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Non-Markovian decoherence dynamics of strong-coupling hybrid quantum systems:
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Based on the experiments [S. Putz et al., Nat. Phys. 10, 720 (2014); Nat. Photonics 11, 36 (2017)] on
the hybrid quantum system of a superconducting microwave cavity coupled strongly to an inhomogeneous
broadening spin ensemble, we use the exact master equation theory to investigate its non-Markovian decoherence
dynamics under external driving fields. In the experiments, the spin ensemble is made of negatively charged
nitrogen-vacancy defects in diamond. The exact master equation theory generalizes the fluctuation-dissipation
relation and depicts in details the transient non-Markovian decoherence, in which the dissipation (relaxation)
and fluctuations (noise or dephasing) dynamics is well described and the non-Markovian memory effect can be
well characterized. We study the physical picture of the transient non-Markovian decoherence dynamics and
explore how the non-Markovian decoherence induced by the inhomogeneous broadening of the spin ensemble
is suppressed in the strong-coupling regime. We also show how the spectral hole burning generates localized
bound states for the further decoherence suppression. Furthermore, we investigate the two-time correlations to
show the relationships between quantum fluctuations and quantum memory.
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I. INTRODUCTION

Cavity quantum electrodynamics (QED) is a main re-
search topic for individual quantum system controlling and
for quantum information storage and transmission in quan-
tum information technology [1]. It has also attracted great
attention in the study of the fundamental quantum theory of
open systems and the measurement-induced decoherence dy-
namics [2]. Cavity QED studies properties of atoms coupled
to discrete photon modes in cavities. Since the early 1980s,
the investigation of cavity QED has moved towards strong-
coupling regime with high-quality factor cavities [1,3]. The
strong-coupling cavity QED has been experimentally realized
in a multitude of physical systems, including Rydberg atoms
in microwave cavities [4,5], alkali-metal atoms in optical cav-
ities [6–8], and superconducting circuits [9,10], etc. In some
circumstance, decoherence (coherence loss) of photon and
atom states can be effectively suppressed in strong-coupling
cavity QED, and single-photon and single-atom states can be
dynamically manipulated.

A particular important realization of strong-coupling cavity
QED is the hybrid quantum systems of large spin or atom
ensembles coupled to microwave cavities [4,5,11], where the
collective coupling strength is proportional to the square root
of the number of emitters. The spin or atomic ensemble may
also play the role of quantum memories that quantum infor-
mation can be coherently stored and retrieved at some later
time. Such hybrid systems have been realized in various spin
ensembles, such as negatively charged nitrogen-vacancy (NV)
defects in diamond [12,13], rare-earth spin ensembles [14],
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and magnons in yttrium iron garnet [15,16], etc. In particular,
the NV centers in diamond have the long coherence time even
at room temperature, and therefore show the great potential
for their applications in quantum information processing and
storage. The strong coupling of such spin ensembles with
microwave cavities could make coherent transfer of quantum
information between cavities and spin ensembles more feasi-
ble.

However, due to the local magnetic dipole-dipole cou-
plings between NV centers and the residual nitrogen paramag-
netic impurities, the resonance line of a large NV electron spin
ensemble is inhomogeneously broadened [17–20]. Inhomoge-
neous spin ensemble broadening could induce decoherence
to the cavity photons, which may limit the performance of
the coherent transfer and storage of quantum information.
It was found that in the strong-coupling regime, inhomoge-
neous broadening induced decoherence may be suppressed
upon the width and shape of the inhomogeneous broadening,
which is called as “cavity protection effect” in the literature
[18,19]. At the same time or even earlier, we have found an-
other mechanism of decoherence suppression in nano-cavities
strongly coupled to photonic crystals, due to the existence of
localized bound states associated with tight-binding spectral
density [21–23]. Such decoherence suppression mechanism
was solved from the exact master equation theory we de-
veloped [24–28]. Recently, Putz et al. have experimentally
demonstrated both phenomena of decoherence suppressions
in the real-time dynamics of a superconducting microwave
cavity coupled strongly to the spin ensemble of NV cen-
ters [29,30]. By appropriately choosing microwave pulses,
they can increase the amplitude of coherent oscillations be-
tween the cavity and the spin ensemble. They also used the
semiclassical approach in terms of Volterra equation which
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is a governing equation for cavity field decays [31–34] to
explain their experimental observation. In this paper, we
will study the transient dynamics of such hybrid quantum
systems using our exact master equation theory [24–28].
With the master equation formulation, dissipation (relax-
ation) and fluctuations (noise or dephasing) dynamics can
be consistently characterized, and non-Markovian memory
can be physically quantified. New insights on the transient
non-Markovian decoherence dynamics and decoherence sup-
pressions in strong-coupling hybrid quantum systems can also
be obtained in a more general and complete manner.

