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Enhancement of mesoscopic fluctuations in transmission of light through
a disordered medium at grazing angles
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We study how intensity fluctuations in transmission through a disordered slab change depending on the regime
of wave transport. A system with large (compared to the wavelength of light) inhomogeneities is considered.
Within a diagrammatic approach, the variance of the total transmission coefficient is calculated numerically
beyond the diffusion approximation. A great enhancement of fluctuations is found in the crossover from the
ballistic to the diffusive transport at the grazing angles of incidence on the sample surface. The effect originates
from the reflection of waves that propagate nearly parallel to the sample boundaries and experience scattering
through small angles, and reveals itself both in transmission and reflection and in correlations between the
transmitted and reflected fluxes.
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I. INTRODUCTION

Correlated fluctuations of the intensity of light propagating
in a disordered medium are one of the best-known mesoscopic
effects [1]. Currently, this effect becomes an important tool
for the coherent control of energy transmission [2–5], imag-
ing [5–13], and information transfer [14,15] through highly
scattering turbid media.

The intensity correlations are due to the interference of
multiply scattered waves and are characterized by different
amplitudes and spatial scales [1,5,16]. Short-range correla-
tions (with a spatial scale of the order of the wavelength)
have an amplitude of the order of average intensity. The am-
plitude of long-range correlations is much less, but due to the
large spatial scale (greater than the mean free path), they make
the main contribution to fluctuations of the total transmission
coefficient and the conductance. Relative fluctuations of these
quantities do not vanish with increasing the sample size, but
grow (i.e., these quantities are non-self-averaging ones [1]).

In disordered media with no absorption, an appearance of
fluctuations in the total transmitted flux is due to the wave
trajectories reflected from the medium (no reflection means
no fluctuations). Therefore, fluctuations of the total transmit-
ted flux can be observed in the case that the reflection of
waves is noticeable. Such a situation occurs, for example, in
the transmission of waves through the sample of thickness
L greater than the transport mean free path ltr , i.e., in the
diffusive regime of multiple wave scattering. In this regime,
the transmitted flux fluctuations are well studied (see, e.g.,
Refs. [1,5,16] and references therein).

In the transmission of light through relatively thin samples
(L < ltr) with large inhomogeneities, where highly forward
scattering occurs [17] (see also Refs. [10–12]), the situation
can be quite different, depending on the incidence angle. If

the direction of incidence does not differ much from the
normal one, the total transmission coefficient tends to unity,
and its fluctuations turn out to be small. At grazing incidence
(π/2 − θ0 � 1, where θ0 is the angle between the direction of
light incidence and the inward normal to the input boundary of
the sample), the light can be effectively reflected due to small-
angle multiple scattering, and one can expect the enhancement
of the transmitted flux fluctuations.

A distinctive role of multiple scattering at grazing angles
was first noted in Ref. [18] (see also Ref. [19] and refer-
ences therein) where the albedo problem for a solid state
target irradiated by fast charged particles was studied. Further
development of the transport theory at grazing angles was
given in Refs. [20–22]. The small-angle approximation under-
lying the results [18–22] is equally applicable to the multiple
scattering of light by large (compared to the wavelength)
inhomogeneities [23,24]. Scattering at grazing angles can also
be important for electron transport through mesoscopic sys-
tems [25]. In particular, small-angle scattering of electrons
moving nearly parallel to the input and output boundaries is
responsible for conductance fluctuations and destruction of
conductance quantization in disordered wires [26]. As was
shown in Ref. [27], the enhancement of the conductance fluc-
tuations in the crossover from the ballistic to the diffusive
regime can also be explained by multiple wave scattering at
grazing angles.

In this paper, we study fluctuations in the flux transmitted
through a plane slab of a highly forward scattering medium.
Our approach is based on the diagrammatic calculations be-
yond the diffusion approximation. The variance of the total
transmission coefficient is expressed in terms of the intensity
propagators which are calculated numerically with the trans-
port equation. The single-scattering angular profile is modeled
by the Henyey-Greenstein function (see, e.g., Refs. [16,17]).
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FIG. 1. Scattering geometry.

We show that the fluctuations are enhanced with increasing
the angle of incidence θ0. A great, up to a hundred times,
enhancement of the fluctuations is attained in the crossover
from the ballistic to the diffusive regime at grazing angles,
π/2 − θ0 � 1, where the transport of waves occurs nearly
parallel to the sample boundaries. In the L dependence of
the variance of relative transmission fluctuations, a local peak
appears at L ∼ lϑ0, where l is the mean free path and ϑ0 is
the characteristic angle of single scattering. As the sample
thickness L increases from lϑ0 to ltr , the relative transmission
fluctuations remain to be nearly L independent. The behavior
of the variance at subdiffusive scales (L < ltr) is shown to
be governed by the competition between the contributions of
short- and long-range correlations.

