p2···pn,bq1q2

as an example.
The Feynman propagator only considers the temporal correla-
tion, and bringing the expression of the Feynman propagator
into this formula, we can obtain

Aa1i2−i2,b1 j2− jn Aa2 p2−pn,b4,q2−qn

=
∫∫ ω0+ 1

2 �ω

ω0− 1
2 �ω

f (ωa)e−i[ωa (i1+i2···+in−p1−p2···−pn )]

× f (ωb)e−i[ωb( j1+ j2···+ jn−q1−q2···−qn )]dωadωb, (A1)

where we define that i1, i2 · · · in, j1, j2 · · · jn = t1, t2,
p1, p2 · · · pn, q1, q2 · · · qn = t1, t2, and they represent the
time that each photon reaches channel 1 and channel 2 when
it passes through MI. To make Eq. (A1) be a constant term, it
must also satisfy

i1 + i2 · · · + in − p1 − p2 · · · − pn = 0,

j1 + j2 · · · + jn − q1 − q2 · · · − qn = 0.
(A2)

Here we can use the idea of permutation and combination
to solve this equation. Taking photon a as an example, we have
the following:

(i) When there is no t1 in i1, i2 · · · in, the number of com-
binations contained is C0

N , and at the same time all of the
t1 in p1, p2 · · · pn must be 0 to make i1 + i2 · · · + in − p1 −
p2 · · · − pn = 0 possible. Then the total number of combina-
tions is (C0

N )2.
(ii) When there is one t1 in i1, i2 · · · in, the number of

combinations contained is C1
N , and we also have to have one

t1 in p1, p2 · · · pn that is equal to C1
N . Then the total number of

combinations is (C1
N )2.

(iii) When there are two t1 in i1, i2 · · · in, the number of
combinations contained is C1

N , and at the same time there
are also two t1 in p1, p2 · · · pn. Then the total number of
combinations is (C2

N )2.
(iv) By analogy, when there are N t1 in i1, i2 · · · in, the

number of combinations included is CN
N . In the meantime, it

must also satisfy all N t1 in p1, p2 · · · pn. Finally, the total
number of combinations at this time is (CN

N )2.
Adding up all the above combination numbers, it can be

expressed as

(
C0

N

)2 + (
C1

N

)2 + (
C2

N

)2 + · · · + (
CN

N

)2 =
N∑

n=0

(
Cn

N

)2
. (A3)

We just discussed the case of photon a above; the case of pho-
ton b is the same and needs to satisfy i1 + i2 · · · + in − p1 −
p2 · · · − pn = 0. Therefore, we end up with the coefficient of
the constant term as

Cc =
(

N∑
n=0

(
Cn

N

)2

)2

. (A4)
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APPENDIX B: THE COEFFICIENT OF THE
SECOND-ORDER COHERENCE TERMS Ci OF CHAOTIC
LIGHT TRANSFERRING THROUGH THE MICHELSON

INTERFEROMETER N TIMES

What follows is the derivation of the coefficients of the
second-order coherence terms. Taking the photon a as an
example, through the study of the second-order coherence
terms, we find that Eq. (A1) satisfies

i1 + i2 · · · + in − p1 − p2 · · · − pn = k(t1 − t2), (B1)

where k = −N,−(N − 1), · · · − 1, 1, · · · (N − 1), N . To sim-
plify our derivation process, we first consider when k � 1, that
is, k = 1, · · · (N − 1), N . This kind of calculation result is half
of all the results, and the discussions are as follows:

(1) When i1 + i2 · · · + in − p1 − p2 · · · − pn = (t1 − t2),
there are N cases in total:

(1.1) When there is one t1 in i1, i2 · · · in, the number of
combinations contained is C1

N , and at the same time all of
the t1 in p1, p2 · · · pn must be 0 to make i1 + i2 · · · + in −
p1 − p2 · · · − pn = (t1 − t2) possible. Then the total number
of combinations is C1

NC0
N .

(1.2) When there are two t1 in i1, i2 · · · in, the number of
combinations contained is C2

N , and we also have to have one
t1 in p1, p2 · · · pn that is equal to C1

N . Then the total number of
combinations is C2

NC1
N .

(1.3) When there are three t1 in i1, i2 · · · in, the number
of combinations contained is C3

N , and at the same time there
are also two t1 in p1, p2 · · · pn. Finally, the total number of
combinations is C3

NC2
N .

(1.4) By analogy, when there are N t1 in i1, i2 · · · in, the
number of combinations included is CN

N , and all of them must
satisfy (N − 1)t1. Then the whole number of combinations at
this time is CN

N CN−1
N .

In summary, the result of the addition of all the above cases
just considers the case of photon a, but the photon b situation
is exactly the same. Meanwhile, when we take the value of k,
all the combinations can be expressed as

C1 = 2
(
C1

NC0
N + C2

NC1
N + C3

NC2
N + · · · + CN

N CN−1
N

)2

= 2

(
N−1∑
n=0

Cn
NCn+1

N

)2

. (B2)

(2) When i1 + i2 · · · + in − p1 − p2 · · · − pn = 2(t1 − t2),
there are (N − 1) cases in total:

(2.1) When there are two t1 in i1, i2 · · · in, the number of
combinations contained is C2

N , and at the same time all of the
t1 in p1, p2 · · · pn must be 0 to make i1 + i2 · · · + in − p1 −
p2 · · · − pn = 2(t1 − t2) possible. Then the total number of
combinations is C2

NC0
N .

(2.2) When there are three t1 in i1, i2 · · · in, the number
of combinations contained is C3

N , and we also have one t1
in p1, p2 · · · pn that is equal to t1. Then the total number of
combinations is C3

NC1
N .

(2.3) When there are four t1 in i1, i2 · · · in, the number of
combinations contained is C4

N , and at the same time there
are also two t1 in p1, p2 · · · pn. Finally, the total number of
combinations is C4

NC2
N .

(2.4) By analogy, when there are N t1 in i1, i2 · · · in, the
number of combinations included is CN

N , and at the same time
all must satisfy (N − 2)t1. Then the number of combinations
is CN

N CN−2
N .

In this way, the result of the addition of all the above cases
only considers the case of photon a, but the case of photon
b is the same. Meanwhile, when we take the value of k as
k = −N,−(N − 1), · · · − 1, 1, · · · (N − 1), N , the number of
combinations can be expressed as

C2 = 2
(
C2

NC0
N + C3

NC1
N + C4

NC2
N + · · · + CN

N CN−2
N

)2

= 2

(
N−2∑
n=0

Cn
NCn+2

N

)2

. (B3)

(3) Similarly to the situation discussed above, we can suc-
cessively express C1,C2,C3 · · ·CN . When i1 + i2 · · · + in −
p1 − p2 · · · − pn = N (t1 − t2), there is only one case that has
N t1 in i1, i2 · · · in, and the number of combinations included
was CN

N . At the same time, p1, p2 · · · pn must meet with no t1.
Then the number of combinations is CN

N C0
N . When we consider

the case of photons b and the value range of k, the total number
of combinations at this time is expressed as

CN = 2
(
CN

N C0
N

)2
. (B4)

To sum up, all the discussions are added up as follows:

Ci = C1 + C2 + · · ·CN =
N∑

m=1

2

(
N−m∑
n=0

Cn
NCm+n

N

)2

. (B5)
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