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Single-atom maser with an engineered circuit for population inversion
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We present a blueprint for a maser with a single three-level transmon superconducting artificial atom. The
system can be pumped coherently via a two-photon process, and to achieve high population inversion, the
relaxation rate of the metastable state is increased via an auxiliary low-Q cavity coupled to a transition between
the transmon excited states. We show numerically that such a maser can operate both in the intermediate-coupling
regime with super-Poissonian photon statistics and in the strong-coupling regime, where the statistics is sub-
Poissonian. For the former the maser exhibits thresholdless behavior, and for the latter there is a well-defined
pumping threshold. A useful side effect of the auxiliary resonator is that it allows to overcome the photon
blockade effect for the pump, which would otherwise prevent a high photon population. Finally, we observe the
bistability of the steady-state Wigner function and the self-quenching effect for some parameters.
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I. INTRODUCTION

Conventional multiatom lasers operate in the regime of
weak coupling between atoms and light modes, and they
possess a threshold and emit classical light. Single-atom
lasers with strong coupling have been gaining increased at-
tention since the 1990s, as their behavior was predicted to
be drastically different from usual lasers [1–12]. Among their
nonstandard features are the presence or absence [9,10] of a
pumping threshold depending on the parameters [13]; self-
quenching, i.e., when the cavity population decreases when
the pumping rate is increased [1]; photon blockade prohibiting
coherent pumping of more than a single photon in the strong-
coupling regime [13–17]; bistability of the Wigner function
[18,19]; and sub-Poissonian statistics of the emitted radiation
leading to amplitude squeezing and purely quantum phenom-
ena such as photon antibunching or super-Poissonian statistics
with high-intensity fluctuations and phase squeezing [1]. Due
to these peculiar properties, a single-atom laser may be used
for a wide range of applications as a source of nonclassical
radiation [20–25].

Experimentally, the first single-atom maser was imple-
mented in 1985 on Rydberg atoms [26]. Since then, several
other platforms for single-atom lasing have been proposed,
including trapped ions [13,27], trapped Cs atoms [28,29],
quantum dots [30–32], superconducting single-electron tran-
sistors [18,33], and flux qubits [34–36]. The single-
atom masers based on superconducting cQED devices are
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particularly interesting since they can be used in tandem with
superconducting artificial atoms [37].

In this work, we present a blueprint for a maser in this
architecture using a transmon-type artificial atom [38]. The
transmon may be regarded as a �-system with the eigenstates
|g〉, |e〉, | f 〉 denoting the ground, first, and second excited
states, respectively. The lasing transition |e〉 → |g〉 is in reso-
nance with the reservoir lasing cavity coupled to the transmon.
A classical lasing scheme in quantum optics is based on a
Lambda-configuration of a three-level atom [1]. However, a
transmon is a cascade system, and it cannot be excited directly
to the second excited state, thus the pumping is done via
two-photon excitation of the |g〉 ↔ | f 〉 transition. The pump-
ing processes for population inversion may be described as

|g〉 2h̄ω←−−−−→ | f 〉 → |e〉. However, due to the small nonlinearity of

the transmon, the | f 〉 → |e〉 process is only
√

2 times faster
than |e〉 → |g〉. Therefore, to increase the effective pumping
rate, we suggest to couple the transmon to another low-Q
cavity resonant with the | f 〉 → |e〉 transition, very similar to
what was done before for a chain of transmons [39]. This
cavity plays the role of an artificial bath [40–43], which re-
laxes the system to |e〉, ensuring the metastability of | f 〉. Then,
we solve the master equation numerically for the full system
and study its transient and steady-state behavior for various
combinations of parameters.

The suggested model is different from those studied before
in at least two ways. First, we use a two-photon process for
coherent pumping. Second, we employ engineered | f 〉 → |e〉
dissipation via an auxiliary resonator, which at the same time
significantly modifies the system spectrum. Actually, the latter
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FIG. 1. (a) Schematic configuration of the correctly aligned en-
ergy levels without coupling between subsystems. The reservoir
is resonant with the |g〉 ↔ |e〉 transition, and the auxiliary cavity
is resonant with the |e〉 ↔ | f 〉 transition. |g〉, |e〉, | f 〉 are in blue
(medium gray), orange (light gray), and red (dark gray), respectively.
(b) Schematic of the circuit. To the left is the auxiliary, and to the
right is the reservoir cavity. Cge

g (Ce f
g ) is a capacitor that couples

the transmon with the reservoir (auxiliary) cavity, and Cge
κ (Ce f

κ ) is
a capacitor that provides the desired external quality factor.

fact alleviates the effect of the photon blockade [14] caused
by the large size of the vacuum Rabi splittings in the strong-
coupling regime [3], similar to the case of the cascade laser
proposed in 1995 [5]. This effect allows us to pump more
than 40 photons in the strong-coupling regime. A similar
breakdown of the photon blockade was investigated before in
a simpler Jaynes-Cummings system [44].