II. BASIC RELATIONS

Consider a plane wave incident upon a sample of a disor-
dered medium in direction �0 (see Fig. 1). Under conditions
of weak localization (λ � l , where λ is the wavelength), the
total transmission coefficient 〈T 〉 averaged over disorder is
governed by the sum of ladder diagrams [1,16] and can be
expressed in terms of the intensity propagator,

〈T 〉 =
∫

μ>0
μ I (z = L,�|z0 = 0,�0)d�, (1)

where μ = �z, the z axis is directed along the inward normal
to the input boundary of the sample, and L is the sample
thickness. The propagator I (z,�|z0,�0) denotes the average
intensity at depth z in direction � from a source placed at
depth z0 and emitting waves in direction �0. The intensity I is
subject to the transport equation [17]

μ
∂

∂z
I (z,�|z0,�0) = δ(z − z0)δ(� − �0)

+ n
∫

d�′ dσ

d�
(��′)[I (z,�′|z0,�0)

− I (z,�|z0,�0)], (2)

where n is the number of scattering centers per unit volume,
and dσ/d� is the differential cross section of elastic scatter-
ing. It is assumed that there is no absorption in the medium.

FIG. 2. (a) Feynman diagrams for calculating the variance of the
transmission coefficient. Converging solid lines to a point denotes
summation over all outgoing modes. Ladder graphs correspond to the
intensity propagators. (b) Diagrams for the Hikami vertex [28]. Solid
lines denote the average Green’s function or its complex conjugate.
Dashed lines connect identical scatterers.

The variance of the total transmission coefficient 〈(δT )2〉
can be represented as an expansion in orders of interference
between ladders. Each interference event between the ladders
contains the Hikami vertex [28]. The principal contribution
to 〈(δT )2〉 (i.e., the leading term of expansion in λ/l) is gov-
erned by the single-Hikami-vertex diagram [29,30] (see Fig. 2
and Refs. [1,16,31] for review). In the ladders appearing in
Fig. 2(a), we take into account all orders of wave scattering
events, including wave propagation without any scattering.
Contrary to calculations when performed within the diffusion
approximation, we need not introduce a separate diagram for
the contribution from short-range (or the so-called C1 [1,16])
correlations. Such a diagram is already contained in Fig. 2. It
corresponds to the empty Hikami vertex and outgoing lines
with no scattering.

A straightforward calculation of the diagram shown in
Fig. 2 can be performed beyond the diffusion approximation
(see Appendix A and Refs. [32–34]). The expression for the
variance has the form

〈(δT )2〉 = π

N
n

∫ L

0
dz

∫∫
d� d�′ dσ

d�
(��′)

× [I f (L|z,�) − I f (L|z,�′)]2Ii(z,�)Ii(z,�
′),

(3)

where N = k2
0A/4π is the number of propagating modes,

k0 = 2π/λ is the wave number, and A is the area of the
sample surface. The incoming propagator Ii(z,�) denotes the
intensity at depth z in direction �, for a plane wave incident
upon the slab boundary at z = 0 in direction �0,

Ii(z,�) = I (z,�|z = 0,�0). (4)

The outgoing propagator,

I f (L|z,�) =
∫

μ′>0
d�′ μ′ I (z = L,�′|z,�), (5)

is the total flux outgoing through the boundary at z = L from a
plane source placed at depth z and emitting waves in direction
�. Due to integrating over �′, the propagator I f depends only
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on μ = �z. The values 〈T 〉 and 〈(δT )2〉 are normalized to the
unit z component of the incident flux.

Equation (3) can also be derived with the results of
Refs. [35,36] obtained within the Boltzmann-Langevin ap-
proach. Equation (3) establishes the interrelation between the
variance of transmission coefficient fluctuations and the char-
acteristics of the scattering sample. In the limit λ � l , Eq. (3)
is the exact result in the sense that it is applicable both for an
arbitrary angular dependence of the differential cross section
and for an arbitrary regime of wave propagation (from the
ballistic regime to the diffusive one).

Expressions analogous to Eq. (3) can also be derived
both for the variance of the reflection coefficient 〈(δR)2〉 and
for the covariance between the transmission and reflection
coefficients 〈δT δR〉. For 〈(δR)2〉, the corresponding expres-
sion is obtained from Eq. (3) by changing the definition
of the outgoing propagator. The intensity I (z = 0,�′|z,�)
should be substituted for I (z = L,�′|z,�) to Eq. (5). For
the covariance 〈δT δR〉, the factor [I f (L|z,�) − I f (L|z,�′)]2

should be replaced by [I f (L|z,�) − I f (L|z,�′)][I f (0|z,�) −
I f (0|z,�′)]. In the case of a medium with no absorption, the
flux conservation, T + R = 1, gives δT + δR = 0, and, as a
result, both these quantities are expressed in terms of the
variance of the transmission coefficient,

〈(δR)2〉 = −〈δT δR〉 = 〈(δT )2〉.
If the thickness of the sample exceeds the transport mean
free path, L � ltr , the propagators depend only slightly on
the angular variables and can be expanded in a series of the
Legendre polynomials [37]. In this case, Eq. (3) transforms
[33,34] to the well-known result of the diffusion theory,

〈(δT )2〉 = L

2Nltr
〈T 〉2. (6)

Equation (6) can be rewritten in terms of the dimension-
less conductance 〈g〉 = 4Nltr/3L as 〈(δT )2〉/〈T 〉2 = 2/3〈g〉
[1,16]. In the diffusive regime, the average transmission co-
efficient 〈T 〉 is proportional to the ratio ltr/L, and the variance
〈(δT )2〉 falls off inversely proportional to the sample thick-
ness L. Relative fluctuations, on the contrary, increase linearly
with increasing L, 〈(δT )2〉/〈T 〉2 ∼ L. Equation (6) determines
a leading term in the expansion of the variance 〈(δT )2〉 in
powers of ltr/L. As follows from the results of our numeri-
cal calculations performed with Eq. (3) for a highly forward
scattering medium (see Fig. 3), a deviation from the diffu-
sion formula (6) grows noticeably as the angle of incidence
increases.

