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Transverse optical binding for a dual dipolar dielectric nanoparticle dimer
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The physical origins of the transverse optical binding force and torque beyond the Rayleigh approximation
have not been clearly expressed to date. Here, we present analytical expressions of the force and torque for a dual
dipolar dielectric dimer illuminated by a plane wave propagating perpendicularly to the dimer axis. Using this
analytical model, we explore the roles of the hybridized electric dipolar, magnetic dipolar, and electric-magnetic
dipolar coupling interactions in the total force and torque on the particles. We find significant departures from
the predictions of the Rayleigh approximation, particularly for high-refractive-index particles, where the force
is governed by the magnetic interaction. This results in an enhancement of the dimer stability by one to four
orders of magnitude compared to the predictions of the Rayleigh approximation. For the case of torque, this is
dominated by the coupling interaction and increases by an order of magnitude. Our results will help to guide
future experimental work in optical binding of high-refractive-index dielectric particles.
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I. INTRODUCTION

Optical binding originating from the mutual scatter-
ing of electromagnetic (EM) waves among objects enables
micro- and nanoparticles to form stable spatial arrangements.
Therefore, it has attracted great attention in light-controlled
self-assembly of particles [1,2]. For a pair of particles (or
dimer), when the incident light wave vector is perpendicular
to the dimer axis, the resulting force between particles is
named the transverse optical binding force (TOBF) [3]. For
the case of the light wave propagating along the dimer axis,
the force is termed the longitudinal optical binding force [4].

TOBF offers a way to assemble dielectric and metallic par-
ticles into complex steady structures, such as one-dimensional
chains [3] and waveguides [5], two-dimensional optical matter
[6,7], clusters [8], arrays [9–11], mirrors [12], and three-
dimensional clusters [13]. Furthermore, it can dynamically
manipulate particles, e.g., inducing oscillations in particle
chains [14], rotation and spinning of particles [15,16], and
forming a bound state of two rotating microgyroscopes [17].
Currently, an emerging research field is the dependence of
the TOBF on EM hybridization coming from the interaction
between electric and/or magnetic multipoles in adjacent par-
ticles. In detail, the sign of the TOBF in a silver disk-ring
nanostructure reverses multiply due to the hybridized inter-
ference between the electric dipole of disk and the electric
high-order modes of the ring [18]. Analogous phenomena
were found in Au nanorod heterodimers [19]. Further numer-
ical results showed that the TOBF for a silicon dimer changes
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from an attractive force to a repulsive one with variation
of wavelength [20]. The repulsive force originates from the
hybridization between the broad electric dipole and narrow
magnetic dipole in the particles. Recent theory indicated that
TOBF induced by the interference of surface plasmon po-
larizations (SPPs) of two metallic particles over a metallic
substrate is an order of magnitude larger than the TOBF with-
out SPPs [21].

While the TOBF is well studied for low-refractive-index
dielectric (index <2.5, e.g., polystyrene and glass) and metal-
lic particles in the Rayleigh approximation [15,22], optical
binding for high-refractive-index dielectric particles with n >

3.5, such as silicon and germanium, has received little at-
tention because analytical solutions of the TOBF beyond
the Rayleigh approximation have remained absent [1,23,24].
Such particles are of interest in the area of dielectric meta-
materials, where they can be harnessed for optical devices
without the high heating rates associated with plasmonic
particles [25], and in optical trapping because their strong
oscillatory dynamics can be utilized as a thermal engine [26].
Further, their morphology can be manipulated to customize
their form birefringence to provide optical microfluidic actu-
ators [27], and they can be used to create nanoheterostructure
semiconductor devices [28]. In this paper, we analytically
study the TOBF and torque on two dual dipolar dielectric
particles orthogonally illuminated by an arbitrarily polarized
plane EM wave, as shown in Fig. 1. We show that the con-
tributions to the force and torque due to electric dipolar, to
magnetic dipolar, and to electric-magnetic dipolar coupling
interactions are dominant in different regimes of refractive
index, and therefore are essential for the full description of
the TOBF, going beyond the Rayleigh approximation.
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FIG. 1. A pair of dielectric spheres with radius r located symmet-
rically at positions yA and yB along the y axis of a Cartesian system
(O-xyz). R represents the distance between the centers of the two
particles. A plane EM wave with electric (E0) and magnetic (H0)
field vectors is incident on the dimer along the z axis, as shown by
the wave vector k. θ is the polarization angle of the wave, measured
between the E0 and y axis.

The paper is organized as follows. In Sec. II, we present
the results of our derivation of analytical expressions for the
TOBF and optical torque. Meanwhile, the physical meanings
of the expressions are discussed. In Sec. III, the contributions
of the electric dipolar, magnetic dipolar, and electric-magnetic
dipolar coupling interactions to TOBF, torque, and stability
of the dimer are numerically investigated in detail. Finally,
conclusions are drawn in Sec. IV.

II. THEORETICAL MODEL

Based on the optical force on a single dual dipolar particle
[29] and EM mutual scattering between two particles [30] (see
details in Appendixes A–F), we derive the TOBF (F) (exerted
along the y axis in Fig. 1) on particle B, which is equal but
oppositely directed to the force on particle A. F consists of
three parts:
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where Re and Im represent the real and imaginary parts of a
complex number,∗ denotes complex conjugation, ε0 and εs are
respectively the permittivity of vacuum and relative permittiv-
ity of the medium, E0,x and E0,y are x and y components of the
incident electric field, R is the distance between the centers
of the two particles, ∂/∂R denotes the partial derivative with
respect to the distance, k = 2π/λs is the wave number in
the medium, and the dressed polarizabilities α̃ey, α̃my, α̃em-p,1,
α̃em-p,2, α̃em-s,1, and α̃em-s,2 represent the polarization of the
particle induced by the incident light and hybridization while
μ, κ , and η are eigenvalues of electric and magnetic dyadic
Green’s functions of a point dipole (see details in Appendixes
A and B).

Fe is the electric component of F. The first term denotes the
interaction between the y components of the electric dipole
moments (py) of the two particles, while the second term is
the interaction between the z components of the electric dipole
moments (pz). The third term is the force on the z component
of the electric dipole moment in particle B (pB

z ) acted on by
the x component of the magnetic dipole moment in particle A
(mA

x ). The combination of these first three terms (in the first
parentheses) represents Fe in the case of illumination by p
polarization (i.e., along the dimer axis). The fourth term is the
interaction between the two px while the last one denotes the
force exerted on pB

x by mA
z . These last two terms (in the second

parentheses) represent Fe for illumination by s polarization.
On the other hand, Fm is the magnetic component of F. The
first term denotes the interactions between two mx while the
second one is the force exerted on mB

x by pA
z . The first two

terms (in the first parentheses) represent Fm in the case of p
polarization. The third and fourth terms denote respectively
the interactions between two my and between two mz. The last
term shows the force exerted on mB

z by pA
x . The last three terms

(in the second parentheses) determine Fm for s polarization.
Finally, Fem is the electric-magnetic coupling component of F.
The first term comes from the interference between pB

z and mB
x

and represents Fem for p polarization. The last term originates
from the interference between pB

x and mB
z and represents Fem

in the case of s polarization.
For Rayleigh particles (αm = 0) whose refractive index or

radius is small enough to satisfy the relation kr = 2πnpr/λ �
1, F is determined by only the first and fifth terms in Eq. (1)
while Fm = Fem = 0. In this case, the force is the classical
optical binding force (FRay) between two electric dipolar par-
ticles, the same as Eq. (3a) in Ref. [15]. On the other hand, for
magnetic dipolar particles (αe = 0) such as Au core-Si shell
nanospheres [31], the only nonzero contributions to F are the
first and third terms in Eq. (2), which together constitute the
magnetic binding force [32], while Fe = Fem = 0.