Additionally, our simulations predict that depending on
its parameters, the system can be operated in two distinct
regimes. In one regime, we observe a well-defined lasing
threshold in our architecture that we also associate with the
unusual energy level structure and blockade breakdown. In the
other, no threshold is present, and there is a phase transition
between the regimes with a sharp increase of the steady-state
cavity population and the intensity fluctuations. A similar
transition between different lasing regimes was previously
predicted for the strong coupling [18,45].

II. MODELING THE SYSTEM

The scheme of the system is shown conceptually in Fig.
1(a). A tunable transmon is coupled to two cavities: the reser-
voir (right) and the auxiliary (left) with the coupling strengths
gr and ga, respectively. The reservoir has high internal and ex-
ternal Q-factors and should accumulate a considerable number
of photons being in resonance with the |g〉 ↔ |e〉 transition
of the transmon, at frequency ωge. The second low-Q cavity
is resonant with the |e〉 ↔ | f 〉 transition at frequency ωe f ,
and thus it provides an engineered metastability of the | f 〉-
state. The cavities do not interact directly with each other. To
describe this system, we apply the Jaynes-Cummings model
[46] with an obvious modification to include two cavities,
and in the rotating-wave approximation (RWA) the resulting
Hamiltonian reads

Ĥ = Ĥt + Ĥd +
∑
λ=r,a

(
Ĥ (λ)

c + Ĥ (λ)
i

)
, (1)

Ĥt = h̄�b†b + h̄α

2
b†b(b†b − 1), (2)

Ĥd = h̄�

2
(b + b†), (3)

Ĥ (λ)
c = h̄�(λ)

c (a†
λaλ + 1/2), (4)

Ĥ (λ)
i = h̄gλ(ba†

λ + b†aλ), (5)

where Ĥt , Ĥd , Ĥ (λ)
c , and Ĥ (λ)

i are transmon, drive, cavity,
and interaction Hamiltonians, respectively, and ar , aa, and b
are the standard bosonic annihilation operators for the reser-
voir, the auxiliary resonator, and the transmon, respectively.
The transmon parameters are � = ωge − ωd , the detuning
of drive frequency ωd from the |g〉 ↔ |e〉 transition; α < 0,
the anharmonicity; and �, the microwave drive amplitude.
Next, �(r,a)

c = ωr,a − ωd are the detunings of the reservoir
and auxiliary cavities, respectively. In the ideal configuration,
when the reservoir is resonant with the |g〉 ↔ |e〉 transition,
the auxiliary cavity is resonant with the |e〉 ↔ | f 〉 transition,
and the drive is at the two-photon frequency ωd = ωgf /2 =
ωge + α/2, we can find �r

c = � = −α/2 and �a
c = α/2.

Since relaxation processes are essential for lasing, mod-
eling the system requires solution of the full Lindbladian
master equation: for the transmon, the reservoir, and the
auxiliary cavity, we use the relaxing collapse operators√

γ b̂,
√

κr âr,
√

κaâa, respectively.
To demonstrate the feasibility of the proposed device, we

evaluate also its physical parameters. The optimal values for
gr,a, κr,a, ωd were found with a Nelder-Mead algorithm
aimed at maximizing the emitted power from the reservoir
calculated by the input-output theory [47]:

P = κrNssh̄ωge, (6)

where Nss is the steady-state number of photons in the reser-
voir. In our simulations, truncating the reservoir Fock space at
60 photons, we find the optimal parameters to be the follow-
ing: gr/2π = 6.5 MHz, ga/2π = 23.5 MHz, κr = 0.31 μs−1,
κa = 138 μs−1, and ωd = ωgf /2 for �/2π = 25 MHz. The
algorithm converges to the same values starting from different
initial parameters, so there is probably a single optimum in the
parameter space. Since κa is much larger than the two-photon
Rabi frequency (see below for details), the number of photons
in the auxiliary cavity stays close to zero on average, so we
truncate its Fock space to one photon. For the optimization,
we use fixed realistic values for γ = 0.1 μs−1, ωge/2π = 6
GHz, α/2π = −200 MHz, ωr/2π = 6 GHz, and ωa/2π =
5.8 GHz. For the optimal parameters we found Nss = 49,
which corresponds to −132 dBm of emitted power.