III. FLUCTUATIONS IN A HIGHLY FORWARD
SCATTERING MEDIUM

Up to now, the transmission fluctuations were studied for
the diffusive regime (L > ltr), in which the ratio ltr/L is the
only parameter affecting the wave transport in the medium.
As shown below, a novel effect arises in the wave transmis-
sion through samples of subdiffusive thickness (L < ltr) and
particularly in the case of highly forward single scattering,
l/ltr = 1 − g � 1, where g is the mean cosine of the single-
scattering angle (the so-called asymmetry factor) [17,37].

FIG. 3. Relative fluctuations of the total transmission coefficient
as a function of transport optical thickness L/ltr . Symbols are the
results of numerical calculations with Eqs. (1)–(3) by the discrete-
ordinate method. The solid line is the diffusion formula (6). The
results for normal (θ0 = 0) and oblique (θ0 = 60◦) incidence are
shown by open and solid symbols, respectively. The mean cosine
of the single-scattering angle equals g = 0.9 (squares), g = 0.95
(triangles), and g = 0.96 (circles). The inset illustrates the change
in relative transmission fluctuations for g = 0.

To model single scattering in the medium we take advan-
tage of the Henyey-Greenstein differential cross section,

dσ

d�
(cos ϑ ) = σ

4π

1 − g2

(1 + g2 − 2gcos ϑ )3/2
, (7)

where σ is the elastic cross section. The mean free path l is
related to σ by l = (nσ )−1. Equation (7) is used very widely
to simulate highly forward scattering of light in random media
with large inhomogeneities [16,17,37,38].

To study the dependence of the variance 〈(δT )2〉 on the
sample parameters, we perform the numerical integration of
Eq. (3). The intensity propagators entering into Eq. (3) are cal-
culated from the transport equation (2) with a numerical code
based on the discrete-ordinate method [17,37] (regarding ap-
plication to highly forward scattering, see, e.g., Refs. [39,40]).
It is assumed that coherent reflection of light from the sample
boundaries can be neglected (e.g., the sample presents a layer
of particles embedded in a uniform medium, or the disordered
sample is placed in a medium with the refractive index equal
to that of the sample—see Refs. [41–43] on refractive-index
matching). The corresponding restrictions are discussed in
Appendix B.

The results of our calculations are presented in Figs. 3–
6. The dependence of relative fluctuations 〈(δT )2〉/〈T 〉2 on
the sample thickness L is illustrated in Fig. 3 for both normal
and oblique incidence. In the diffusive limit, the results of our
numerical calculations are approximated by the relation

〈(δT )2〉
〈T 〉2

= 1

2N

(
L

ltr
+ 


)
. (8)

The first term in Eq. (8) is coincident with the diffusion
formula (6). The second one that is responsible for the de-
viation from the diffusion result depends both on the angle of
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FIG. 4. Thickness dependence of the relative fluctuations of the
total transmission coefficient at grazing incidence, μ0 = 0.1. From
lower to upper graphs, g = 0.9, 0.95, and 0.96.

incidence θ0 and on the asymmetry factor g of single scatter-
ing, 
 = 
(θ0, g). For isotropic scattering (g = 0), the value
of 
 is negative and remains small at oblique incidence (see
the inset in Fig. 3). Contrary, for highly forward scattering
(1 − g � 1), 
 increases noticeably with increasing θ0 and
far exceeds unity, 
 � 1, in the limit of grazing angles of
incidence, π/2 − θ0 � 1. Moreover, in this case, the L depen-
dence of 〈(δT )2〉/〈T 〉2 becomes nonmonotonous (see Fig. 4).
There appear a local maximum at L ∼ l (1 − g) and a plateau
in the range l (1 − g) < L < ltr = l/(1 − g). The plateau is
expanded as the asymmetry factor g tends to unity.

The enhancement of 〈(δT )2〉/〈T 〉2 at grazing incidence is
not only due to a decrease in the transmission coefficient
〈T 〉. The main reason is that the variance of transmission
fluctuations 〈(δT )2〉 grows drastically with decreasing μ0 =
cos θ0 in the case of highly forward scattering, 1 − g � 1 [see
Fig. 5—the peak value of 〈(δT )2〉 increases a hundred times
as μ0 decreases from 1 to 0.1]. For g = 0, the tendency is
opposite: the peak value of the variance 〈(δT )2〉 decreases
with increasing the angle θ0. This is illustrated in Fig. 6 where
the results of numerical calculations with Eq. (3) for g = 0
and g = 0.9 are compared.

A dramatic enhancement of the fluctuations is observable
for samples of subdiffusive thickness, L < ltr . In this case,
multiple wave scattering occurs predominantly through small
angles, and, therefore, only the waves incoming nearly paral-
lel to the boundary of the sample can be effectively reflected
from it. These are precisely the waves that are responsible
for fluctuations of the total transmission coefficient (if there
is no reflection, the coefficient T equals unity and does not
fluctuate).