In addition to the binding force, the incident light also
causes an extrinsic optical torque (Γ ) on the dimer [15] which
causes the dimer to rotate around the z axis. The torque is also
composed of three parts:

Γe = ε0εs
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Γe is the electric component of Γ . The first term denotes
the interaction of pB

x with pA
y and the interaction of pB

y with
pA

x . The last two terms (in the last square brackets) indicate
respectively the interaction of pB

z with mA
y and the interaction

of pB
y with mA

z . In addition, Γm is the magnetic component
of �. The first term represents the interaction of mB

x with
mA

y and interaction of mB
y with mA

x . The last two (in the
last square brackets) represent respectively the interaction of
mB

y with pA
z and interaction of mB

z with pA
y . Moreover, Γm

is the electric-magnetic coupling component of Γ . The first
term originates from the interference between pB

y and mB
z

while the second one comes from the interference between pB
z

and mB
y .

For Rayleigh particles, Γe is determined by only the first
term in Eq. (4) while α̃em-s,2 reduces to α̃ex. This agrees with
the classical torque on a Rayleigh-approximation dimer [15].
Meanwhile Γm = Γem = 0. On the other hand, for purely
magnetic dipolar particles, Γm is determined only by the
first term in Eq. (5) and α̃em-p,2 is simplified to α̃mx, in
agreement with magnetic optical torque between two mag-
netic dipolar particles in [32]. In this case, Γm = Γem = 0.
Note that for p and s polarizations the torque vanishes.
Equations (1)–(6) are general for a plane wave in the near
field, intermediate field, and far field. They are the main re-
sults in this paper. Our numerical calculations are based on
Eqs. (1)–(6).

Furthermore, the force and torque can be simplified in the
far-field region (kR � 1) where we retain only the highest
order terms of kR in μ, κ , and η. For p polarization, Eqs. (1)–
(3) are respectively simplified as

Fe = nsI0

c

{
k2|αe|2
2πR2

cos (kR) + k5|αm|2
(4πR)2 Im[αe]

}
, (7)

Fm = −nsI0

c

k3|αm|2
4πR

sin (kR), (8)

Fem = nsI0

c

k6|αm|2
24π2R

{cos (kR)Re[αe] − sin (kR)Im[αe]}, (9)

where I0 = ε0nsc|E0|2/2 is the intensity of the incident wave
in the medium, c is light speed in vacuum, E0 is the ampli-
tude of the incident electric field, αe = i6πa1/k3, and αm =
i6πb1/k3 are the electric and magnetic polarizabilities with
radiation reaction terms of the particles where a1 and b1 are
respectively the electric and magnetic dipolar Mie scattering
coefficients [33], and i is the unit imaginary number. Equa-
tions (7)–(9) demonstrate that Fe is proportional to R−2 as
shown by the red short dashed curve in Fig. 2(a) while Fm and
Fem are proportional to R−1 as shown by the blue dash-dotted
and green dash-dot-dotted curves. The results indicate that Fe

decays faster than Fm and Fem in the far field. For Rayleigh
particles, the binding force is completely determined by the
first term in Eq. (7), which is in agreement with Ref. [34].
On the other hand for a purely magnetic dipolar dimer, the
binding force is completely determined by Eq. (8). In the
case of s polarization, Fe is expressed by Eq. (8) by replacing

FIG. 2. Binding force vs distance (R) between the centers of
two spheres (r = 100 nm and np = 4) for p polarization (a) and s
polarization (b). F (black solid curve) is the binding force while Fe

(red short dashed curve), Fm (blue dash-dotted curve), and Fem (green
dash-dot-dotted curve) are respectively the electric, magnetic, and
coupling components of F. FRay (purple dashed curve) is the binding
force in the Rayleigh approximation. The digits in (a) indicate a
multiple of the magnified forces. The triangles, stars, diamonds, cir-
cles, and hollow circles represent respectively the stable equilibrium
positions of Fe, Fm, Fem, F, and FRay.

αm with αe, which is the binding force in the Rayleigh ap-
proximation. Fm and Fem are respectively written as Eqs. (7)
and (9) by exchanging αm and αe. Therefore, Fm ∝ R−2 as
shown by the blue dash-dotted curve in Fig. 2(b) while Fe

and Fem ∝ R−1 as shown by the red short dashed and green
dash-dot-dotted curves. It means Fm decays faster than Fe

and Fem. The first term in Fm represents the binding force
between two pure magnetic dipolar particles. Finally, for left-
hand circular polarization with e0 = E0(1, i, 0) exp(ikz)/

√
2

[35], Fe and Fm are expressed by Eq. (8) through employing
respectively αe and αm. In this case, Fe = FRay and Fm is
the binding force between two magnetic dipolar particles.
Moreover, the coupling component of the binding force is read
as

Fem = nsI0

c

k6

48π2R

×
{

cos (kR)
(|αm|2Re[αe] + |αe|2Re[αm]

)
− sin (kR)

(|αm|2Im[αe] + |αe|2Im[αm]
)}. (10)
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The above results show that the binding force F ∝ R−1.
Additionally, the electric component of torque is read as

Γe = nsI0

2c

k4

(4πR)2

⎧⎨
⎩
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−|αe|2
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)⎫⎬
⎭.

(11)

The magnetic component of torque Γm is also expressed by
Eq. (11) through exchanging αe and αm. Moreover, the cou-
pling component of torque Γem is written as

Γem = nsI0

2c
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24π2

{
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(|αe|2Im[αm] + |αm|2Im[αe]
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)}.

(12)

Notice that Γe and Γm while, interestingly, Γem is indepen-
dent of R. Therefore, the torque is dominated by the coupling
interaction, which is completely different than the binding
force. Furthermore, the torque in the Rayleigh approximation
(αm = 0) is simplified from Eq. (11) as

ΓRay = nsI0

2c

k4|αe|2
(4πR)2 {[cos (2kR) + 1]Im[αe]

+ sin (2kR)Re[αe]}. (13)

On the other hand, for a purely magnetic dipolar dimer,
the torque ΓMD is also expressed by Eq. (13) through replac-
ing αe by αm. Notice that we focus on the optical binding
between dual dipolar particles without considering the elec-
tric quadrupole-assisted force. This is because the electric
quadrupole is not dominant compared to the dipolar reso-
nances within our parameters.

III. RESULTS AND DISCUSSION

A. TOBFs for p- and s-polarized waves

We consider two spheres with high refractive index np =
4, i.e., germanium [36], immersed in water (ns = 1.33) (a
discussion of the forces and torques on particles with lower re-
fractive index is given in Appendixes G–L). The wavelengths
of the incident wave in vacuum and water are λ0 = 532 nm
and λs = λ0/ns = 400 nm, respectively. The power density of
the wave in water is I0 = 10 mW/μm2. To demonstrate the
applicability of our model beyond the Rayleigh regime, we
model spheres of radius r = 100 or 150 nm. As expected, in
the small r limit, our model will degenerate to the Rayleigh
approximation, as discussed in Eqs. (1)–(6). The force, torque,
and distance (R) are respectively in units of pN, pN μm,
and λs.