The experimental system [29,30] of the superconduct-
ing microwave cavity coupled strongly to the spin ensemble
of NV centers can be described by the Tavis-Cummings
model [35]. In this paper, we will use the Tavis-Cummings
model to investigate the decoherence dynamics of cavity QED
arising from the spin ensemble. Such decoherence dynam-
ics heavily involves non-Markovian memory processes. The
Tavis-Cummings model of the spin ensemble at arbitrary tem-
perature cannot be solved exactly. However, the experimental
setup for a high-polarization spin ensemble, i.e., only a small
percentage of spins (≈106) are excited in comparison with
the total spin number (≈1012) in the ensemble, enables one to
effectively convert the spin ensemble into a bosonic ensemble
under the Holstein-Primakoff approximation [18,19,36]. With
such a treatment, we can derive the exact master equation.
Then, we can systematically study the non-Markovian dy-
namics of this hybrid system under external driving fields
[26,27]. We can also address rigorously quantum dissipation
and thermal fluctuation together to depict the transient non-
Markovian decoherence dynamics. It provides an interesting
physical picture of how the decoherence induced by inho-
mogeneous broadening is suppressed in the strong-coupling
regime. Moreover, we show that the spectral hole burning
generates localized bound states (localized modes) between
the cavity and the spin ensemble, which further suppresses
the decoherence [21–23]. We also use two time-correlation
functions to explore quantum memory effect [37–39].

The rest of the paper is organized as follows. In Sec. II,
we discuss the general master equation theory to hybrid quan-
tum systems. We begin with the generalized Tavis-Cummings
model for the hybrid quantum system of a superconducting
microwave cavity coupled strongly to a spin ensemble of
NV centers. Under the experimental setup and applying the
Holstein-Primakoff approximation to the spin ensemble, we
have the exact master equation for the cavity system under
external driving fields we derived early [26]. We also discuss
in details the physical consequence of the dissipation and fluc-
tuations from the master equation, from which the physical
picture of non-Markovian memory processes is provided for
open quantum systems. We further explore how the noise cor-
relation functions characterize quantum memory. In Secs. III
and Sec. IV, we apply the theory to study the decoherence
dynamics of the cavity field and make comparison with the
experiment observations and other theoretical methods for
different setups of the spin ensemble in experiments [29,30],
where the origin of non-Markovian decoherence dynamics
and the different mechanisms of decoherence suppression are
analyzed in details. In Sec. V, we use the time-correlation
functions to study the new feature of quantum memory for

the further experimental measurement. A conclusion of this
work and the perspective for the further researches are given
in Sec. VI.

II. HYBRID QUANTUM SYSTEM AND THE EXACT
MASTER EQUATION METHOD

A. Tavis-Cummings model with external driving field

The hybrid quantum system studied in experiments [29,30]
consists of a superconducting microwave cavity coupled to a
spin ensemble of NV centers. The cavity is also driven by a
microwave pulse. This system can be described by a general-
ized Tavis-Cummings model with the following Hamiltonian:

H (t ) = h̄ωca†a + [ f (t )a† + f ∗(t )a]

+
∑

k

[
�kσ

z
k + Vka†σ−

k + V ∗
k σ+

k a
]

+
∑

l

[h̄ωl b
†
l bl + Vla

†bl + V ∗
l b†

l a]. (1)

Here, the first term describes a single-mode cavity, and a†

(a) is the corresponding bosonic creation (annihilation) op-
erator with ωc being the resonate frequency. The second term
describes the microwave pulse driving field applying on the
cavity f (t ) = η(t )e−iωpt , where η(t ) is the time-dependent
field strength and ωp is the phase frequency. The driving pulse
is used to control the dynamics of the hybrid system through
the cavity. The third term is the Hamiltonian of the spin en-
semble of NV centers and its coupling with the cavity, where
σ z

k , σ±
k are the three Pauli matrices, �k is the corresponding

two-level energy splitting, and Vk is the coupling amplitude
between the cavity and the spin mode k. The remaining
Hamiltonian describes the cavity leakage, where b†

l (bl ) is
the creation (annihilation) operator of the photonic mode l
in the electromagnetic (EM) environment in free space with
frequency ωl , and Vl is the coupling amplitude between the
cavity and the EM environmental mode l .

In the experimental setup [29,30], only a small percentage
of spins (≈106) are excited in comparison with the total spin
number (≈1012) in the ensemble. This corresponds to a high-
polarization spin ensemble [18]. Thus, the Holstein-Primakoff
approximation [36]

σ z
k ≡ c†

kck − 1/2, σ+
k ≡ c†

k

√
1 − c†

kck � c†
k (2)

can be applied to the spin variables, where c†
k , ck are the

bosonic creation and annihilation operators of the correspond-
ing spin mode k. As a result, the Hamiltonian (3) can be
reduced to

H = h̄ωca†a + [ f (t )a† + f ∗(t )a]

+
∑

k

[�kc†
kck + Vka†ck + V ∗

k c†
ka]

+
∑

l

[h̄ωl b
†
l bl + Vla

†bl + V ∗
l b†

l a], (3)

which can provide a good accuracy to the experimental obser-
vations, as one will see later. Now, the dynamics of the hybrid
quantum system (the cavity, the spin ensemble, and the EM
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environment) can be exactly solved. Usually, decoherence of
photon states due to photon leakages and atomic absorptions
can be treated with constant decay rates (Markov decoher-
ence phenomena) [2]. However, for the strong-coupling cavity
QED system with the spin ensemble, the resonance line of
the NV spin ensemble is inhomogeneously broadened so that
non-Markovian decoherence dominates the photon dynamics
in this hybrid quantum system. Therefore, a more casuistical
treatment to open quantum system dynamics is demanded.