Fabricating the superconducting cavities and the transmon
with megahertz accuracy in frequency and anharmonicity
should be experimentally attainable, and then the ideal con-
figuration can be reached by tuning the transmon into the
resonance with the reservoir via the external magnetic flux.
Schematically, the circuit model of the device is shown in Fig.
1(b).

The reservoir population is tolerant to small changes of the
parameters, which can occur during fabrication. Nss becomes
lower, but still enough to measure, due to a mismatch between
the auxiliary resonator frequency and the |e〉 ↔ | f 〉 transition
up to 30 MHz, while the |g〉 ↔ |e〉 frequency of the transmon
can always be tuned directly to resonance with the reservoir
cavity. The changes of κa do not affect Nss significantly: higher
κa does not change Nss at all, while up to 40% lower κa still

013718-2



SINGLE-ATOM MASER WITH AN ENGINEERED CIRCUIT … PHYSICAL REVIEW A 103, 013718 (2021)

FIG. 2. (a) Population of the transmon levels under a two-photon drive, �/2π = 25 MHz. Upper panel: γ = 0, ga = 0; middle panel:
γ = 1 μs−1, ga = 0; lower panel: γ = 1 μs−1, ga/2π = 8 MHz, κa = 138 μs−1. (b) Low-energy subspace of the system spectrum. Dashed
arrows show two-photon pumping, wavy arrows show relaxation processes. Blue (medium gray) levels correspond to |g〉, orange (light gray)
correspond to |e〉, and red (dark gray) correspond to | f 〉. (c) A single pumping stage showing the transition from N − 1 to N photons in the
reservoir and the participating eigenstates.

allows for pumping enough photons to measure. Variation of
gr and ga affects the population significantly but slowly (see
below for details), so their deviation from ideal values also
should not be a problem. The only parameter whose deviation
significantly affects the maser is κr : the lower κr allows for
pumping many more photons, but higher κr may completely
prohibit lasing. However, higher κr can be coped with by
increasing gr .

In addition, we have verified that adding dephasing to the
transmon with γφ in the range of 1 μs−1 and even tens of μs−1

does not alter the number of pumped photons significantly.

III. PUMPING DYNAMICS

To calculate numerically the dynamics of the system, we
use the QUTIP PYTHON package [48]. Below we denote the
factorized states of the tripartite system as |μ, M, N〉, where
μ is the transmon state (g, e, f ), and M, N are the number of
photons in the auxiliary resonator and the reservoir, respec-
tively. To facilitate the interpretation of the simulation results,
we split the task into several steps.

First of all, we simulate the transmon under a two-photon
drive by turning off the coupling to the cavities and the
dissipation. The simulated evolution is shown in the upper
panel of Fig. 2(a) (here and below we truncate the transmon
subspace to four states). One can clearly see two-photon Rabi
oscillations when the | f 〉 energy level is fully populated by
the two-photon process. There are also small oscillations of
the |e〉-level population from the virtual processes.

In the middle panel of Fig. 2(a), we add natural relaxation
to the transmon. The rate of the | f 〉 → |e〉 transition is n12/n01

times higher than that of the |e〉 → |g〉 one, where ni j is the
matrix element of a charge operator in the basis of transmon
eigenstates [38]. In this case, some population inversion may
be achieved without any additional effort. Nevertheless, when
the coupling to the auxiliary cavity it turned on, the population
inversion becomes significantly larger, as shown in the lower
panel of Fig. 2(a).