Figure 2 shows F (black solid curve) as well as Fe (red short
dashed curve), Fm (blue dash-dotted curve), and Fem (green
dash-dot-dotted curve) between dielectric particles with r =
100 nm and np = 4 as a function of the distance R between
the centers of the two particles for (a) p-polarized and (b)
s-polarized waves. Additionally, FRay (purple dashed curve) is
presented as a comparison. It can be seen from Fig. 2(a) that
in the case of p polarization Fm greatly exceeds Fe and Fem and
dominates F. Physically, the effects of hybridization are par-
ticularly pronounced for high-refractive-index particles. For
example, the reradiated field by mx in one particle is strong

FIG. 3. The stiffness at the first stable equilibrium positions of
F, Fe, Fm, and Fem versus refractive index (np) of particles with r =
150 nm for p polarization (a) and s polarization (b). The faint blue
shaded area where 2.7 < np < 3.6 in (a) denotes the region where the
stiffness of F is dominated by that of Fm. The vertical black dashed
line marks the location np = 3.1. The faint blue (2.9 < np < 3.24)
and red (3.24 < np < 3.5) shaded areas in (b) represent the regions
where the stiffness of F is respectively dominated by those of Fm

and Fe.

enough to induce pz in the neighboring one. Thus Fe does not
only depend on the interaction between pA

y and pB
y , which is

the case for Rayleigh particles, but also by the interactions
between mA

x and pB
z and between pA

z and pB
z . Previous theoret-

ical work demonstrated that the magnetic TOBF of an ideal
magnetic dimer can be enhanced to the same magnitude as
the TOBF for Rayleigh particles [32]. But what is surprising
here is that the Fm is an order of magnitude larger than not
only FRay but also Fe. The reason is that the py induced in
the two particles by the incident wave is nearly suppressed
at wavelength λ0 = 532 nm while the two mx are excited
even though they do not reach the maximum resonance (see
Figs. 2 and 3 in Ref. [37]). As a result, F is dominated by
contributions from Fm while the stable equilibrium positions
of F (black circles) are determined by those of Fm (blue stars)
instead of those of Fe (red triangles) and Fem (blue diamonds).
The results demonstrate that FRay dramatically underestimates
F for dielectric particles with high refractive index. Similar
phenomena are observed in s polarization in Fig. 2(b). With
increasing refractive index, the relative contribution of Fe to
the binding force is gradually overtaken by that due to Fm (see
details in Appendixes H and I). However, we emphasize that
even for low-refractive-index particles such as polystyrene
(np = 1.59), non-negligible components of Fm and Fem al-
ready arise, and the magnitudes of these exceed the magnitude
of Fe for moderate refractive indices such as silicon (np = 3.5)
in p polarization (see details in Appendixes G and H). Addi-
tionally, F in the case of p polarization is larger than that for s
polarization. The reasons are that the interaction between two
side-by-side parallel mx in p polarization is larger than that
between two head-to-tail collinear my in s polarization, while
the electric dipolar interactions are suppressed.

Moreover, we calculated the first stable equilibrium po-
sitions of F, Fe, Fm, and Fem (see details in Appendix I) as
well as the stiffness at these positions for dielectric particles
with np from 1.4 to 4 in cases of p and s polarizations in
Fig. 3. Within this range, many materials of interest in optical
trapping are concentrated, e.g., polystyrene (np = 1.59) [38],
diamond (np = 2.4) [39], silicon (np = 3.5) [40], bismuth
(np = 3.89) [28], and germanium (np = 4) [26]. The particle′s
radius is set to 150 nm in order to improve further its magnetic
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response because the magnetic dipole moment caused by the
displacement current in the particle increases with the particle
size. In detail, for p polarization in Fig. 3(a), the stiffness of Fe

(red curve with triangles) decreases sharply in the blue shaded
region 2.7 < np < 3.6, meaning that Fe is barely sufficient for
the formation of a stable bound state. The stable equilibrium
vanishes completely at np = 3.1 (vertical black dashed line)
where Fe has no stiffness and formation of a stable dimer
is prohibited (see details in Appendix J). On the other hand,
the stiffness of Fm (blue curve with stars) is much larger than
those of Fem (green curve with diamonds) and Fe. Notably, for
particles with np from 2.7 to 3.6, the stiffness of Fe decreases
rapidly and even vanishes, because the suppressed electric
dipolar responses cause the electric dipole-dipole interaction
to provide barely sufficient potential well depths to bind the
two particles. However, the stiffness of Fm is one to four orders
of magnitude larger than that of Fe. Surprisingly, out of this
region, the stiffness of Fm is still one order of magnitude larger
than that of Fe. This means that F (black curve with circles)
is mainly dominated by Fm, which shows the predominant
ability of Fm to bind the dielectric dimer for p polarization.
For s polarization in Fig. 3(b), the stiffness of Fe and Fem are
of the same order of magnitude and much larger than that of
Fm. Interestingly, in the region 2.9 < np < 3.24 (faint blue
area), the stability of the dimer is dominated by Fm, but in
the neighboring region 3.24 < np < 3.5 (faint red area), the
stability is dominated by Fe. Therefore, Fe and Fm supplement
each other to enable stable formation of the dimer. It can be
clearly seen from Fig. 3 that the magnetic dipolar interaction
dominates the stability of the dimer in p polarization while the
electric dipolar interaction is dominant in s polarization.

B. TOBF and torque for circularly polarized waves

Figure 4(a) shows F, Fe, Fm, and Fem for left-hand circular
polarization for the same parameters as in Fig. 2. The electric
dipoles are again greatly suppressed compared to the magnetic
dipoles and Fm provides the leading contribution to F. As a
result, the stable equilibrium positions of F are very close
to the counterparts of Fm (not marked). This is similar to
the p- and s-polarized cases in Fig. 2. Figure 4(b) shows
that the radial (along the dimer’s axis) stability (stiffness) of
the dimer at the first radial stable equilibrium position (see
details in Appendix K) is determined by different compo-
nents of F. In the low-refractive-index region (left faint red
area 1.4 < np < 1.59) the stability is determined by Fe. With
increase of np, the stability is controlled by all components
of F. Interestingly in the middle-refractive-index region (faint
blue area 2.9 < np < 3.25) Fm provides robust stability where
the stiffness of Fe and Fem drops sharply. On the contrary, Fe

sustains the stability where the stiffness of Fm and Fem reduces
sharply (right faint red area 3.25 < np < 3.45). Hence, Fe and
Fm supplement each other in the radial stability of the dimer
which is similar to the s polarization in Fig. 3(b).

Under circularly polarized light, a dimer experiences not
only a radial force due to the TOBF, but is also subjected
to a torque about the center of mass. Figure 4(c) shows the
torque (Γ ) and its components Γe, Γm, and Γem as functions
of R. The envelopes of Γe and Γm decay ∝ R−1 as shown by
Eq. (11). Interestingly, the envelope of Γem is independent of

FIG. 4. Optical binding for left-circular polarization. (a) Binding
force F including Fe, Fm, and Fem ves distance R. The black circles
denote the stable equilibrium positions of F. (b) The stiffness at the
first stable equilibrium positions of Fe, Fm, Fem, and F vs np. The
faint blue (2.9 < np < 3.25) and red (1.4 < np < 1.59 and 3.25 <

np < 3.45) shaded areas in (b) show the regions where the stiffness
of F is respectively dominated by those of Fm and Fe. (c) Torque Γ

including Γe, Γm, and Γem vs distance R. The digits in (c) indicate a
multiple of the magnified torques. The parameters in (a) and (c) are
the same as in Fig. 2. The parameters in (b) are the same as in Fig. 3.

R [as shown by Eq. (12)] which is similar to magnetodielectric
particles [24]. Hence, Γem plays the leading role in Γ , which
is completely different than the binding force (see details in
Appendix L).

As expected, when the polarization is changed from left- to
right-handed circular, the binding force stays the same but the
torque in Fig. 4(c) changes sign.

IV. CONCLUSIONS

In summary, we have presented analytical solutions for
the TOBF and torque on two identical dual dipolar dielectric
particles in a plane EM wave. The electric and the magnetic
dipolar interactions dominate the force in different regimes
of refractive index, while the torque experienced by the
dimer in circularly polarized light is always dominated by
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the electric-magnetic coupling interaction. This shows that all
three components must be considered for an accurate under-
standing of the stability and dynamics of dimers formed from
high refractive index particles. Furthermore, the force, torque,
and stability of the dimer with high refractive index are signif-
icantly enhanced by both magnetic and coupling interactions.
The conclusions demonstrate clearly that the force, torque,
and stability of the particles may be underestimated to a high
degree if one uses the Rayleigh approximation. Our results
have potential applications in light-controlled self-assembly
of dielectric materials of high refractive index. Visualizing
these key differences between the different regimes of re-
fractive index would be intriguing in an experimental optical
binding geometry. We note that in typical experiments the
dimer is suspended in liquid medium and subjected to optical
and random forces. For a quantitative agreement between
experiment and the results presented here, it may therefore be
necessary to enforce a stable transverse configuration between
the dimer and incident beam, e.g., by using a standing-wave
optical trap [41,42]. In addition to the accurate determination
of particle positions of the dimers there are also prospects
for observing the interparticle field directly using multiphoton
excitation of the medium in which the particles are suspended
[43].
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APPENDIX A: CALCULATION OF OPTICAL FORCE