A distinctive role of the wave trajectories that are nearly
parallel to the input and output boundaries of the sample can
also be understood from an analysis of the angular dependence
of the factor

1

σ

dσ

d�
(��′)[I f (L|z, μ) − I f (L|z, μ′)]2 (9)

FIG. 5. Variance of fluctuations of the total transmission coeffi-
cient as a function of the transport optical thickness L/ltr . Symbols
are the results of numerical calculations with Eq. (3). Open, solid,
and half-solid symbols correspond to μ0 = 1, μ0 = 0.5, and μ0 =
0.1, respectively. The mean cosine of the single-scattering an-
gle equals g = 0.9 (squares), g = 0.95 (triangles), and g = 0.96
(circles).

entering into the general expression (3). This factor is in-
dependent of the characteristics of the incident light and is
governed only by the parameters of the scattering sample (its
thickness, the single-scattering law, etc.). The quantity (9) is
responsible for the transfer of the bulk speckle to the output
boundary of the sample. The speckle is formed by interference
of the waves propagating in different directions � and �′.
The difference between the outgoing propagators appearing
in Eq. (9) describes the difference in the probabilities that
the waves propagating in the directions � and �′ reach the
output boundary. Fluctuations of the total transmission coef-
ficient arise provided that the probability to reach the output

FIG. 6. Thickness dependence of transmission fluctuations at
different angles of incidence. Open and solid symbols correspond
to μ0 = 1 and μ0 = 0.5, respectively. The mean cosine of the single-
scattering angle equals g = 0 (diamonds) and g = 0.9 (squares).
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FIG. 7. Angular dependence of the factor (9) in the diffusive
regime. The azimuthal angles of directions � and �′ are equal
to each other. The mean cosine of the single-scattering angle is
g = 0.9, and the transport optical thickness of the sample is L/ltr =
5. The outgoing propagators are calculated within the diffusion
approximation.

boundary is different depending on the direction of wave prop-
agation. Otherwise, the total transmission coefficient does not
fluctuate.

Correlation in fluctuations is due to the passing of waves
through the same scatterer. As the single-scattering cross sec-
tion (7) entering into Eq. (9) falls off rapidly with increasing
the angle ϑ = arccos ��′, the directions � and �′ can dif-
fer by no more than the characteristic single-scattering angle
ϑ0 = 1 − g. As for the difference between the propagators
[I f (L|z, μ) − I f (L|z, μ′)], it is governed by the regime of mul-
tiple scattering of waves.

In the diffusive regime, L � ltr , expansion of the propaga-
tors in terms of the Legendre polynomials gives

I f (L|z, μ) − I f (L|z, μ′) = 3

4π
(μ − μ′)Jf (z),

where Jf (z) = ∫
μI f (L|z, μ)d�. In the considered case of

the medium with no absorption, Jf is z independent, Jf =
4π ltr/3L. The angular dependence of the factor (9) in the
diffusive regime is illustrated in Fig. 7. As follows from the
figure, the factor (9) selects pairs of trajectories in two close
directions. These directions can be oriented arbitrarily with
respect to the sample boundaries.

For a sample of subdiffusive thickness, L < ltr , where the
small-angle regime of multiple scattering is realized, the out-
going propagator I f (L|z, μ) proves to be a steplike function
of the angular variable μ. For waves propagating toward the
output boundary (μ > 0), the outgoing propagator is close to
unity, I f (L|z, μ) ≈ 1, otherwise (μ < 0), I f (L|z, μ) � 1. The
blurring of the step function in the vicinity of μ = 0 is due
to the possibility of the reflection of waves propagating at
grazing angles (i.e., in directions that are nearly parallel to the
input and output boundaries). Taking into account the highly
elongated angular dependence of the single-scattering cross
section (1 − g � 1), we find that the factor (9) differs from
zero only for directions |μ|, |μ′| � 1. This is confirmed by
the result of our numerical calculations shown in Fig. 8. Thus,
for L < ltr , the quantity (9) acts as a modulating factor which
selects trajectories that are nearly parallel to the medium sur-
face.

FIG. 8. Angular dependence of the factor (9) in the subdiffusive
case. The azimuthal angles of directions � and �′ are equal to each
other. The mean cosine of the single-scattering angle is g = 0.9,
the transport optical thickness of the sample is L/ltr = 0.05, z =
L/2. The outgoing propagators are calculated numerically with the
discrete-ordinate method.

The above reasoning is concerned with the significance
of grazing paths for wave transport through thin samples,
L < ltr . As for the enhancement of transmission fluctuations,
this effect is due to increasing the average intensity at grazing
angles of wave propagation. The matter is that a source of the
fluctuations of the total transmission (or reflection) coefficient
is the bulk speckle arising due to wave interference inside of
the sample [1,16]. The amplitude of intensity fluctuations in
the bulk speckle is proportional to the average intensity, which
increases greatly at grazing angles (see, e.g., Refs. [37,44]).
This can be illustrated most clearly by the single-scattering
intensity,

Ii(z,�) = 1

μμ0

1

σ

dσ

d�
(��0)

z

l
,

which grows in the case of highly forward scattering at
grazing angles, because μ,μ0 � 1 and (1/σ )dσ/d� � 1
simultaneously. For thin samples, L < ltr , the portion of ra-
diation propagating at grazing angles (μ,μ0 � 1) proves to
be principal and, therefore, the amplitude of fluctuations in
the bulk speckle increases. As the thickness of the sample
becomes larger, L > ltr , the spread of waves over directions
grows, and the relative proportion of waves propagating at
grazing angles decreases. As a result, the amplitude of fluctu-
ations in the bulk speckle is lowered, and the value of 〈(δT )2〉
decreases with increasing the sample thickness.