B. Non-Markovian decoherence theory based
on exact master equation

In principle, the dynamics of the total systems (the cavity
system, the spin ensemble, and the EM environmental modes)
is given by the total density matrix under the unitary evolution

ρtot(t ) = U (t, t0)ρtot(t0)U †(t, t0), (4)

where U (t, t0) = T exp( 1
ih̄

∫ t
t0

dτ H (τ )) is the unitary evolu-
tion operator of the total system, and T is the time-ordering
operator. Initially, the density matrix of the cavity state ρc(t0)
can be arbitrary, the spin ensemble and the EM environ-
ment are in the partitioned thermal state ρtot(t0) = ρc(t0) ⊗
ρs(t0) ⊗ ρe(t0), where ρs(t0) = 1

Zs
e−βs

∑
k �kσ

z
k and ρe(t0) =

1
Ze

e−βe
∑

l h̄ωl b
†
l bl , where βs = 1/(kTs) and βe = 1/(kTe) are the

inverse of their initial temperatures which could be the same
or different. Immediately after the time t0, the cavity, the spin
ensemble, and the environment evolve into a nonequilibrium
state under Eq. (4). Experimentally, one only measures the
physical observables of the cavity system, such as the cav-
ity field intensity (photon numbers) and photon correlations.
Therefore, we shall focus on the cavity photon state dynam-
ics only, which is determined by the reduced density matrix
which is defined by

ρc(t ) = Trs+e[ρtot(t )], (5)

and the notation Trs+e is the trace over all the states of the
spin ensemble and the EM environment. The reduced density
matrix encompasses all the influences arisen from the spin
ensemble and the EM environment after we take the trace over
the spin and EM environmental states.

To study the non-Markovian decoherence dynamics of the
system, we apply the exact master equation theory developed
recently [24–28], which has been used in many applications to
various different systems [21–23,38,40–44]. After we traced
out all the spin and environmental states from Eq. (4) using the
coherent state path integral [45], we obtain the exact master
equation for the reduced density matrix of the cavity system
[26]:

d

dt
ρc(t ) = 1

ih̄
[ω′

c(t, t0)a†a + f ′∗(t, t0)a + f ′(t, t0)a†, ρc(t )]

+ γ (t, t0)[2aρc(t )a† − a†aρc(t ) − ρc(t )a†a]

+ γ̃ (t, t0)[aρc(t )a† + a†ρc(t )a

− a†aρc(t ) − ρc(t )aa†]. (6)

Here, the first term describes a unitary evolution of cavity
photon states. The renormalized cavity frequency ω′

c(t, t0) and
the renormalized external driving field f ′(t, t0) have taken

into account the influences of the spin ensemble and the
EM environment to the cavity state dynamics. The other two
terms in the master equation represent the nonunitary evo-
lution due to the dissipation and fluctuations induced also
by the spin ensemble and the EM environment. The dissi-
pation and fluctuation dynamics are characterized explicitly
with the dissipation and fluctuation coefficients γ (t, t0) and
γ̃ (t, t0), respectively. They describe the decay (relaxation) of
the cavity field and the dephasing (thermalization) between
the cavity and the spin ensemble. The most important feature
in the above exact master equation is that the time non-
local renormalized cavity frequency ω′

c(t, t0), renormalized
external driving field f ′(t, t0), dissipation coefficient γ (t, t0),
and fluctuation coefficient γ̃ (t, t0) are all determined by the
nonequilibrium Green functions [26]

iω′
c(t, t0) + γ (t, t0) = − u̇(t, t0)

u(t, t0)
, (7a)

f ′(t, t0) = iẏ(t, t0) − i

[
u̇(t, t0)

u(t, t0)
y(t, t0)

]
, (7b)

γ̃ (t, t0) = lim
τ→t

∂v(τ, t )

∂τ
−

[
u̇(t, t0)

u(t, t0)
v(t, t ) + c.c.

]
.

(7c)

The nonequilibrium Green functions u(t, t0), y(t, t0), and
v(τ, t ) obey the following integrodifferential equations

d

dt
u(t, t0) + iωcu(t, t0) +

∫ t

t0

dτ g(t, τ )u(τ, t0) = 0, (8a)

d

dt
y(t, t0) + iωcy(t, t0) +

∫ t

t0

dτ g(t, τ )y(τ, t0) = 1

ih̄
f (t ),

(8b)

d

dτ
v(τ, t ) + iωcv(τ, t ) +

∫ τ

t0

dτ ′g(τ, τ ′)v(τ ′, t )

=
∫ t

t0

dt ′̃g(τ, t ′)ū(t ′, t ) (τ � t ) (8c)

subjected to the boundary conditions u(t0, t0) = 1, y(t0, t0) =
0, and v(t0, t ) = 0. In Eq. (8), the memory integral kernels
g(t, τ ) and g̃(t, τ ) are defined by

g(t, τ ) = 1

h̄2

∑
k

|Vk|2e−i�k (t−τ )/h̄ + 1

h̄2

∑
l

|Vl |2e−iωl (t−τ )

=
∑
α=s,e

∫ ∞

0

dω

2π
Jα (ω)e−iω(t−τ ), (9a)

g̃(t, τ ) = 1

h̄2

∑
k

|Vk|2n̄(�k/h̄, Ts)e−i�k (t−τ )/h̄

+ 1

h̄2

∑
l

|Vl |2n̄(ωl , Te)e−iωl (t−τ )