Finally, we turn on the coupling to the reservoir cavity. The
resulting level structure of the full tripartite system depicted
in Figs. 2(b) and 2(c) shows the core process of pumping an
additional photon in the reservoir. One can see that there are
two types of Rabi splittings in the spectrum. The first, caused

by the interaction between the reservoir and the |g〉 ↔ |e〉
transition of the transmon, leads to the formation of the

|geN〉± = 1√
2

(|g, 0, N + 1〉 ± |e, 0, N〉) (7)

dressed states composed of the factorized states with different
reservoir populations. To avoid ambiguity, we label them us-
ing the lower number N . The size of this splitting is calculated
as

�ge(N ) = 2gr

√
N + 1. (8)

The second splitting is due to the coupling between three
degenerate states | f , 0, N〉, |e, 1, N〉, and |g, 1, N + 1〉. When
the degeneracy is lifted, triplet eigenstates appear:

|ge f N〉0 = sin θ |g, 1, N + 1〉 − cos θ |e, 1, N〉, (9)

|ge f N〉± = 1√
2

(cos θ |g, 1, N + 1〉 ± |e, 1, N〉

+ sin θ | f , 0, N〉), (10)

where

tan θ = ga

gr
√

N + 1
(11)

is the mixing angle. The energy difference between |ge f N〉+
and |ge f N〉− is

�ge f (N ) = 2
√

(N + 1)g2
r + g2

a. (12)

As before, we label the triplet states by the lowest N among
their factorized components.

We note that the first splitting [Eq. (8)] is ordinary for any
coupled atom-cavity system and grows as

√
N with photon

population of the cavity [49]. In contrast, the second one
[Eq. (12)] is the characteristic feature of our system due to
the presence of the auxiliary resonator and a certain frequency
configuration. As we show below, both of these splittings play
a crucial role in the dynamics and allow the device to function
in principle for arbitrarily large reservoir populations.

IV. SIMPLIFIED ANALYTICAL SOLUTION

To calculate approximately the reservoir population in the
steady state, we consider only the |g〉 and |e〉 states with
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FIG. 3. (a) Estimating the effective relaxation rate κeff
a due to the

auxiliary cavity. (b) Estimating the effective pumping rate due to the
two-photon drive �2ph and the effective relaxation κeff

a . (c) Estimating
the effective relaxation rate due to the reservoir with N photons
inside. (d) |g〉 and |e〉 levels of transmon with effective |e〉 → |g〉
dissipation, which act as a two-level laser.

the effective pumping rate  and effective dissipation rate
κeff

r through the reservoir [Fig. 3(d)]. In this simplified view,
the balance condition κeff

r =  allows us to determine the
reservoir population when the pumping ceases since κeff

r is
proportional to N , and  is constant. We prove this in several
steps below.

First, we calculate the effective | f 〉 → |e〉 relaxation rate
due to the auxiliary cavity [Fig. 3(a)]. Consider two coupled
two-level systems: the first two-level system (on the left)
represents |e〉 and | f 〉 levels of transmon, and the second one
(on the right) represents |0〉 and |1〉 levels of the auxiliary
resonator. The relevant master equation for a Hamiltonian
H = ga(ba†

a + aab†) with a collapse operator
√

κaaa assum-
ing initial state | f 〉 has separate analytical solutions for the
underdamped and overdamped regimes.

In the underdamped or strong-coupling regime when 4ga >

κa, the population of | f 〉 is

ρ f f = e− κat
2

cos2 θ
cos2(g′t + θ ), (13)

where g′ = √
16g2

a − κ2
a /4, tan θ = κa

g′ . Using the decay rate
of the vacuum Rabi oscillations, one may assume that

κeff
a = κa

2
. (14)

In the overdamped or weak-coupling regime where 4ga <

κa,

ρ f f = e− κat
2

cosh2 θ
cosh2(γ ′t + θ ), (15)

where γ ′ = √
κ2

a − 16g2
a/4, tan θ = κa

γ ′ . The decay rate is de-
termined by the slowest exponent, so

κeff
a = κa − √

κ2
a − 16g2

a

2
. (16)

One can see that while ga is fixed, increasing κa at first
increases but then decreases κeff

a upon transition from the un-
derdamped to the overdamped regime (κeff

a → 4g2
a/κa there).

Physically, this effect can be explained by the broadening of

the |1〉a level, which prevents transfer of energy from | f 〉.
Thus, κeff

a reaches its maximum when κa = ga, which is con-
sistent with our numerical simulations.

Next, we calculate the effective |g〉 → |e〉 pumping rate .
The simplified model of the system with two-photon pumping
and | f 〉 → |e〉 dissipation is shown in Fig. 3(b). The two-
photon process is replaced by the equivalent one-photon drive
of strength �2ph (see Appendix A for details). This step is
only approximate as it does not take into account the full
complexity of the energy spectrum and the possibility of the
off-resonant two-photon drive. From Fig. 3(b) one can see
that the three-level system with pumping and dissipation is
completely equivalent to the two coupled two-level systems
in Fig. 3(a) with ga replaced by �2ph/2. The solution for
such a system is the same: in the strong-coupling regime
2�2ph > κeff

a , the effective pumping rate is

 = κeff
a

2
, (17)

and for the weak-coupling regime 2�2ph < κeff
a ,

 =
κeff

a −
√(

κeff
a

)2 − 4�2
2ph

2
. (18)

In our case, the strong coupling is not achievable due to
the weakness of the two-photon drive. Consequently, we take
(18) to calculate the effective pumping rate. For the optimal
parameters from Sec. II, this leads to  = 5.3 MHz.