The enhancement of fluctuations at grazing angles is
also reflected on the L dependence of the relative covari-
ance between the transmission and reflection coefficients,
〈δT δR〉/〈T 〉〈R〉. Note that negative transmission-reflection
correlations are of importance for imaging through scattering
media and currently being actively studied [3,9,13–15]. Our
results as applied to the relative covariance are illustrated in
Fig. 9. As follows from the figure, the L dependence of the
covariance 〈δT δR〉/〈T 〉〈R〉 has a minimum at subdiffusive
scales, L < ltr . As the angle of incidence θ0 increases, the
minimum is deepened and shifted to the region of lesser L.
For a given sample thickness, the correlations between the
transmitted and reflected fluxes are enhanced with increasing
the angle θ0 and the mean cosine g.
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FIG. 9. Relative covariance between the transmission and reflec-
tion coefficients as a function of the transport optical thickness L/ltr .
Open, solid, and half-solid symbols correspond to μ0 = 1, μ0 = 0.5,
and μ0 = 0.1, respectively. The mean cosine of the single-scattering
angle equals g = 0.9 (squares) and g = 0.95 (triangles).

IV. WAVE TRANSPORT AT GRAZING INCIDENCE

If the thickness of the medium is less than the trans-
port mean free path, L < ltr , isotropization of waves over
directions does not occur and the diffusive regime of wave
propagation does not develop. In this case, multiple scattering
has a small-angle character, and the variance of fluctuations
depends significantly on the angle of incidence. For the in-
cidence close to normal (μ0 = cos θ0 ≈ 1), almost all of the
incident light is transmitted through the medium, 〈T 〉 ≈ 1,
and the fluctuations prove to be small (see Fig. 3). As the
angle of incidence θ0 increases, the reflection of light and, as
a consequence, the fluctuations of the transmission coefficient
increase too. A considerable enhancement of fluctuations
should be expected at grazing angles of incidence, π/2 −
θ0 � 1, where the incident light can be effectively reflected
from the medium due to small-angle multiple scattering.

The radiative transfer theory at grazing incidence was
elaborated in Refs. [18–24] on the basis of the small-angle
approximation. In this case, we can simplify the general equa-
tions (1)–(3) using the relations [18–24]

μ = cos θ = sin ζ ≈ ζ , (10)

2(1 − ��′) ≈ (ζ − ζ ′)2 + (ϕ − ϕ′)2, (11)

where ζ = π/2 − θ is the angle between the direction � and
the medium boundary, and ϕ is the azimuth angle of the
direction �. As is customary in the small-angle approximation
(see, e.g., Ref. [17]), the angles ζ and ϕ are thought of as
varying within infinite limits,

∫
d� · · · =

∫ ∞

−∞
dζ

∫ ∞

−∞
dϕ · · · . (12)

The intensity propagator I (z,�|z0,�0) ≡ I (z, ζ , ϕ|z0, ζ0, ϕ0)
is assumed to decrease rapidly as the values of |ζ | and |ϕ|
increase. In the considered approximation, Eq. (3) takes the

FIG. 10. Average total transmission coefficient in dimensionless
variables. Symbols are the results of numerical calculations with
Eq. (1). Open and solid symbols correspond to ζ0 = ϑ0/2 = 0.05
and ζ0 = ϑ0/2 = 0.02, respectively (two upper graphs), and to ζ0 =
ϑ0 = 0.1 and ζ0 = ϑ0 = 0.05, respectively (two lower graphs).

form

〈(δT )2〉 = ϑ0

2Nl

∫ L

0
dz

∫∫∫ ∫ ∞

−∞
dζdϕdζ ′dϕ′

× [I f (z, ζ ′) − I f (z, ζ )]2Ii(z, ζ , ϕ)Ii(z, ζ ′, ϕ′)[
ϑ2

0 + (ζ − ζ ′)2 + (ϕ − ϕ′)2
]3/2 ,

(13)

where ϑ0 = 1 − g � 1 is the characteristic angle of single
scattering, and l is the mean free path.

Within the small-angle approximation, the solution to the
transport equation (2) is expressed in terms of a function of
dimensionless variables,

I (z, ζ , ϕ|z0, ζ0, ϕ0) = 1

ϑ3
0

f

(
z

L
,

ζ

ϑ0
,
ϕ − ϕ0

ϑ0
,

z0

L
,

ζ0

ϑ0
;

L

lϑ0

)
.

(14)
The fact that the intensity propagator can be presented in the
form of Eq. (14) enables us to draw a conclusion regarding
the L dependence of the variance of transmission fluctuations
〈(δT )2〉. Substituting Eq. (14) into Eq. (13), we arrive at the
following scaling relation,

〈(δT )2〉 = 1

Nϑ3
0

F

(
L

lϑ0
,

ζ0

ϑ0

)
. (15)

A similar relation is also valid for the average transmission
coefficient [40], 〈T 〉 = (L/lϑ0, ζ0/ϑ0).

The validity of the scaling relations for the average
transmission coefficient and the variance of fluctuations is
illustrated in Figs. 10–12 where our results of numerical in-
tegration of Eqs. (1)–(3) with the discrete-ordinate method
are presented. Figure 11, for example, illustrates the fact that,
for given ζ0/ϑ0, the value Nϑ3

0 〈(δT )2〉 is virtually a universal
function of L/lϑ0 up to L ∼ 100lϑ0 ∼ ltr .