=
∑
α=s,e

∫ ∞

0

dω

2π
Jα (ω)n̄(ω, Tα )e−iω(t−τ ), (9b)
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where

Js(ω) = 2π

h̄2

∑
k

|Vk|2δ(ω − �k/h̄), (10a)

Je(ω) = 2π

h̄2

∑
l

|Vl |2δ(ω − ωl ) � 2κ (10b)

are the spectral densities associated with the spin ensem-
ble and the EM environment, respectively, and n̄(ω, Ts,e) =
1/(eh̄ω/kTs,e − 1) are the corresponding particle distribution
function. The frequency dependence of Js(ω) depicts the in-
homogeneous broadening of the spin ensemble spectrum. The
cavity decay rate κ characterizes the cavity leakage effect.

The above formulation shows that after trace over all the
spin ensemble and the EM environmental states, the influence
of the spin ensemble to the cavity state dynamics is fully
encapsulated in the spectral density Js(ω). In particular, the
dissipation and fluctuation coefficients γ (t, t0) and γ̃ (t, t0)
provide a complete description of decay (relaxation) and de-
phasing (thermalization) of the decoherence dynamics under
the given spectral density Js(ω). We can further simplify the
integrodifferential equation of u(t, t0) as

d

dt
u(t, t0) + (iωc + κ )u(t, t0)

= −
∫ t

t0

dτ

∫ ∞

0

dω

2π
Js(ω)e−iω(t−τ ) u(τ, t0). (11)

As one can see, without the spin ensemble, the solution of the
above equation is u(t, t0) = e−(iωc+κ )(t−t0 ). It simply describes
the spontaneous decay of the cavity field, as one expected.
The last term in Eq. (11) determines the dissipation dynamics
of the cavity photons arisen from the spin ensemble. Notice
that the dissipation coefficient γ (t, t0) is only determined by
the u(t, t0), namely, it only describes the decay dynamics of
the system.

Furthermore, because of the boundary conditions
y(t0, t0) = 0 and v(t0, t ) = 0, Eqs. (8c) and (8b) can be
analytically solved in terms of u(t, t0) [26]:

y(t, t0) = 1

ih̄

∫ t

t0

dτ u(t, τ ) f (τ ), (12a)

v(τ, t ) =
∫ τ

t0

dt1

∫ t

t0

dt2u(τ, t1 )̃g(t1, t2)u†(t, t2). (12b)

It shows that y(t, t0) is the cavity response field with respect to
the driving field f (t ) incorporating the dissipation effect of the
spin ensemble. Furthermore, the Green function v(τ, t ) is the
correlation associated with the initial state of the spin ensem-
ble, which is indeed the noise correlation characterizing the
dephasing process and the non-Markovian memory dynamics,
as we will see later from Eq. (20) and the discussion thereafter.

Now, using the exact master equation, we can easily
compute the experimentally measurable cavity field 〈a(t )〉 =
Tr[aρc(t )] or cavity intensity (cavity photon number) 〈n(t )〉 =
Tr[a†aρc(t )]:

〈a(t )〉 = u(t, t0)〈a(t0)〉 + y(t, t0), (13a)

〈n(t )〉 = |u(t, t0)|2〈a†(t0)a(t0)〉 + |y(t, t0)|2 + v(t, t )

+[u∗(t, t0)〈a†(t0)〉y(t, t0) + c.c.]. (13b)

The semiclassical method used by Putz et al. [29,30] in
the explanation of their experimental observations is based
on the Volterra integral equation which can be equivalently
written as

〈n(t )〉sc = |〈a(t )〉|2 = |u(t, t0)〈a(t0)〉|2 + |y(t, t0)|2

+ [u∗(t, t0)〈a†(t0)〉y(t, t0) + c.c.].
(14)

The difference between the full quantum mechanical solution
given here and the semiclassical solution in Refs. [29,30] is
the quantum fluctuations and thermal noises

〈n(t )〉 − 〈n(t )〉sc

= v(t, t ) + |u(t, t0)|2(〈a†(t0)a(t0)〉 − 〈a†(t0)〉〈a(t0)〉).
(15)

This difference can be negligible in the semiclassical regime
[the average photon number 〈n(t )〉 ∼ 106, as was measured in
experiments [29,30]]. However, in the quantum regime, 〈n(t )〉
can be the order of one or less, where quantum and thermal
fluctuations become significant in the study of non-Markovian
processes, as we will discuss in the next subsections.

C. Quantum Langevin equation and noise correlation

For a self-consistency check and also for an alternative
physical interpretation to the non-Markovian decoherence dy-
namics given in the master equation, we make the connection
of the above result with the quantum Langevin equation de-
rived directly from Heisenberg equation of motion. Using the
Heisenberg equation of motion and eliminating the variables
of the spin ensemble as well as the EM environmental modes,
we have obtained the following quantum Langevin equation
[40,42,46,47] for the cavity field operator a(t ):

d

dt
a(t ) + (iωc + κ )a(t )

+
∫ t

t0

dτ

∫ ∞

0

dω

2π
Js(ω)e−iω(t−τ )a(τ ) = 1

ih̄
[ f (t ) + ξ (t )],

(16)

where ξ (t ) is the noise force induced by both the spin ensem-
ble and the EM environment:

ξ (t ) =
∑

k

Vke−i�k (t−t0 )/h̄ck (t0) +
∑

l

Vle
−iωl (t−t0 )bl (t0). (17)

If one takes the expectation value to the quantum Langevin
equation (16), it reproduces the Volterra equation proposed
and used in [29,31,32], as a semiclassical approach where the
noise force contribution to cavity state dynamics is ignored
because 〈ξ (t )〉 = 0. In other words, the Volterra equation
can describe the decay (relaxation) process, but is unable
to address the noise (dephasing) dynamics induced by the
fluctuations or noise forces from the spin ensemble. The fluc-
tuations become significantly important in the study of the
two-time photon correlation functions in the small photon-
number regime, as will be discussed in Sec. V.