The next step is the calculation of the effective dissipation
rate κeff

r due to the reservoir populated with N photons [Fig.
3(c)]. Again, the system is equivalent to Fig. 3(a). Coupling
strength gr should not be much lower than ga, otherwise the
Rabi splittings will disturb the pumping (see the next section
for details). Assuming this, for optimal ga and κr < 1 μs−1,
the condition for the strong-coupling regime 4

√
Ngr > Nκr is

met even for high reservoir populations (N ∼ 100). Therefore,

κeff
r = Nssκr

2
. (19)

The energy balance condition is κeff
r =  [Fig. 3(d)]. Con-

sequently, the maximum number of pumped photons can be
expressed as

Nss = 2


κr
. (20)

For the optimal parameters, this equation gives Nss = 34.
The exact simulated value is Nss = 49. The 30% difference is
probably caused by the differences in the real level structure
due to the coupling to both cavities.

V. OVERCOMING PHOTON BLOCKADE

The simplified model studied in the previous section does
not take into account the effects of the photon blockade as it
replaces the coherent pumping by an effective incoherent one.
However, the auxiliary cavity actually allows us to treat the
system within the simplified model. To see this, one should
first consider a simple device that does not include an aux-
iliary resonator, operates in the strong-coupling regime, and
is subject to photon blockade as follows. Due to the

√
N
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FIG. 4. (a,b) Average number of photons in the reservoir depend-
ing on the drive frequency ω for gr/2π = ga/2π = 15 MHz, κr =
0.2 μs−1, κa = 128 μs−1, �/2π = 20 MHz [point A in (e,f)] in the
steady state (a) and in 1 and 2 μs after the pumping was started (b).
(c,e) Pumped photons and (d,f) logarithm of Fano factor vs coupling
strengths for κa = 138 μs−1, κr = 0.2 μs−1. (c,d) �/2π = 15 MHz,
(e,f) �/2π = 20 MHz. The letters are different sets of the parameters
used in the other subsections (O depicts the optimal parameters).
The orange dashed line marks the transition to the threshold-bearing
regime, and the blue dashed line denotes the thresholdless regime.

growth of �ge(N ), there is no single frequency that would
satisfy the resonance condition of the two-photon pumping
for an arbitrary population of the reservoir. The pumping
at the |g, 0, N〉 ↔ | f , 0, N〉 frequency becomes off-resonant
when 〈N̂〉 = 〈a†

r ar〉 � 1 [3] [see Fig. 2(b)] as there would
be no triplet Rabi splittings and the detuning would be δ =
�ge(N )/2. This effect is observed for all coherently pumped
single-atom lasers: δ = gr

√
N → ∞ for N → ∞ [14].

However, in the presence of the auxiliary resonator, one
can see from Figs. 2(b) and 2(c) that the detuning of the two-
photon drive is instead calculated as

δ = [�ge f (N + 1) − �ge(N )]/2. (21)

One can see that δ → 0 for N → ∞ [Fig. 2(c)], which
means that it would be possible to use monochromatic
pumping at ωgf /2 for sufficiently large values of 〈N̂〉, even
though it would be slightly off-resonant for low 〈N̂〉. In
other words, if it is possible to pump several photons in the
reservoir off-resonantly, then the subsequent pumping will
become resonant and similar to the simplified model. We
demonstrate numerically that the latter is possible due to the
large dissipative bandwidths of the states in the |ge f N〉±,0

splittings. The low Q-factor of the auxiliary resonator al-
lows off-resonant transitions to them even if the detuning
is of the order of several MHz. In Figs. 4(a) and 4(b), we
compare the steady-state solution with the transient solu-
tions at 1 and 2 μs. The steady-state picture shows that
pumping at a frequency close to |g, 0, 0〉 ↔ | f , 0, 0〉 is in-

deed optimal in the long term, despite the fact that at
first the sideband |geN〉+ ↔ |ge f N〉+ has a higher pump-
ing rate (see Appendix A for details); the sidebands are
subject to the photon blockade and eventually die off for
large 〈N̂〉.