At grazing angles of incidence, three regions can be clearly
distinguished in the L dependence of the variance 〈(δT )2〉. In
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FIG. 11. Variance of the total transmission coefficient in dimen-
sionless variables. Symbols are the results of numerical calculations
with Eq. (3). Open and solid symbols correspond to ζ0 = ϑ0/2 =
0.05 and ζ0 = ϑ0/2 = 0.02, respectively (two upper graphs), and to
ζ0 = ϑ0 = 0.1 and ζ0 = ϑ0 = 0.05, respectively (two lower graphs).
The solid and the dashed curves are the results of calculations within
the second-order approximation.

a very thin sample, L < lϑ0, the variance grows rapidly with
increasing L. In this case, the variance can be calculated by ex-
panding the propagators entering into Eq. (3) in orders of wave
scattering. The single-scattering contributions to 〈(δT )2〉 can-
cel each other (see, e.g., Ref. [33]). The first nonvanishing
contribution to 〈(δT )2〉 is governed by the second-order scat-
tering which well describes the rapid growth of fluctuations
with increasing L (see Fig. 11).

The variance reaches its maximum at L ∼ lϑ0, and then, in
a rather wide range lϑ0 < L < ltr , decreases slowly according
to a power law ∼L−ν with exponent ν ≈ 1/3. Surprisingly, the
L dependencies of the variance 〈(δT )2〉 and the square of the
average coefficient 〈T 〉2 are almost identical in this range of
thickness. Relative fluctuations of the transmission coefficient
prove to be virtually L independent. This is confirmed by a
horizontal “plateau” which is clearly distinguishable in the
dependence of the ratio 〈(δT )2〉/〈T 〉2 on the sample thickness
(see Figs. 4 and 12).

The plateau in the L dependence of 〈(δT )2〉/〈T 〉2 is gov-
erned by the combined effect of the contributions from long-
and short-range intensity correlations to the variance of the
transmission coefficient. The contribution from the short-
range intensity correlations 〈(δT )2〉short is described by that
part of the diagram shown in Fig. 2 which contains the empty
Hikami box and the outgoing propagators without scattering
events (see, e.g., Ref. [33]). The spatial scale of short-range
correlations is proportional to the ratio of the wavelength to
the characteristic multiple-scattering angle. The contribution
〈(δT )2〉short is determined by the expression [33,34]

〈(δT )2〉short = π

N

∫
�z>0

d��z[I
2(L,�|0,�0)](�2), (16)

where the superscript (�2) indicates that the total number
of scattering events in the product of intensity propagators

FIG. 12. Relative fluctuations of the total transmission coeffi-
cient in dimensionless variables. All symbols correspond to the same
parameters as in Figs. 7 and 8.

is greater than or equal to two. The contributions 〈(δT )2〉short

and 〈(δT )2〉long = 〈(δT )2〉 − 〈(δT )2〉short are shown in Fig. 13.
From the figure it follows that the contribution from long-
range correlations changes its sign at lϑ0 < L < l . With a
further increase in L, the contribution 〈(δT )2〉long becomes
dominant. For L < l , both contributions are equally im-
portant. For those values of the sample thickness, where
〈(δT )2〉long < 0, intensity fluctuations at large (as compared
to the wavelength) distances are negatively correlated. The
relationship between the contributions from short- and long-
range intensity correlations to the variance 〈(δT )2〉 at L < l
resembles that between the corresponding contributions to the
variance of total reflection 〈(δR)2〉 in the diffusive regime (see,
e.g., Refs. [14,33,45,46]).

FIG. 13. Different contributions to relative fluctuations of the
total transmission coefficient. The contributions from short- and
long-range correlations and their sum are shown by squares, trian-
gles, and circles, respectively. The calculations were performed for
ζ0 = 0.05, ϑ0 = 0.1.
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As follows from our numerical calculations, the self-
similarity law (15) fails as the sample thickness L becomes
larger than ltr . In this case, the small-angle approximation is
no longer valid, and the crossover to the diffusive transport
occurs.

Thus, in the case of grazing incidence, the three regimes
of wave propagation (low-order scattering, small-angle mul-
tiple scattering, and diffusive transport) manifest themselves
clearly in the dependence of transmission fluctuations on the
sample thickness. The corresponding features are also observ-
able in the relative covariance between the transmitted and
reflected fluxes.

V. CONCLUSIONS

We have presented the results of a detailed analysis of
transmitted flux fluctuations in a disordered medium with
highly forward scattering. The variance of the total trans-
mission coefficient has been calculated numerically using the
discrete-ordinate method. We have shown that, contrary to a
medium with isotropically scattering centers, in the highly
forward scattering medium the total transmission fluctuations
are enhanced dramatically at the grazing incidence of light
on the sample surface. This effect reveals itself in the subd-
iffusive case, L < ltr , where the sample thickness is less than
the transport mean free path and multiple scattering of light
occurs through small angles. Our numerical results are in
good agreement with the scaling relations derived within the
small-angle approximation.

The results obtained give insight into the impact of the
regime of wave propagation on the mesoscopic intensity fluc-
tuations and can be applied for studying how the specific
features of disorder (e.g., large-scale correlations between in-
homogeneities) reveal themselves in phase-coherent transport
through complex media.