Due to the linearity of Eq. (16), the general solution of the
quantum Langevin equation is

a(t ) = u(t, t0)a(t0) + y(t, t0) + ζ (t ). (18)
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It is easy to find that u(t, t0) and y(t, t0) are given by Eqs. (11)
and (12a), and ζ (t ) is the noise response field to the noise
force ξ (t ):

ζ (t ) = 1

ih̄

∫ t

t0

dτ u(t, τ )ξ (τ ). (19)

Furthermore, the correlation function v(t, t ) of Eq. (12b)
obtained in the master equation method is just the noise cor-
relation:

v(τ, t ) = 〈ζ †(t )ζ (τ )〉

=
∫ τ

t0

dt1

∫ t

t0

dt2u(τ, t1 )̃g(t1, t2)u†(t, t2). (20)

Thus, we reproduce the Green functions u(t, t0), v(τ, t ) and
the driving-field induced cavity response field y(t, t0) in the
exact master equation. In particular, Eq. (20) is the nonequi-
librium generalization of the fluctuation-dissipation theorem
in the time domain. In other words, in the full quantum
mechanical description of open quantum systems, dissipation
(relaxation) and fluctuations (noise or dephasing) are simul-
taneously related to each other, and should be put together in
the study of the non-Markovian memory dynamics, as we will
discuss next.

D. Noise correlations and the nature
of non-Markovian dynamics

Non-Markovian dynamics is a memory feature characteriz-
ing the correlations between the system and the environment
during their historical evolution. It is the convolution inte-
grals (with the memory kernels) in Eqs. (11) and (20) that
depict the non-Markovian dynamics of the cavity system in-
teracting with the spin ensemble. The non-Markovian cavity
dissipation dynamics is determined by the Green function
u(t, t0) of Eq. (11). Its general solution has been given in [27].
Explicitly, taking a modified Laplace transformation U (z) =∫ ∞

t0
u(t, t0)eizt dt to Eq. (11), we have

U (z) = i

z − ωc + iκ − �(z)
. (21)

Here, �(z) = ∫ ∞
0

dω
2π

Js (ω)
z−ω

is the self-energy correction. Fur-
thermore,

lim
z→ω±iε

�(z) = �(ω) ∓ i

2
Js(ω). (22)

The principal value �(ω) = ∑
α P

∫ ∞
0

dω′
2π

Jα (ω′ )
ω−ω′ is the cavity

frequency shift arisen from the spin ensemble. The general
solution of u(t, t0) is expressed as [27]

u(t, t0) =
∑
ωb

Z (ωb)e−iωb(t−t0 )

+
∫ ∞

0

dω

2π

Js(ω)e−iω(t−t0 )

[ω − ωc − �(ω) + iκ]2 + J2
s (ω)/4

.

(23)

The first term is the contribution of localized modes, in which
the residue Zωb= 1

1−�′(ωs ) is the corresponding bound-state
amplitudes. A localized mode can exist if and only if both

conditions are simultaneously satisfied [27]∑
α

Jα (ωb) = 0, ωb=ωc+�(ωb). (24)

As we show in general non-Markovian dynamics of open
quantum systems [27] and also explored in the non-
Markovianity measure through two-time correlation functions
[38], localized modes are dissipationless and represent a
long-time non-Markovian memory effect. The second term
in Eq. (23) is a contribution from the branch cut due to the
discontinuity of �(z), so does U (z), across the real axis on
the complex space z in the inverse Laplace transformation of
Eq. (21). This branch cut usually induces a nonexponential
decay which represents a short-time non-Markovian memory
effect.

The non-Markovian memory feature can be described
more precisely through the noise correlation. In terms of
Langevin equation, the color noise (i.e., the memory process
or non-Markovian process) is defined by the noise force char-
acterized by 〈ξ (t )〉 = 0 and 〈ξ (t )ξ (τ )〉 = g̃(t −τ ). Here, ξ (t )
is given by Eq. (17) and g̃(t −τ ) is given by Eq. (9b). Using
the linear response theory, one can derive the fluctuation-
dissipation theorem from the Langevin equation [48]. For
a memoryless process, the noise force is δ correlated, i.e.,
〈ξ (t )ξ (τ )〉 ∝ δ(t −τ ), and its Fourier transform is frequency
independent, which is defined as Markovian process. This is
not the case for the hybrid system considered in this work.
The noise correlation (20) is indeed the nonequilibrium ex-
tension of the fluctuation-dissipation theorem in the time
domain [27]. Let us take the steady-state limit of the noise
correlation v(t, t + τ ) = 〈ζ †(t + τ )ζ (t )〉 of Eq. (20), which
is the quantity truly characterizing memory processes, i.e.,
non-Markovian dynamics [38,41,49]. For simplicity, let κ = 0
in Eq. (23), we have

v(t, t + τ )
t→∞=

∫ ∞

0

dω

2π
n(ω, T )J (ω)eiωτ

×
[ ∑

ωb,b′

Z (ωb)Z (ωb′ )e−i(ωb−ωb′ )t

(ω − ωb)(ω − ωb′ )