It is assumed that a dimer consisting of two identical di-
electric nanospheres is immersed in water and illuminated by
an arbitrarily polarized plane EM wave. The configuration is
shown by Fig. 1 in the main text. The total field encircling one
particle is the sum of the incident field and the field scattered
by the neighboring particle. For instance, taking into account
the mutual scattering between particles, the total electric (EB)
and magnetic (HB) fields surrounding particle B are expressed
as [30]

EB = EB
0 + 1

ε0εs

↔
Ge(rB − rA) · pA + iZ

↔
Gm(rB − rA) · mA,

(A1)

HB = HB
0 − i

Zε0εs

↔
Gm(rB − rA) · pA + ↔

Ge(rB − rA) · mA,

(A2)

where rA and rB are positions of the centers of the two
particles and Z = [μ0μs/(ε0εs)]1/2 is the impedance of the
medium. pA = ε0εsαeEA and mA = αmHA represent respec-
tively the electric and magnetic dipole moments in particle
A induced by the total electric (EA) and magnetic (HA)
fields at particle A (the expressions for p and m in par-
ticle B are obtained by substituting the letter A by B).

↔
Ge(rB − rA) and

↔
Gm(rB − rA) are free-space electric and

magnetic dyadic Green’s functions of a point dipole [44]
(see details in Appendix B). The first term in Eq. (A1)
[Eq. (A2)] represents the incident electric (magnetic) field
at particle B, the second one denotes the scattered electric
(magnetic) field on particle B by the electric dipole in par-
ticle A, and the last term expresses the scattered electric
(magnetic) field on particle B by the magnetic dipole in par-
ticle A. Additionally, the total electric and magnetic fields
in the nearby particle A are also described by Eqs. (A1)
and (A2) through interchanging the superscripts B and A

while considering the relations
↔
Ge(rB − rA) = ↔

Ge(rA − rB)

and
↔
Gm(rA − rB) = − ↔

Gm(rB − rA). Hereafter we simplify

the notation
↔
Ge(rB − rA) ≡ ↔

Ge and
↔
Gm(rB − rA) ≡ ↔

Gm for
convenience. By decomposing vector Eqs. (A1) and (A2) into
scalar equations along the three axes and solving them for
particles A and B in terms of μ, κ , and η, the x, y, and z
components of the electric and magnetic dipole moments in
each particle are derived in Eqs. (A7)–(A12).

It is convenient to define dressed polarizabilities to de-
scribe the polarization of the particles under the incoming
waves. In detail, the electric dressed polarizabilities are de-
scribed by

α̃ex = αe

1 − αeμ
, α̃ey = αe

1 − αeκ
, α̃ez = αe

1 + αeμ
,

(A3)

where α̃eν(ν = x, y, and z) is caused by the hybridization
of two ν components of the electric dipole moments (pν) in
different particles. On the other hand, the magnetic dressed
polarizabilities are expressed as

α̃mx = αm

1 − αmμ
, α̃my = αm

1 − αmκ
, α̃mz = αm

1 + αmμ
,

(A4)

where α̃mν is the result of hybridization between ν compo-
nents of the magnetic dipole moments (mν) in two particles.
In addition, the p-polarized dressed polarizabilities are given
by

α̃em-p,1 = α̃ezα̃mxη

1 − α̃ezα̃mxη2
, α̃em-p,2 = α̃mx

1 − α̃ezα̃mxη2
, (A5)

where α̃em-p,1 originates from the hybridization of pz in one
particle with pz and mx in another while α̃em-p,2 is a result of
the hybridization of mx in one particle with mx and pz in the
other one. They can be thought of as being induced by the
p-polarized wave (H0 is perpendicular to the incident plane
and along the x axis) which causes the mx in the two particles.
Moreover, the s-polarized dressed polarizabilities are written
as

α̃em-s,1 = α̃exα̃mzη

1 − α̃exα̃mzη2
, α̃em-s,2 = α̃ex

1 − α̃exα̃mzη2
, (A6)

where α̃em-s,1 comes from the hybridization of mz in one
particle with mz and px in the other, while α̃em-s,2 stems from
the hybridization of px in one particle with px and mz in
the neighboring one. They can be regarded as a result of the
s-polarized wave (E0 is perpendicular to the incident plane
and along the x axis) which induces the px in the two particles.
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The self-consistent electric and magnetic dipole moments in
the two particles induced by an arbitrarily polarized EM wave
and hybridization between the particles are expressed as

pA
x = pB

x = ε0εsα̃em-s,2E0,x, (A7)

pA
y = pB

y = ε0εsα̃eyE0,y, (A8)

pA
z = −pB

z = iε0εsα̃em-p,1E0,y, (A9)

mA
x = mB

x = α̃em-p,2H0,x, (A10)

mA
y = mB

y = α̃myH0,y, (A11)

mA
z = −mB

z = iα̃em-s,1H0,y. (A12)

Equation (A7) denotes that px in one particle is partly excited
by the incident electric field E0,x and partly hybridized by
both px and mz in the neighboring particle. Equation (A8)
indicates that py in one particle is hybridized by py in the
other in addition to the induction by the incident electric
field E0,y. Equation (A9) shows that pz in one particle is
hybridized by both pz and mx in the other particle, rather
than by the induction of the incident electric field. Equation
(A10) reveals that mx in one particle is not only induced by
the incident magnetic field H0,x but also hybridized by both pz

and mx in the other particle. Equation (A11) exhibits that my

in one particle is caused by the incident magnetic field H0,y

and hybridized by my in the neighboring particle. Equation
(A12) denotes that mz in one particle is hybridized by both
px and mz in the neighboring particle and independent of the
incident magnetic field (see details in Appendix C). For a
p-polarized wave, α̃my, α̃mz, α̃ex, α̃em-s,1, and α̃em-s,2 disappear
as well as pA(B)

x = mA(B)
y = mA(B)

z = 0 due to the absence of
E0,x and H0,y. On the other hand, for s polarization without
E0,y and H0,x, the α̃mx , α̃ey, α̃ez, α̃em-p,1, and α̃em-p,2 vanish
while pA(B)

y = pA(B)
z = mA(B)

x = 0.
For calculation of the optical force, taking particle B as

an example, the spatial derivatives of the total electric and
magnetic fields at particle B are solved as

∂EB

∂u
= ∂EB

0

∂u
+ 1

ε0εs

∂
↔
Ge

∂u
· pA + iZ

∂
↔
Gm

∂u
· mA, (A13)

∂HB

∂u
= ∂HB

0

∂u
− i

Zε0εs

∂
↔
Gm

∂u
· pA + ∂

↔
Ge

∂u
· mA, (A14)

where ∂/∂u denotes the partial derivative with respect to the
arguments x and y. The partial derivatives of the located fields
E and H at particle A also can be calculated by Eqs. (A13) and
(A14) through exchanging the letters A and B while consider-

ing the relations ∂
↔
Ge/∂u|A = −∂

↔
Ge/∂u|B and ∂

↔
Gm/∂u|A =

∂
↔
Gm/∂u|B. The matrix forms of

↔
Ge(m) and ∂

↔
Ge(m)/∂u and the

scalar decompositions of Eqs. (A13) and (A14) are presented
in Appendixes D and E. The time-averaged optical force on a
dielectric particle with induced electric and magnetic dipoles

is given by [29]

F = 1

2
Re

[
(p∇)E∗ + μ0μs(m∇)H∗ − Zk4

6π
(p × m∗)

]
.

(A15)

The first two terms on the right-hand side of Eq. (A15) are
respectively the forces on the electric and magnetic dipoles
while the last one is the electric-magnetic coupling force due
to the interference between the two dipoles.