APPENDIX A: HIKAMI VERTEX
FOR NONPOINT SCATTERERS

In a medium with discrete scatterers, a scalar monochro-
matic field ψ (r) obeys the equation[∇2 + k2

0 (1 + δε(r))
]
ψ (r) = 0, (A1)

where k0 = ω/c, and the random part δε of dielectric constant
has the form

δε(r) =
∑

a

ε(|r − ra|), (A2)

and the vector ra denotes the “a”th scatterer position. The
z component of the density of flux transmitted through the
medium is defined as

Jz(ρ) = i

2k0

(
∂

∂ z
− ∂

∂ z′

)
ψ (z′, ρ)ψ∗(z, ρ)

∣∣∣∣
z′=z=L

, (A3)

where the vector ρ lies in the plane (xy) parallel to the slab
boundaries. The average transmission coefficient 〈T 〉 = 〈Jz〉
can be expressed in terms of the ensemble-average second
moment 〈ψψ∗〉 which is governed by the sum of ladder di-
agrams [1]. The variance of the total transmission coefficient

ar

r
1rr
R

FIG. 14. Diagram element containing one scattering event.

〈(δT )2〉 is given by

〈(δT )2〉 = 1

A

∫
dρ[〈Jz(ρ)Jz(0)〉 − 〈Jz〉2], (A4)

where A is the area of the slab surface. Correspondingly,
the value of 〈(δT )2〉 is determined by the ensemble-average
fourth moment of a wave field and can be represented as an
expansion in the orders of interference between ladders. Each
interference event between the ladders contains the Hikami
vertex [1]. The leading diagram contributing to 〈(δT )2〉 is
depicted in Fig. 2.

To calculate the Hikami vertex for nonpoint scatterers, we
first consider the diagram element that describes the propa-
gation of a wave between r and r′ through one scatterer (see
Fig. 14). This graph corresponds to the expression

n
∫

dra

∫
dr1Ḡ(r − r1)k2

0ε(|r1 − ra|)Ḡ(r1 − r′), (A5)

where

Ḡ(r − r1) = − 1

4π |r − r1| exp [(ik0 − nσ/2)|r − r1|] (A6)

is the average Green’s function, n is the number of scat-
terers per unit volume, and σ is the single-center scattering
cross section. When integrating over the scatterer volume, we
should take into account that |r1 − ra| does not exceed the
scatterer size a while the characteristic scale of the Green’s
function decay is of the order of the mean free path l =
(nσ )−1 � a. Therefore, it is convenient to introduce R =
r1 − ra and expand the Green’s function arguments in powers
of R. If the points r and r′ lie in the Fraunhofer zone of the
scatterer (|r − ra|, |r′ − ra| � k0a2),

|r − r1| = |r − ra − R| ≈ |r − ra| − r − ra

|r − ra|R,

and transforming the Green’s functions entering into Eq. (A5)
as

Ḡ(r − r1) ≈ Ḡ(r − ra ) exp (−ik0�R), (A7)

Ḡ(r1 − r′) ≈ Ḡ(ra − r′) exp (ik0�
′R), (A8)

where

� = r − ra

|r − ra| , �′ = ra − r′

|ra − r′| , (A9)

we bring Eq. (A5) to the form

n
∫

draḠ(r − ra )[−4π f (��′)]Ḡ(ra − r′), (A10)

where

f (��′) = − 1

4π

∫
dRe−ik0�Rk2

0ε(|R|)eik0�
′R (A11)
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is the Born (or Rayleigh-Gans [47]) amplitude of scattering
from �′ to �.

Within this approximation, the equation for the ladder
propagator 〈ψψ∗〉 is reduced to the ordinary transport equa-
tion for the intensity I (r,�| . . .) in terms of which the
propagator is expressed by the Wigner transform,∫

d� exp [ik0�(r − r′)]I ((r + r′)/2,�| . . . ). (A12)

In the integral form, the transport equation for the intensity
I (r,�| . . .) can be written as [17]:

I (r,�| . . .) = I (0)(r,�| . . .) + n
∫

dr′δ
(

� − r − r′

|r − r′|
)

×(4π )2|Ḡ(r − r′)|2
∫

d�′ dσ

d�
(��′)

× I (r′,�′| . . .), (A13)

where dσ (��′)/d� = | f (��′)|2 is the differential scatter-
ing cross section, and I (0) is the nonscattered intensity from a
relevant source. For the incoming propagator,

I (0)
i (z,�|zi = 0,�0) = 1

μ0
δ(� − �0) exp(−nσ z/μ0),

(A14)

μ0 is the cosine of the incidence angle. Equation (A13)
stems from the Bethe-Salpeter equation for the averaged two-
particle propagator to leading order in 1/(k0l ) (see, e.g.,
Refs. [1,17]).

The diagrams for the variance 〈(δT )2〉 can be calculated
in two steps. First, we transform the product of the Green’s
functions entering into the Hikami vertex, and then attach
the ladder propagators to it. We outline this procedure by the
example of the empty Hikami box ]see Fig. 2(b)].