+ 1

[ω − ωc − �(ω)]2 + J2(ω)/4

]
. (25)

The frequency dependence of the above noise correlation
is the manifestation of color noise as memory or non-
Markovianity. The first term and the second term of Eq. (25)
are, respectively, the localized mode contribution and the
branch cut contribution. The first term is preserved at τ → ∞,
which indicates that the memory induced by localized modes
is a long-time non-Markovian memory effect. The branch cut
contribution vanishes at τ → ∞ so that it leads to a short-time
non-Markoviain effect. This is the general picture of non-
Markovianity that can be directly measured in experiments
through the two-time correlation functions [38]. Note that
thermal fluctuation n(ω, T ) can also modify non-Markovian
memory effect in the low-temperature regime, as shown in
Eq. (25).

To see further the long-time memory effect arisen from
localized modes, we consider the exact solution of the master
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equation (6) for an arbitrary initial state of the cavity system
ρc(t0) = ∑∞

l,m=0 ρlm(t0)|l〉〈m| in the absence of the deriving
field f (t ) = 0. The result has been obtained previously [49],

ρc(t ) =
∞∑

l,m=0

ρlm(t0)
min{l,m}∑

k=0

dkA+
lk (t )̃ρ[v(t, t )]Amk (t ), (26a)

where

ρ̃[v(t, t )] =
∞∑

n=0

[v(t, t )]n

[1 + v(t, t )]n
|n〉〈n|, (26b)

A+
lk (t ) =

√
l!

(l − k)!
√

k!

[
u(t, t0)

1 + v(t, t )
a+

]l−k

, (26c)

and dk = [1− |u(t,t0 )|2
1+v(t,t ) ]

k
. If there is no localized mode,

Eq. (23) leads to u(t →∞, t0) = 0. Then, ρc(t →∞) =
limt→∞ ρ̃[v(t, t )] which is a thermal-like state and is inde-
pendent of the initial cavity state. In other words, the branch
cut contribution in Eq. (23) only induces a short-time memory
effect, i.e., the initial state information is completely lost after
a certain period of time. However, when localized modes ex-
ist, u(t → ∞, t0) = limt→∞

∑
ωb
Z (ωb)e−iωb(t−t0 ) which does

not vanish. Consequently, ρc(t → ∞) always remain some
information on the initial cavity state ρlm(t0) [see Eq. (26a)],
i.e., the state always keeps the memory on initial state infor-
mation. This shows explicitly how localized modes induce the
long-time non-Markovian memory effect.

Furthermore, the long-time memory feature can be un-
derstood deeply from the bound-state structure of localized
modes. Consider a simple initial state: |ψ (t0)〉 = a†|0, {0k}〉,
i.e., the system is initially in a single-excitation state, and the
spin ensemble is in the vacuum so that the Schrödinger equa-
tion can be used to determine the evolution of the total system
in this special case. By solving exactly the time-dependent
Schrödinger equation, the state of the total system at a later
time t is given by

|ψ (t )〉=u(t, t0)|1s, {0k}〉+
∑

k

αk (t, t0)|0s, {1k}〉, (27)

where u(t, t0) is determined by Eq. (23) and the coefficient
αk (t, t0) is given by

αk (t, t0) = −iVk

∫ t

t0

dτ e−iωk (t−τ )u(τ, t0). (28)

Substituting the solution of Eq. (23) into the above relations,
we obtain

|ψ (t )〉 t→∞=
[ ∑

ωb

e−iωb(t−t0 )Z (ωb)

(
a† +

∑
k

Vk

ωb − ωk
b†

k

)

+
∑

k

e−iωk (t−t0 )

[ωk − ωs − �(k)] + iJ (k)/2
b†

k

]
|0, {0k}〉.

(29)

The first term in the above solution is the bound state of
a localized mode, which is a highly collective quasiparticle
state coherently combining the system and the environmental

modes together:

|B(ωb)〉 = Z (ωb)

(
a† +

∑
k

Vk

ωb − ωk
b†

k

)
|0, {0k}〉, (30)

where Z (ωb) is the wave-function amplitude of the bound
states as shown in Eq. (23). The second term corresponds
to the branch cut contribution and will decay (relax) to the
vacuum state in the long-time limit. Thus, any change of the
environment or the change of the coupling between the system
and the environment will response on the structure of the
localized bound state. This shows how the non-Markovian
memories can be presented for long time through the cor-
relations between the system and environment if localized
modes are formed because the system and the environment
are coherently correlated forever in the localized bound states.
This provides the underlying picture of the long-time non-
Markovian memory dynamics induced by the localized bound
states.