APPENDIX B: EIGENVALUES OF
↔
Ge AND

↔
Gm

The free-space electric (
↔
Ge) and magnetic (

↔
Gm) dyadic

Green’s functions are written as [44]

↔
Ge = exp(ikR)

4πR3

[
(3 − 3ikR − k2R2) RR

R2

+(−1 + ikR + k2R2)
↔
I

]
, (B1)

↔
Gm = exp(ikR)

4πR3
(ik2R2 − kR)

R × ↔
I

R
, (B2)

where
↔
I is the unit dyad. Equation (B2) is derived from

Eq. (B1) by utilizing the orthogonality relation
↔
Gm = (∇ ×

↔
Ge )/k. For simplified calculations of the induced dipole mo-

ments in particles and TOBF,
↔
Ge is expressed in terms of the

eigenequation [22] as

↔
Ge = (κ − μ)

RR
R2

+ μ
↔
I, (B3)

where the eigenvalues κ and μ of
↔
Ge are determined by

μ = exp(ikR)

4πR3
(k2R2 + ikR − 1), (B4)

κ = exp(ikR)

4πR3
(−2ikR + 2). (B5)

Since any vector V can be decomposed into two com-
ponents V|| and V⊥ who are respectively parallel and
perpendicular to vector R, based on Eq. (B3), the dot product

between
↔
Ge and any vector V is given by

↔
Ge · V = κV// + μV⊥, (B6)

which denotes that the eigenvectors of κ and μ are respec-
tively parallel and orthogonal to vector R. Then, we have

↔
Ge · (ex, ey, ez ) = (μex, κey, μez ), (B7)

where ex, ey, and ez are unit vectors along x, y, and z axes in
the Cartesian system. On the other hand, the eigenequation of
↔
Gm is written as

↔
Gm = ηR × ↔

I/R, (B8)

where the eigenvalue η of
↔
Gm is expressed as

η = exp(ikR)

4πR3
(ik2R2 − kR). (B9)

Equation (B8) demonstrates that the eigenvector of η is
orthogonal to vector R. Analogous to Eq. (B6), based on
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Eq. (B8), the dot product between
↔
Gm and any vector V is

expressed by

↔
Gm · V = ηV⊥. (B10)

Hence, the dot product between
↔
Gm and unit vectors is ex-

pressed as

↔
Gm · (ex, ey, ez ) = (−ηez, 0, ηex ). (B11)

APPENDIX C: INDUCED DIPOLE MOMENTS IN DIMER

By substituting Eqs. (B7) and (B11) into Eq. (A1), the three
components of the total electric field on particle A (B) are
expressed by

EA(B)
x = EA(B)

0,x + 1

ε0εs
μpB(A)

x ∓ iZηmB(A)
z , (C1)

EA(B)
y = EA(B)

0,y + 1

ε0εs
κ pB(A)

y , (C2)

EA(B)
z = 1

ε0εs
μpB(A)

z ± iZηmB(A)
x . (C3)

Notice that for electric field on particle A, the signs of the
third term in Eq. (C1) and the second term in Eq. (C3) are
respectively negative and positive while they are opposite for
particle B. The regulations of the signs are also appropriate
for the following Eqs. (C4) and (C6). Considering the rela-
tion p = ε0εsαeE, the three components of the electric dipole
moment in particle A (B) are given by

pA(B)
x = ε0εmαeEA(B)

0,x + αeμpB(A)
x ∓ iZε0εmαeηmB(A)

z , (C4)

pA(B)
y = ε0εmαeEA(B)

0,y + αeκ pB(A)
y , (C5)

pA(B)
z = αeμpB(A)

z ± iZε0εmαeηmB(A)
x , (C6)

where pA(B)
ν and mA(B)

ν (ν = x, y, and z) represent respectively
the three components of the electric and magnetic dipole
moments induced in particle A (B); E0,ν and H0,ν stand for
the incident electric and magnetic fields along the three axes.
In detail, Eq. (C4) shows that px in one particle is excited by
the incident electric field E0,x (first term) and the reradiated
electric fields by both px (second term) and mz (the third
terms) in the neighboring particle. Equation (C5) denotes that
py in one particle is caused by the incident electric field E0,y

(first term) and the re-excited electric field by py (second term)
in the other. Equation (C6) illuminates that pz in one particle
originates from the reradiated electric fields by both pz (first
term) and mx (second term) in the other particle.

On the other hand, substituting Eqs. (B7) and (B11) into
Eq. (A2), the three components of the total magnetic field on
particle A (B) are expressed by

HA(B)
x = HA(B)

0 ± i

Zε0εs
ηpB(A)

z + μmB(A)
x , (C7)

HA(B)
y = HA(B)

0,y + κmB(A)
y , (C8)

HA(B)
z = ∓ i

Zε0εs
ηpB(A)

x + μmB(A)
z . (C9)

Notice that for magnetic field on particle A, the signs of
the second term in Eq. (C7) and the first term in Eq. (C9) are
respectively positive and negative while they are opposite for
particle B. The regulations of the signs are also appropriate
for the following Eqs. (C10) and (C12). Owing to the rela-
tion m = αmH, the three components of the magnetic dipole
moment in particle A (B) are determined by

mA(B)
x = αmHA(B)

0,x ± i

Zε0εm
αmηpB(A)

z + αmμmB(A)
x , (C10)

mA(B)
y = αmHA(B)

0,y + αmκmB(A)
y , (C11)

mA(B)
z = ∓ i

Zε0εm
αmηpB(A)

x + αmμmB(A)
z . (C12)

Equation (C10) shows that mx in one particle is induced by
the incident magnetic field H0,x (first term) and the re-excited
magnetic fields by both pz (second term) and mx (last term)
in the other. Equation (C11) indicates that the my in one par-
ticle is caused by the incident magnetic field H0,y (first term)
and the reradiated magnetic field by my (second term) in the
neighboring particle. Equation (C12) indicated that mz in one
particle comes from the re-excited magnetic fields by px (first
term) and mz (second term) in the neighboring particle. Notice
that the pz and mz are not directly excited by the incident
electric and magnetic fields without a nonzero z component.
Equations (C4)–(C6) and (C10)–(C12) demonstrate clearly
the hybridizations between the electric and magnetic dipoles
in different particles.

APPENDIX D: MATRIX AND SPATIAL PARTIAL
DERIVATIVES OF

↔
Ge AND

↔
Gm

For calculating the TOBF, the matrix forms and spatial

partial derivatives of
↔
Ge and

↔
Gm must be known. Substituting

the tensors RR/R2 and
↔
I into Eq. (B3), the matrix of

↔
Ge in

terms of κ and μ is expressed as

↔
Ge =

⎛
⎝μ 0 0

0 κ 0
0 0 μ

⎞
⎠. (D1)

In addition, based on Eqs. (B3) and (D1), the spatial partial

derivatives of
↔
Ge with respect to the x and y axes are given by

∂
↔
Ge

∂x
= κ − μ

R

⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠, (D2)

∂
↔
Ge

∂y
=

⎛
⎝∂μ/∂R 0 0

0 ∂κ/∂R 0
0 0 ∂μ/∂R

⎞
⎠. (D3)

On the other hand, we have(
R × ↔

I
R

)
=

⎛
⎝0 0 −1

0 0 0
1 0 0

⎞
⎠, (D4)

where R × ↔
I denotes the matrix generated by the cross prod-

uct of R with each column vector of
↔
I [44]. Substituting
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Eq. (D4) into Eq. (B8), the matrix of
↔
Gm in terms of η is

described as

↔
Gm = η

⎛
⎝0 0 −1

0 0 0
1 0 0

⎞
⎠. (D5)

Moreover, based on Eqs. (B8) and (D5), the spatial partial

derivative of
↔
Gm with respect to the x and y axes are read as

∂
↔
Gm

∂x
= η

R

⎛
⎝0 0 0

0 0 1
0 −1 0

⎞
⎠, (D6)

∂
↔
Gm

∂y
= ∂η

∂R

⎛
⎝0 0 −1

0 0 0
1 0 0

⎞
⎠. (D7)

Notice that ∂ϑ/∂x = ∂ϑ/∂z = 0 and ∂ϑ/∂y = ∂ϑ/∂R (ϑ =
κ, μ, and η) because R is along the y axis.