The product of four Green’s functions entering into the
empty Hikami box,

Ḡ(r′
1 − r2)Ḡ∗(r′

2 − r3)Ḡ(r′
3 − r4)Ḡ∗(r′

4 − r1), (A15)

can be transformed with the approximate expression for the
Green’s function [see Eqs. (A7) and (A8)]. Using

Ḡ(r′
i − rk ) ≈ Ḡ(rai − rak ) exp [ik0�ik (R′

i − Rk )], (A16)

where R′
i = r′

i − rai, Rk = rk − rak , and �ik = (rai −
rak )/|rai − rak|, we represent Eq. (A15) in the form

Ḡ(ra1 − ra2)Ḡ∗(ra2 − ra3)Ḡ(ra3 − ra4)Ḡ∗(ra4 − ra1)

× exp[ik0�12(R′
1 − R2) − ik0�23(R′

2 − R3) + ik0�34(R′
3 − R4) − ik0�41(R′

4 − R1)]. (A17)

The first line of Eq. (A17), which is the product of four
Green’s functions “connecting” the positions of four scat-
terers, has the same form as the empty Hikami box for a
system of pointlike scatterers. The latter was calculated in
Ref. [33]. The product of the Green’s functions appearing in
Eq. (A17) proves to be nonzero as long as the phases of the
Green’s functions compensate for each other. This is possible
provided that the points ra1, ra2, ra3, and ra4 lie virtually along
a straight line. The alignment of these points can be found by
the stationary phase method [17]. As a result, the four Green’s
functions entering into Eq. (A21) can be evaluated as [33]

Ḡ(ra1 − ra2) · · · Ḡ∗(ra4 − ra1)

≈ (4π )2

(
2π

k0

)2

δ(�13 − �21)δ(�13 − �41)

×|Ḡ(ra1 − ra3)|2|Ḡ(ra2 − ra1)|2|Ḡ(ra4 − ra1)|2. (A18)

Expression (A18) holds for (�13�21) > 0. For (�13�21) < 0,
one should substitute ra3 for ra1 in Eq. (A18).

The second line of Eq. (A17) contains the phase fac-
tors which, together with those in the attached ladders [see
Eq. (A12)], enter into the expressions for the scattering am-
plitudes. When attaching the incoming and outgoing ladders
to the Hikami box (A18), we take advantage of the trans-
port equation (A13) which contains the factors appearing in
Eq. (A18). As a result, the expression for the empty Hikami

box with attached ladders takes the form

〈(δT )2〉 = π

N
n

∫ L

0
dz

∫∫
d� d�′ dσ

d�
(��′)

× [
I2

f (L|z,�)Isc
i (z,�)Ii(z,�

′)

+ I2
f (L|z,�′)Ii(z,�)Isc

i (z,�′)
]
, (A19)

where the scattered intensity is defined as Isc = I − I (0).
Equation (A19) should be supplemented by the contribution
from the diagrams containing incoming propagators with no
scattering events. The calculation of these diagrams gives the
expression that differs from Eq. (A19) by substitution of I (0)

for Isc. Thus, the final expression for the empty-Hikami-box
contribution to the variance 〈(δT )2〉 differs from Eq. (A19)
only by omitting the superscript “sc” in the incoming propa-
gators.

In a similar way, the contribution from the other two di-
agrams involving the Hikami box with one extra scattering
[see Fig. 2(b)] can be calculated. Using the representation for
the Green’s functions (A16) and repeating the corresponding
calculations performed for pointlike scatterers in Ref. [33],
we arrive at the expressions that differ from those for point-
like scatterers only by the presence of the angle-dependent
differential cross section. Combining the contributions to the
variance 〈(δT )2〉 from each diagram shown in Fig. 2(b) we
obtain Eq. (3).
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APPENDIX B: CONDITIONS FOR NEGLECTING THE
COHERENT REFLECTION FROM THE BOUNDARIES

Under the conditions of refractive-index matching (see,
e.g., Refs. [41–43]), the average refractive index of the disor-
dered sample is due to only the scattering particles. Its relative
value 〈m〉 is expressed in terms of the amplitude of scattering
through the zero angle f (0) as follows [17],

〈m〉 = 1 + 2πn f (0)

k2
0

, (B1)

where n is the number of scatterers per unit volume, k0 =
2π/λ is the wave number, and λ is the wavelength of light
in the surrounding uniform medium. The effect of coherent
reflection on wave transport in the sample at oblique inci-
dence (up to grazing angles) can be neglected provided that√|〈m〉 − 1| is less than the characteristic single-scattering an-
gle ϑ0 ∼ λ/a (a is the particle size). From this condition and
Eq. (B1) it follows that, for weak scatterers [k0a|m − 1| � 1,
m is the refractive index of the particles, Re f (0) � Im f (0)
[47]], the inequality

na3|m − 1| � ϑ2
0 (B2)

should be fulfilled. For strong scatterers [k0a|m − 1| > 1,
Re f (0) � Im f (0) [47]], we arrive at the restriction

1

k0l
� ϑ2

0 , (B3)

where the mean free path l is expressed in terms of n and
f (0) via the optical theorem. The latter inequality can be
rewritten as

k0a2 � l, (B4)

and it means that successive scattering events occur in the
Fraunhofer zone of an individual scattering particle. Under
condition (B2), this is certainly satisfied as well.

As was shown in Ref. [48], only under condition (B4),
transmission fluctuations are described by the single-Hikami-
vertex diagram depicted in Fig. 2. Otherwise (k0a2 � l ), this
diagram should be replaced by another one. Such a case is
specific to a continuous random medium with extremely large
inhomogeneities (e.g., turbulent atmosphere) [17,49,50].
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