Of course, it must be pointed out that the description with
the Schrödinger equation alone is incomplete for the cavity
decoherence dynamics when the spin ensemble is initially in
a thermal state (at finite temperature). This is because the
thermal state is a mixed state so that the Schrödinger equation
is not applicable, and quantum and thermal fluctuations must
be taken into account simultaneously through the fluctuation-
dissipation theorem. As we have shown, the above solution
of the localized bound states remains the same structure in
the Green function formulation. Nevertheless, the discussions
given in this section show that the non-Markovian memory
dynamics is a manifestation of dissipation and fluctuation
dynamics together, which provide a rather complete physical
picture on decoherence dynamics for open quantum systems
in the framework of the exact master equation.

III. DECOHERENCE DYNAMICS OF THE CAVITY
COUPLED STRONGLY TO THE SPIN ENSEMBLE

Based on the general non-Markovian decoherence theory
presented in the last section, we take applications to the
realistic hybrid quantum systems in the this and the next
sections. In the two recent experimental setups by Putz et al.
[29,30], the superconducting microwave cavity frequency ωc

is set to 2π × 2.69 GHz, and the main frequency ωs of the
spin spectral density is resonant with the cavity ωs = ωc,
but has the broadening effect. Also, spins are surrounded by
a Helmholtz coil which supplies a strong magnetic field to
modify the spins into the polarized ground state. To reduce
the thermal fluctuation effect, the entire experimental setup is
cooled down to T = 25 mK, which is only about one-fifth of
the excitation energy of spins. By applying a driving field, the
cavity photonic state may be coherently stored and retrieved
from the spin ensemble for quantum information processing.
By controlling the strength of the driving pulse, the number
of injected photons is manifested to be about or less than 106,
which is much lower than the total number of spins ≈1012 in
the cavity so that the Holstein-Primakoff approximation to the
spin ensemble is valid.

The main difference in the two experiments of Refs. [29]
and [30] is the manipulation of the broadening spectral density
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FIG. 1. The spectral density J (ω) of the spin ensemble, Eq. (31),
as a function of the frequency. (a) The black, blue, and red curves
correspond to the spectral densities of a Lorentzian form (q = 2),
a Gaussian form (q = 1), and the q-Gaussian form (q = 1.39), re-
spectively. (b) The black (thin) curve is the original q-Gaussian form
(q = 1.39), and the red (thick) curve is modified from the q-Gaussian
form by the hole-burning technique [30]. Here, the tendency of
J (ω) → 0 as ω → 0 is also shown.

of the spin ensemble. The spectral density of Eq. (10a) is
experimentally fitted as a q-Gaussian spectral density [29]

J (ω) ≡ Js(ω) = 2π�2ρ(ω)

= 2π�2C

[
1 − (1 − q)

(ω − ωs)2

�2

] 1
1−q

, (31)

with q = 1.39, which is an intermediate form between a
Gaussian spectral density (q = 1) and a Lorentzian spec-
tral density (q = 2). Here, C is its normalization constant∫

dω ρ(ω) = 1, ωs is the main frequency of the spin ensem-
ble, � is determined by the full width at the half-maximum

of J (ω) which is given by γ = 2�
√

2q−2
2q−2 = 18.8π MHz. The

coupling strength 2� = 2π × 17.2 MHz represents a strong
coupling in Ref. [29]. The specific profile of the spectral
density J (ω) is shown in Fig. 1(a). While the spectral density
in another experiment [30] is a modification of Eq. (31) as
shown in Fig. 1(b), which is made by the spectral hole-burning
technique, a well-established technique in quantum optics
used to turn off the excitations at some specific frequencies in

FIG. 2. (a) The q-Gaussian spectral density J (ω) (in units of Hz
for h̄ = 1) with respect to the frequency ω in the units of �R (after a
central frequency shift ω − ωs → ω, where ωs = ωc), which is also
proportional to the imaginary part of the self-energy. (b) The blue
curve is the real part of the self-energy (in units of Hz), the crossing
points with the red line are the solution of �(ω)=ω. (c) The blue
(real) and red (dot) curves are the real and imaginary parts of U (ω)
(in units of 1/Hz), respectively. Note that (a)–(c) solved from the
Fourier transformation of Green function u(t, t0). (d) The inverse
Laplace transformation of U (ω), i.e., the solution of Green func-
tion u(t, t0 ) which is dimensionless. The blue (real) and the red
(dot) curves correspond to the real and imaginary parts of ũ(t, t0) ≡
u(t, t0)eiωc (t−t0 ) with t0=0.

the spin ensemble. Here, the particular frequencies of ωs ± �R
2

are burnt out as shown in Fig. 1(b). Besides, in the experiment
[30], the full width at half-maximum of the spectral density
is changed slightly to 18.2π MHz, and the coupling strength
� ≈ �R

2 =21.3π MHz with �R being the Rabi frequency.
The cavity decay rate κ/2π = 0.4 MHz counting the leakage
effect. Our calculations are all based on these experimental
parameter setups. We set h̄ = 1 hereafter so that the energy
has the same unit as frequency.

For the spin ensemble with the q-Gaussian spectral density,
Eq. (31), the central frequency ωs = 2π × 2.69 GHz which is
much larger than the spectral width γ = 18.8π MHz. Thus,
the spectral density at ω = 0 is nearly zero, i.e., J (0) � 0
as shown in Fig. 1. From Figs. 2(a) and 2(b), we see that
even though J (ω) � 0 for ω � 0, another localized mode
condition in Eq. (24), ωb = ωc + �(ωb) cannot be satisfied
[see Fig. 2(b)] so that no localized bound state can exist for
ω � 0. As a result, the solution (23) for u(t, t0) is simply
reduced by

u(t, t0) = 2

π

∫ ∞

0
dω

J (ω)e−iω(t−t0 )

4[ω − ωc − �(ω) + iκ]2 + J2(ω)
.