APPENDIX E: SPATIAL PARTIAL DERIVATIVE OF TOTAL
EB AND HB

Let’s take particle B as an example. First, Eq. (A13) is de-
composed into scalar equations along the three Cartesian axes.
Second, Eqs. (D2), (D3), (D6), and (D7) are substituted into
the three components of Eq. (A13) while using the relation
∂ξB

0,u/∂x = ∂ξA
0,u/∂y = 0 (ζ = E and H, u = x and y) for a

plane wave propagating along the z axis. Finally, the spatial
partial derivatives of the three components of the total electric
field in the nearby particle B with respect to the x axis are
expressed as

∂EB
x

∂x
= κ − μ

ε0εsR
pA

y , (E1)

∂EB
y

∂x
= κ − μ

ε0εsR
pA

x + iZ
η

R
mA

z , (E2)

∂EB
z

∂x
= −iZ

η

R
mA

y . (E3)

In addition, the spatial partial derivatives of the three compo-
nents of the total electric field along the y axis are written as

∂EB
x

∂y
= 1

ε0εs

∂μ

∂y
pA

x − iZ
∂η

∂y
mA

z , (E4)

∂EB
y

∂y
= 1

ε0εs

∂κ

∂y
pA

y , (E5)

∂EB
z

∂y
= 1

ε0εs

∂μ

∂y
pA

z + iZ
∂η

∂y
mA

x . (E6)

Analogously, Eq. (A14) is decomposed into scalar equations
along the three axes while Eqs. (D2), (D3), (D6), and (D7)
are substituted into the three components of Eq. (A14). The
spatial partial derivatives of the three components of the total
magnetic field in the nearby particle B with respect to the x
axis are expressed by

∂HB
x

∂x
= κ − μ

R
mA

y , (E7)

∂HB
y

∂x
= − i

Zε0εs

η

R
pA

z + κ − μ

R
mA

y , (E8)

∂HB
z

∂x
= i

Zε0εs

η

R
pA

y . (E9)

Meanwhile, the spatial partial derivatives of the three compo-
nents of the total magnetic field along the y axis are described
as

∂HB
x

∂y
= i

Zε0εs

∂η

∂y
pA

z + ∂μ

∂y
mA

x , (E10)

∂HB
y

∂y
= ∂κ

∂y
mA

y , (E11)

∂HB
z

∂y
= − i

Zε0εs

∂η

∂y
pA

x + ∂μ

∂y
mA

z . (E12)

APPENDIX F: TOBF AND TORQUE

By substituting Eqs. (A7)–(A12) and Eqs. (E1)–(E12) into
Eq. (A15), the electric component of the binding force along
the dimer axis is expressed as

Fe = ε0εs

2

⎧⎪⎨
⎪⎩

Re
[

∂κ
∂R

]|α̃ey|2|E0,y|2 − Re
[

∂μ

∂R

]∣∣α̃em-p,1

∣∣2|E0,y|2
+Re

[
∂η

∂R α̃em-p,2α̃
∗
em-p,1

]|E0,y|2
+Re

[
∂η

∂R α̃em-s,1α̃
∗
em-s,2

]|E0,x|2 + Re
[

∂μ

∂R

]|α̃em-s,2|2|E0,x|2

⎫⎪⎬
⎪⎭, (F1)

the magnetic component of the binding force is expressed as

Fm = ε0εs

2

⎧⎪⎨
⎪⎩

+Re
[

∂μ

∂R

]|α̃em-p,2|2|E0,y|2 + Re
[

∂η

∂R α̃em-p,1α̃
∗
em-p,2

]|E0,y|2
Re

[
∂κ
∂R

]‖α̃my|2|E0,x|2 − Re
[

∂μ

∂R

]∣∣α̃em-s,1

∣∣2|E0,x|2
+Re

[
∂η

∂R α̃em-s,2α̃
∗
em-s,1

]|E0,x|2

⎫⎪⎬
⎪⎭, (F2)

and the electric-magnetic coupling component of the binding force is given by

Fem = ε0εs

12π
k4Im[α̃em-p,1α̃

∗
em-p,2|E0,y|2 − α̃em-s,2α̃

∗
em-s,1|E0,x|2]. (F3)

On the other hand, the electric component of the torque along the z axis is expressed as

Γe = ε0εs

2

{
2Re[κ − μ]Re[α̃em-s,2α̃

∗
eyE0,xE∗

0,y]
+Re[η(α̃myα̃

∗
em-p,1 − α̃em-s,2α̃

∗
ey)E0,xE∗

0,y]

}
, (F4)
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FIG. 5. Binding force upon sphere B with radius 100 nm vs distance (R) between the centers of two spheres with refractive index np = 1.59
(a),(c) and 3.5 (b),(d) for p polarization (a),(b) and s polarization (c),(d). F (black solid curve) is the binding force while Fe (red short dashed
curve), Fm (blue dash-dotted curve), and Fem (green dash-dot-dotted curve) are electric, magnetic, and coupling components of F. Additionally,
FRay (purple dashed curve) is the binding force on the same sphere in electric dipolar dimer calculated by the typical Rayleigh approximation
[Eq. (3a) in Ref. [15]]. The digits in (a), (c), and (d) indicate a multiple of the magnified force. The solid red triangles, blue stars, green
diamonds, black circles, and hollow purple circles represent respectively the stable equilibrium positions of Fe, Fm, Fem, F, and FRay.

the magnetic component of the torque is given by

Γm = ε0εs

2

{−2Re[κ − μ]Re[α̃em-p,2α̃
∗
myE0,yE∗

0,x]
+Re[η(α̃em-p,1α̃

∗
my − α̃eyα̃

∗
em-s,1)E0,yE∗

0,x]

}
,

(F5)
and the electric-magnetic coupling component of the torque is
expressed as

Γem = ε0εs

12π
k4Im[(α̃eyα̃

∗
em-s,1 + α̃em-p,1α̃

∗
my)E0,yE∗

0,x]. (F6)

APPENDIX G: BINDING FORCE FOR LOW- AND
MODERATE-INDEX PARTICLES

Figure 5(a) shows that Fm (blue dash-dotted curve) and
Fem (green dash-dot-dotted curve) have nonignorable contri-
butions to F (black solid curve) compared to Fe (red short
dashed curve) even for a low-refractive-index dielectric dimer
(np = 1.59), i.e., polystyrene spheres [45] for the p-polarized
wave. In detail, although F is mainly determined by Fe when
R is smaller than the first stable equilibrium position of F (the
first solid black circle on R axis), the contributions of Fm and
Fem to F cannot be completely ignored. In particular, the first
stable equilibrium position of F coincides with the counterpart
of Fem (the first solid green diamond) instead of that of Fe (the
first solid red triangle) even though Fe is an order of magnitude
larger than Fem. In addition, as R increases, the decay of Fem

is slower than that of Fm while the decay of Fm is slower
than that of Fe. The reasons are the same as in Fig. 2(a) and

as shown in Eqs. (7)–(9) in the main text. The phenomena
also exist in Fig. 5(b). Consequently, the contribution of Fm

to F is as much as that of Fe, when R goes beyond the first
stable equilibrium position of Fe. As a result, the second
stable equilibrium position of F (the second solid black circle)
diverges from the counterpart of Fem (the second solid green
diamond) and approaches to the corresponding equilibrium
position of Fm (the second solid blue star). This phenomenon
is more obvious in the vicinity of the third stable equilibrium
position of F (the third solid black point). Additionally, FRay

overlaps completely Fe, while the stable equilibrium positions
of FRay (hollow purple circles) are consistent with those of Fe.
The reason is that, for a low-refractive-index dielectric dimer,
the hybridization between the two particles is much weaker. It
can be seen that Fem is an order of magnitude smaller than
Fe and Fm. Generally, the x component of magnetic dipole
moment mx in one particle excites the z component of the
electric dipole moment pz in the other due to the hybridiza-
tion. But this hardly occurs for low-refractive-index particles
because of the weak magnetic response. Hence, Fe origi-
nates just from the electric dipole-dipole interaction between
two particles while each electric dipole is induced by the
incident electric field and re-excited electric field of the neigh-
boring electric dipole. The physical mechanism is identical
to FRay.