As a result, with optimal parameters we can pump ≈ 50
photons while maximizing output power (−132 dBm at the
optimum). Maximizing the reservoir population allows pump-
ing at least 90 photons in the steady state (above this point, the
simulation becomes intractable due to the size of the necessary
Hilbert space).

VI. DIFFERENT LASING REGIMES AND
PHASE TRANSITIONS

While the simplified model is applicable for large reser-
voir populations, numerical solution is required to accurately
characterize the behavior of the system for arbitrary parameter
combinations. We find that the most important parameters are
the coupling strengths between the transmon and the cavities,
so in this section we study in detail how they affect the reser-
voir steady-state properties.

Figures 4(c)–4(f) show the reservoir population and the
logarithm of the Fano factor F = 〈N2〉−〈N〉2

〈N〉 in the steady state
depending on gr,a for two different values of �. F is a
measure of intensity fluctuations of the laser field: F < 1 indi-
cates sub-Poissonian statistics and photon antibunching, F =
1 indicates a coherent Poissonian field, and F > 1 indicates
super-Poissonian statistics with high-intensity fluctuations.

For both driving strengths, one can see an area with a
significant increase in Nss and F when the coupling strengths
gr,a become large enough. We find that this area marks the
phase transition between two regimes of lasing: threshold-
bearing and thresholdless (see Sec. VII for details). The lasing
threshold is said to exist if there is some pumping power value
for which a rapid increase of intensity fluctuations and usually
of the steady-state photon number in the cavity is observed
[10].

For the smaller drive amplitude, the phase transition is not
very pronounced; however, for the larger drive, it is sharp
(orange dashed line). After the transition, the lasing is char-
acterized by the large Nss and F < 1. Finally, the area of
the threshold-bearing regime grows when the pumping rate
is increased.

Qualitatively, the location of the threshold-bearing regime
in the parameter space can be explained as follows. First,
the large coupling constant gr allows pumping the reservoir
quicker, which explains why the transition requires gr/2π to
exceed 12 and 8 MHz for the weak and strong drive, respec-
tively. Secondly, when ga/2π < 8 MHz, the coupling to the
auxiliary resonator is too low to reach significant κeff

a and
to produce sufficient population inversion. Finally, increasing
ga while keeping gr fixed reduces Nss due to the increasing
detuning discussed in Sec. V.

In the thresholdless regime in the bottom left cor-
ner of Figs. 4(c) and 4(e) (dashed blue line), it is
still possible to pump a considerable number of photons
(about 5–10) while F � 1 in this area. This regime is
standard for single-atom lasers in the intermediate- and

013718-5



SOKOLOVA, FEDOROV, IL’ICHEV, AND ASTAFIEV PHYSICAL REVIEW A 103, 013718 (2021)

FIG. 5. Reservoir population (a) and the Fano-factor (b) for the thresholdless and threshold-bearing regimes (points B–F in Fig. 4, values
for ga,r/2π in the legend are in MHz). For all panels, κa = 138 μs−1, κr = 0.2 μs−1. (c,d) Reservoir Fock state probability for various �:
(c) point G, (d) point F. (e)–(h) Steady-state reservoir Wigner functions: (e) for (c), �/2π = 19.5 MHz; (f) for (c), �/2π = 21 MHz; (g) for
(d), �/2π = 23 MHz; (h) for (d), �/2π = 26 MHz.

low-coupling regime. The coupling constants in the thresh-
oldless regime are low, so the energy splittings �ge(N ) and
�ge f (N ) do not play any role due to the dissipative line
broadening.

VII. THRESHOLD AND BISTABILITY

Single-atom lasers previously discussed in the literature
were thresholdless in the strong-coupling regime [10,13,28],
but they could have one or two thresholds in the regime of
weak and intermediate coupling [13,27,51]. Therefore, below
we discuss why it is possible in our case to observe a threshold
even in the strong-coupling regime.

Figures 5(a) and 5(b) show the steady-state values for
Nss and F for five different combinations of coupling con-
stants, corresponding to points B–F in Figs. 4(e) and 4(f),
depending on the drive amplitude �. For the first four sets
of parameters (B–E), there is no well-defined threshold, even
for gr/2π = 5 MHz and ga/2π = 8 MHz (E), which has a
small maximum of F at �/2π = 12 MHz. The photon dis-
tribution in regimes B–E can be super-Poissonian as well as
sub-Poissonian depending on the drive power. The observed
behavior is consistent with previous works [9,50].