Interestingly, for particles with moderate refractive index
np = 3.5, i.e., silicon spheres [40], Fm and Fem are enhanced
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to exceed Fe as shown in Fig. 5(b). As expected, the stable
equilibrium positions of F are determined by all components
of F, and therefore the positions deviate largely from the cor-
responding stable equilibrium positions of Fe. Importantly, F
has been dramatically strengthened by one order of magnitude
compared to the particles with np = 1.59 in Fig. 5(a). As
a result, the stability of the dimer at the stable equilibrium
positions is improved by one order of magnitude. The reason
is the enhanced magnetic response and hybridization of the
dimer with increase of the refractive index of particles. It is
worth noting that FRay overestimates (underestimates) Fe at
the first dip (peak) of Fe in front of the first stable equilibrium
position of F (see details in Appendix J). Additionally, the
stable equilibrium positions of Fe move to large R compared
to that of FRay (hollow purple circles).

Figures 5(c) and 5(d) show the TOBF and its three compo-
nents for the s-polarized wave. For particles with np = 1.59
in Fig. 5(c), Fm and Fem are an order of magnitude smaller
than Fe. Therefore, F is almost completely determined by
Fe and the stable equilibrium positions of F and Fe are in
agreement. Physically, for an s-polarized wave, the electric
dipoles induced in the two particles are side-by-side paral-
lel and directed along the x axis. On the other hand, the y
components of the two magnetic dipole induced by both the
incident magnetic field and hybridization between them are
head-to-tail colinear. As we know, the radiated field by a
dipole focuses mainly on the direction perpendicular to the
dipole moment. Hence, the radiative interaction between two
px is stronger than that between two my. Additionally, mz in
each particle is caused by the induced px in the neighboring
one. However, the secondary interaction between two mz is
much smaller than not only the interaction between pA

x and
pB

x but also the interaction between mA
y and mB

y . Furthermore,
every corresponding stable equilibrium position of Fe and
FRay overlaps. Meanwhile, the Fe matches completely with
FRay when R exceeds λs. The reason is that the two forces
originate from the same electric dipolar interaction between
pA

x and pB
x . What is different, however, than the case of p

polarization is that the decay of Fem is the slowest while that
of Fm is the fastest with increase of R. The reasons are that
Fm is proportional to R−2 while Fe and Fem are proportional
to R−1 in the far-field region. The phenomena also exist for
moderate-refractive-index particles in Fig. 5(d).

With an increase of the refractive index of particles to
np = 3.5 as in Fig. 5(d), F and FRay are dramatically enhanced
by about 50 times compared to Fig. 5(c). As a result, the
stability of the dimer at the stable equilibrium positions of
F are greatly enhanced the same as the p polarization in
Fig. 5(b). In addition, Fem is heightened to half of Fe compared
to the particle with np = 1.59 in Fig. 5(c) due to the enhanced
hybridization. But Fe is still an order of magnitude larger
than Fm because of the unchanged configurations of electric
and magnetic dipoles in the dimer. As a result, F is almost
determined by both Fe and Fem while the stable equilibrium
positions of F are nearly dominated by the counterparts of
Fe. Notice that FRay underestimates (overestimates) Fe at the
first dip (peak) of Fe although the two forces are coincident
at large R, which is contrary to the s polarization in Fig. 5(b)
(see details in Appendix H).

APPENDIX H: DIFFERENCE BETWEEN Fe AND FRay FOR
p AND s POLARIZATION

Figure 6 shows Fe together with each of its terms and
FRay as a function of distance (R) between the centers of two
spheres with np = 3.5 for p polarization (a) and s polarization
(b). Figure 6(a) shows that FRay overestimates (underesti-
mates) Fe at the first dip (peak) of Fe in front of the first stable
equilibrium position of F for p polarization. From a physical
viewpoint, in the vicinity of the dip, the phases of the two
py in the different particles, which are respectively induced
by the incident electric field and the reradiated electric field
by the electric dipole in the neighboring particle, are almost
synchronous. And then, the two py form a head-to-tail colinear
configuration and attract each other, the same as the Rayleigh
dimer. In addition, the hybridization arises because of the
increase of the refractive index of particles. In detail, the mx

in one particle induced by the incident magnetic field excites
pz in the neighboring one. Figure 6(a) shows that the force

FIG. 6. Fe together with its all terms and FRay vs distance (R)
between the centers of two spheres with refractive index np = 3.5
for p polarization (a) and s polarization (b). (a) Fe (black solid
curve) and FRay (purple thick dash-doted curve) are the same as the
counterparts in Fig. 5(b). The red dashed, blue short dashed, and
green dash-dot-dotted curves are respectively calculated by the first,
second, and third terms in Eq. (1) in the main text. Meanwhile, they
denote respectively the interactions between pA

y and pB
y , between

pA
z and pB

z , and between pA
z and mB

x . (b) Fe and FRay are the same
as the corresponding forces in Fig. 5(d). The red dashed and blue
short dashed curves are individually calculated by the fourth and fifth
terms in Eq. (1) in the main text. The former denotes the interaction
between pA

x and pB
x while the latter indicates the interaction between

pA
x and mB

z . The parameters are the same as in Fig. 2 in the main
text.
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FIG. 7. The first stable equilibrium positions of F (black curve
with circles), Fe (red curve with triangles), Fm (blue curve with stars)
and Fem (green curve with diamonds) vs refractive index (np) of the
particles for p polarization (a) and s polarization (b). The particle
radius is 150 nm. The two horizontal red dashed lines denote the
positions 2.41λs and 3.42λs. The three vertical black dashed lines in
(a) correspond to the locations np = 3, 3.05, and 3.1.

due to the interaction between pA
y and pB

y (red dashed curve),
which is described by the first term in Eq. (1) in the main text,
coincides with FRay (purple thick dash-dotted curve) because
of the same physical origin. Additionally, the interaction be-
tween pA

z and mB
x is repulsive (green dash-dot-dotted curve)

while pA
z and pB

z are antiparallel and attractive (blue short
dashed curve). The two forces are respectively expressed by
the third and second terms in Eq. (1) in the main text. But
the latter is the secondary interaction and smaller than the
former. Therefore the attractive force is partly offset by the
repulsive force. It means that the Fe (black solid curve) is
reduced by the hybridization compared to FRay. In a word,
FRay overestimates Fe at the dip of Fe. On the contrary, at
the peak of Fe mentioned above, the phases of the two py

are nearly inverse since the increase of R. This leads to
head-to-head colinear configuration of the two py. Thus the
force due to the interaction between pA

y and pB
y (red dashed

curve) becomes repulsive while the interaction between pA
z

and mB
x is still repulsive (green dash-dot-dotted curve). As a

result, the repulsive Fe is enhanced which means that FRay

underestimates Fe at the peak of Fe. But the difference between
Fe and FRay is unremarkable at large R because of the weak
hybridization.

It is contrary to the p polarization that Fig. 6(b) denotes that
FRay underestimates (overestimates) Fe at the first dip (peak)
of Fe in the case of s polarization. This can be also explained
by the hybridizations as in the analyses of p polarization. In
detail, the reradiated magnetic field by px in one particle is
strong enough to induce mz in the neighboring one. On the
one hand, the interaction between pA

x and pB
x expressed by the

fourth term in Eq. (1) in the main text is repulsive (red dashed
curve). On the other, the interaction between pA

x and mB
z (blue

short dashed curve) described by the fifth term in Eq. (1)
in the main text is attractive in front of the first peak of Fe.
And then the former is partly offset by the latter, which is the
reason why FRay (purple thick dash-doted curve) is larger than
Fe (black solid curve) around the first peaks of Fe. However,
the interaction between pA

x and mB
z is still attractive when the

interaction between pA
x and pB

x changes to attraction at the
first dip of Fe. As a result, Fe is enhanced and larger than
FRay. As expected, the effects become weaker and weaker with
increment of distance (R).

FIG. 8. Binding force F calculated by the sum of Eqs. (1)–(3) in
the main text and the electric component Fe, in Eq. (1) vs distance
(R) between the centers of two spheres with refractive index np = 3
(red), 3.05 (blue), and 3.1 (green) for p-polarized wave. The solid
thin red, blue, and thick green curves represent individually F for
np = 3, 3.05, and 3.1. The digits indicate a multiple of the magni-
fied forces. The solid red triangles, blue stars, and green diamonds
represent respectively the stable equilibrium positions of F while
the hollow red triangles and blue star denote the counterparts of
Fe, for np = 3, 3.05, and 3.1. The hollow red triangles at positions
R = 2.41λs and 3.38λs denote the first and second stable equilibrium
positions of Fe on particles with np = 3. The hollow blue star at
position R = 3.42λs denotes the unique stable equilibrium position
of Fe for particles with np = 3.05. The solid thick green short-dotted
curve corresponding to Fe for np = 3.1 has no stable equilibrium
position. The radius of particle and parameters of both water and
wave are same as in Fig. 2 in the main text.

APPENDIX I: STABLE EQUILIBRIUM POSITIONS OF
BINDING FORCE IN p AND s POLARIZATIONS

We have calculated the first stable equilibrium positions of
F, Fe, Fm, and Fem for p and s polarizations. At these positions,
the particles experience a restoring force whose intensity is
zero and slope is negative. Importantly, the stability of the
dimer can be characterized by the stiffness defined as the ab-
solute of the slope of restoring force at the stable equilibrium
positions [46]. In general, it is only interesting in the first
stable equilibrium position of the binding force because the
bound state of the dimer is the most robust at the position
due to the maximum stiffness. For p polarization, the first
stable equilibrium position of Fe (red curve with triangles)
in Fig. 7(a) fluctuates slightly around 1.3λs with increase of
np. However, the position moves rapidly to 2.41λs and 3.42λs

(two horizontal red dashed lines) at locations np = 3 and 3.05
(left and middle vertical black dashed lines), respectively.
Meanwhile, the stiffness of Fe decreases sharply at the two
locations, meaning Fe is hardly sufficient to enable the dimer
to form a stable bound state. Moreover, the stable equilibrium
even vanishes at np = 3.1 (right vertical black dashed line)
where Fe has no stiffness (vertical black dashed line). As ex-
pected, Fe without stable equilibrium cannot cause the dimer
to form stable configuration at all (see details in Appendix J).
On the other hand, the first stable equilibrium position of Fem

(green curve with diamonds) fluctuates with increase of np.
Importantly, the first stable equilibrium position of F (black
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FIG. 9. The first radially stable equilibrium positions of the bind-
ing force (F) including all three components (Fe, Fm, and Fem) vs
refractive index (np) of particles for left-circularly polarized wave.
The parameters are same as in Fig. 2 in the main text.

curve with circles) is close to the counterpart of Fm (blue curve
with stars) around λs for all np. For s polarization in Fig. 7(b),
the stable equilibrium position of F is close to that of Fe and
Fem in the regions 1.4 < np < 2.9 and 2.5 < np < 4.

APPENDIX J: F AND Fe ON PARTICLE WITH np = 3, 3.05,
AND 3.1 FOR p POLARIZATION

Figure 8 shows F calculated by the sum of Eqs. (1)–(3)
in the main text and the electric component Fe in Eq. (1)
versus distance (R) between the centers of two spheres with

refractive index np = 3 (red), 3.05 (blue), and 3.1 (green) for
a p-polarized wave. It can be seen that Fe (red dashed and blue
dash-dotted curves) has respectively two (red hollow triangle
at 2.41λs and 3.38λs) and one (blue hollow star at 3.42λE ) sta-
ble equilibrium positions for particles with np = 3 and 3.05.
Meanwhile, Fe is two order of magnitude less than F (blue and
thin red solid curves) for both cases of np = 3.05 and 3. In
addition, the stiffness of Fem is also far less than that of F [see
Fig. 3(a) in the main text]. As a result, F is dominated by Fm.
The stable equilibrium positions of F are respectively shown
by the solid red triangles and blue stars for np = 3 and 3.05.
Moreover, for particles with np = 3.1, Fe (green short-dotted
curve) is three orders of magnitude less than F (thick green
solid curve) and has no stable equilibrium position while the
stable equilibrium positions of F (solid green diamonds) are
dominated by Fm.

APPENDIX K: RADIALLY STABLE EQUILIBRIUM
POSITIONS IN THE CASE OF CIRCULAR POLARIZATION

In the case of circular polarization, the first radially stable
equilibrium position of Fem (green curve with solid diamonds)
in Fig. 9 fluctuates with the increase of np while that of Fe (red
curve with solid triangles) jumps in the vicinity of np = 3.1.
Interestingly, the corresponding positions of Fm (blue curve
with solid stars) and F (black curve with solid circles) are near
λs and change little. As expected, other stable equilibrium

FIG. 10. Binding force and torque on particles for a left-circularly polarized wave. Total binding force (F) and each of the three components
(Fe, Fm, and Fem) on sphere B vs distance (R), with refractive index np = 1.59 (a) and 3.5 (b). The solid black circles denote the stable
equilibrium positions of F. Total torque (Γ ) upon the dimer and each of the three components (Γe, Γm, and Γem) vs distance (R) with refractive
index np = 1.59 (c) and 3.5 (d). The digits in (c) and (d) indicate a multiple of the magnified torques. The parameters are the same as in Fig. 2
in the main text.
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positions of F lie in near-integer multiples of λs while the
radial stability of the dimer at the positions decreases in turn.

APPENDIX L: BINDING FORCE AND TORQUE FOR LOW-
AND MODERATE-REFRACTIVE-INDEX PARTICLES FOR

CIRCULAR POLARIZATION

Figures 10(a) and 10(b) show Fe, Fm, Fem, and F with
np = 1.59 and 3.5 for circularly polarized wave. First, for
low refractive index in (a), the electric dipole has advantage
over the magnetic dipole. And then Fe (red dashed curve) is
greatly larger than Fm (blue dash-dot-doted curve) and Fem

(green short dashed curve). As a result, F (black solid curve) is
mainly dominated by Fe while the stable equilibrium positions
of F (black solid circles) are very close to the counterparts of
Fe (not marked). This is similar to the p- and s-polarized cases
in Figs. 5(a) and 5(c). Second, for moderate refractive index
in Fig. 10(b), the electric and magnetic dipoles are effectively
induced. Therefore, all components of F are enhanced by two
orders of magnitude compared to Fig. 10(a). Naturally, Fe, Fm,

and Fem all contribute non-negligibly to F. As expected, the
stable equilibrium positions of F are determined by the Fe,
Fm, and Fem together.

Figures 10(c) and 10(d) show Γe, Γm, Γem, and Γ with
np = 1.59 and 3.5 for the circularly polarized wave. First,
even for particles with low refractive index in Fig. 10(c), Γ

(black solid curve) is almost dominated by Γem (green short
dashed curve) since Γm (blue dash-dot-dotted curve) and Γe

(red dashed curve) are respectively 20 and 5 times smaller
than Γem. Meanwhile, Γm and Γe decay with increase of
R. Interestingly, the envelopes of Γem and Γ do not decay
as shown by Eqs. (11) and (12) in the main text. Second,
for particles with moderate refractive index in Fig. 10(d),
Γ and Γem are dramatically strengthened by three orders of
magnitude compared to Fig. 10(c). It means that the increase
of refractive index of particles is in favor of torque. In ad-
dition, Γm is largely enhanced relative to Γ compared to
Fig. 10(c). The two facts benefit from the enhanced mag-
netic response and hybridization of the two particles. Here,
Γ is still controlled by Γem because Γem is stronger than Γe

and Γm.
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