For the combination B, gr/2π = 1 MHz and ga/2π = 2
MHz, we observe self-quenching probably caused by the
dressing of the energy levels by the strong drive. This ef-
fect is still not clear to us, because self-quenching remains
even if we manually tune the pumping frequency into reso-
nance with the correct transition to one of the dressed states,
even though the maximum of pumped photons shifts to the
larger �.

The most interesting feature in Figs. 5(a) and 5(b) is the
presence of a well-defined threshold for the combination G:
gr/2π = 8 MHz and ga/2π = 15 MHz, and F: gr/2π = 8
MHz and ga/2π = 11 MHz. Our simulations show that such a
threshold is present for any point above the orange dashed line
in Figs. 4(e) and 4(f). Above the threshold, for some parame-
ters there is also no manifestation of the photon blockade—the

average number of photons increases steadily with growing
�. As mentioned above, this is different from the previous
results for single-cavity systems with coherent pumping in the
strong-coupling regime [27,29].

Figures 5(c), 5(e) and 5(f) illustrate the cavity state in
the vicinity of the threshold for point G, and Figs. 5(d),
5(g) and 5(h) illustrate it for point F. One can see bistabil-
ity, which manifests itself as a double-ring structure of the
Wigner function. At a sufficiently high driving power for
the bistability to vanish, only the outer ring of the Wigner
function remains, and the Fano factor is significantly lower
than 1.

We explain the bistability in the studied system as follows.
We consider the intermediate cavity states with N approxi-
mately between 2 and 25 for Fig. 5(c) and between 5 and
25 for Fig. 5(d). These states cannot be populated via the
coherent pump due to the large detuning they have due to
vacuum Rabi splittings [see Eq. (21)], and the relaxation dom-
inates their population dynamics. However, the upper states
can be pumped resonantly, as discussed before, so the system
can remain there indefinitely. Therefore, with increasing drive
strength the higher levels gradually absorb more and more of
the population from the lower ones as the population is leaking
better and better through the “blocked” states. In the middle
of the threshold transition, this results in the apparent bimodal
distribution of photons and very high-intensity fluctuations.
Additionally, in Appendix B, we show that bistability would
not be observed if the Rabi splittings did not depend on the
photon number.

This mechanism resembles the one studied in [51], where
the high-order multiphoton processes are becoming closer and
closer to each other in frequency, while the single-photon
processes are prone to photon blockade. Additionally, the
similar mechanism was experimentally confirmed in [44],
where the photon blockade in the strong-coupled qubit-
resonator system was broken by the weakly coupled third
level of the qubit, making resonant pumping of the cavity
possible.
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VIII. CONCLUSION

In this work, we studied theoretically a single-atom maser
based on two-photon coherent pumping of a transmon. We
find that to attain high population inversion, one needs to arti-
ficially increase the relaxation rate of its |e〉 → | f 〉 transition
and show that this is feasible by coupling it to an auxiliary
low-Q resonator.

Our master equation simulations predict two distinct
regimes of operation for the device with the presence or
absence of the lasing threshold. The boundary between the
regimes is determined by the coupling strengths between the
transmon and the cavities.

In the thresholdless regime, our system demonstrates non-
classical behavior similar to the previously known behavior
for single-atom lasers, including both sub-Poissonian and
super-Poissonian statistics, and self-quenching.

In the other regime, for which the coupling strengths are
higher, we observe a well-defined lasing threshold, marked
by an increase of intensity fluctuations. We associate its pres-
ence with the interplay between the photon blockade and the
peculiarities of the energy spectrum caused by the auxiliary
resonator, and the consequent bistability of the Wigner func-
tion. The light statistics in the reservoir in this regime is highly
sub-Poissonian, with F < 0.5, and its population is of the
order of tens of photons.

Finally, via numerical optimization, we find an optimal
set of parameters for a device that allows pumping about 50
photons in the strong-coupling regime, which corresponds to
−132 dBm of emitted power. The statistics in this regime is
predicted to be sub-Poissonian with F = 0.27. We believe that
due to the nonclassical properties, such a maser may have a
wide range of applications for microwave quantum optics on
a chip [20,21,23].
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APPENDIX A: ESTIMATED PUMPING RATE OF THE
TWO-PHOTON PROCESS

The frequency of the two-photon Rabi oscillations for a
three-level system is generally calculated as [52]

�2ph = �2

2�
, (A1)

where � is the detuning between the pump frequency and
the intermediate level. In our case, this is the detuning be-
tween ωd and the split energy levels |geN〉± [Fig. 2(d)].
In the case of |g, 0, 0〉 ↔ | f , 0, 0〉 pumping, � = α/2. For

|ge0〉± ↔ |ge f 1〉± pumping,

�± = α

2
∓ �ge f (1) + �ge(0)

4
, (A2)

which we will call the “plus” and “minus” transitions. This
leads to the fact that for the parameters in Figs. 4(a) and 4(b),
the two-photon pumping rate of the |ge f 0〉+ level is 1.9 times
higher than that of the |ge f 0〉− level. Since the pumping rate
for the “plus” transition is higher than for the “minus” one
for any N , in Figs. 4(a) and 4(b) the line corresponding to
the “plus” transition is much brighter compared to the “mi-
nus” one at the beginning of pumping. When N → ∞, the
frequencies of both types of transitions become equal, since
δ → 0 [Eq. (21)]. So, it is not possible to distinguish them in
the steady-state picture in Figs. 4(a) and 4(b).

APPENDIX B: ROLE OF LEVEL SPLITTINGS
IN BISTABILITY

In Fig. 6(a), the population of the resonator-reservoir for
various � is shown. One can see that the intermediate states
5–25 are never populated. We have checked that they are
also never populated during the full time evolution while the
second peak just grows steadily similarly to what is shown in
Fig. 6(a) for increasing �.

In the main text, we explain the bistability by the large
detuning of the intermediate pumping transition. To check if
the unusual steady state is really caused by the detuning of
these intermediate transitions, we have constructed an artifi-
cial interaction Hamiltonian of the reservoir and the transmon.
In the new Hamiltonian, the annihilation operator is replaced
by a lowering operator with unity matrix elements, so the
detuning does not depend on the number of photons in the
resonator anymore. The steady states for such a system are
shown in Fig. 6(b). One can see that now there is only one
peak and no bistability.

We have also simulated 〈N〉 and F in the steady state
depending on � in Figs. 6(c) and 6(d). One can see that a
peak of F , which follows the threshold and is present for the
system with normal Hr

int (F ≈ 5), is absent for the system with
modified Hr

int. Consequently, the threshold, discussed in the
main text, is indeed connected with the special energy level
structure and bistability.

APPENDIX C: DIRECT PUMPING OF THE CAVITIES

One can expect that for large enough �, the reservoir
can be pumped by direct off-resonant drive, causing the
|g, 0, N〉 → |g, 0, N + 1〉 transition. Thus, there could be a
restriction on the value of �, after which the lasing breaks
down. We now check if this supposition is correct.

We set ga to zero and truncate the number of transmon
states to two. As a result, we have a two-level qubit coupled to
the reservoir. Then we drive the transmon at a frequency close
to the |g〉 ↔ |e〉 transition, which is equal to the frequency of
the reservoir, and we observe the number of photons in the
steady state of the reservoir depending on the detuning from
this frequency; see Fig. 6(e). Even for a very strong drive of
80 MHz, the pumping becomes negligible when the detun-
ing is just 20 MHz. In the suggested device, the detuning is
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FIG. 6. Visualized reservoir states for the system with the following parameters: κa = 138 μs−1, κr = 0.2 μs−1, gr/2π = 8 MHz, ga = 11
MHz [point F in Figs. 4(e) and 4(f)], for different �. (a) With an ordinary interaction Hamiltonian, (b) with a modified interaction Hamiltonian.
(c,d) Number of photons in the reservoir (c) and Fano factor (d) for ordinary and modified interaction Hamiltonian. (e) Number of photons in
the reservoir depending on the detuning of the drive frequency ω from a frequency of reservoir resonator ωge. The system is modified in such a
way that allows only one-photon direct reservoir pumping: the number of transmon states is truncated to two when gr/2π = 8 MHz, ga = 0,
and the other parameters are the same as in Fig. 5.

ωge − ωd = 100 MHz, so the direct pumping of the reservoir
should not be possible even for high �.

The direct pumping of the auxiliary cavity is not expected
to be possible due to the same reasons, especially given that its

relaxation rate is significantly higher than that of the reservoir.
We have checked that the line broadening due to the large
κa is not enough to make pumping possible with 100 MHz
detuning.
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