(32)

Figures 2(c) and 2(d) present all the decoherence information
of the cavity system. These results are independent of the
specific initial state of the cavity one takes.

Experimentally, the photon number is measured by detect-
ing the transmission intensity of the cavity field. Our theory
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FIG. 3. (a) The blue line is the evolution of cavity response field
ỹ(t, t0 )=y(t, t0)eiωct with respect to a rectangular driving field at the
resonant frequency ωp = ωc = ωs, the damping is caused by the
spin ensemble for the q-Gaussian spectral density. The red dashed
line is given by Eq. (35) for the time duration t � toff. (b) The
photon fluctuation v(t, t ) of Eq. (12b) induced by spin ensemble at
temperature T = 25 mK, which is negligible in comparison with the
driving-field-induced cavity field |y(t, t0 )|2, as shown in the figure.
Both ỹ(t, t0) and v(t, t ) are dimensionless.

gives the solution to the cavity photon number, i.e., Eq. (13b),
which is divided into four terms. The first term represents the
dissipation of the initial photons in the cavity. The second term
is the cavity response to the driving field. The third term shows
the photon fluctuations induced by the spin ensemble and the
environment. The last term is the interference between the
initial cavity photons and the driving field response photons.
In the experiment [29], the cavity system is initially set in the
vacuum. Hence, the first and the last terms vanish in Eq. (13b)
so that the cavity intensity is simply reduced to

〈n(t )〉 = |y(t, t0)|2 + v(t, t ), (33)

where y(t, t0) and v(t, t ) are given by Eq. (12) which is deter-
mined by the solution of Eq. (32).

The solutions of y(t, t0) and v(t, t ) are plotted in Fig. 3
in which ỹ(t, t0)=y(t, t0)eiωc (t−t0 ). It shows that the cavity
response field undergoes two damping processes. The first
damping takes place when a rectangular driving field is ap-
plied to the cavity. The cavity photons are raised up to
the maximum very quickly. In the meantime they are dissi-

FIG. 4. (a) The cavity intensity under a rectangular driving field
calculated from our theory. (b) The cavity intensity measured (black
curve) in experiment and the semiclassical description (red curve)
given in Fig. 2(b) of Ref. [29]. The cavity intensity has be converted
to electric signal in unit of V 2 as shown in experiment.

pated into the spin ensemble which is described in Eq. (12a)
through the Green function u(t, t0); the corresponding
oscillating damping is similarly shown in Fig. 2(d). The decay
lasts a certain time ts (ts < 600 ns for the parameters given in
[29]), and the cavity photons gradually reach a saturation, i.e.,
y(ts, t0) � y(toff ) = 〈a†(toff )〉 after ts � 600 ns. Also note that
the oscillating damping is the manifestation of a short-time
non-Markovian cavity decoherence induced by the inhomoge-
neous broadening of the spin ensemble spectrum, as we will
discuss in details later.

After the driving field is turned off at the time toff, the cavity
field undergoes the second damping, as shown by the blue
solid line in Fig. 3(a). This result is directly obtained from
the solution of y(toff + τ, t0) which can be reduced to

ỹ(toff+τ, t0) = ỹ(toff )−ỹ(τ, t0), (34)

which shows that the second damping process is off phase
with the first damping process. As a result, the timescale of
the second damping in the observation of the cavity intensity
is only a half of the decay time of the first damping, as shown
in Fig. 4. On the other hand, the second damping process
contains two parts, one is the restarted damping of the cavity
response field y(toff ) after the driving field is turned off, which
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FIG. 5. (a) The cavity intensity under a phase-shifting driving
field calculated from our theory, similar to the plot of Fig. 4. (b) The
cavity intensity measured (black curve) in experiment and the semi-
classical description (red curve), as shown in Fig. 4(b) of Ref. [29].

is given by

ỹ1(toff+τ, t0) = ũ(τ, toff )ỹ(toff ). (35)

The result is shown by the red dashed line in Fig. 3(a). The
difference between the blue solid line and the red dashed line
in Fig. 3(a) is the field retrieved back from the spin ensemble,
regarded usually as the quantum memory in hybrid quantum
systems [29].

With the above detailed picture how the cavity response to
the driving field is decohered into the spin ensemble and how
it is retrieved back from the spin ensemble after the driving
field is turned off, we present in Figs. 4 and 5 the cavity
intensity of Eq. (33) with a rectangular driving field and a
π -phase-shifting driving field, respectively, in a comparison
with the experiment observations at the same conditions [29].
Figures 4(a) and 5(a) show that our theoretical solutions are
in good agreement with the experimental data of Figs. 4(b)
and 5(b) [corresponding to Figs. 2(b) and 4(b) in Ref. [29]].
In fact, the authors of Ref. [29] used a semiclassical approach
(the Volterra integral equation) to describe the cavity photon
dynamics, and their results [see the red curves in Figs. 4(b)
and 5(b)] also fitted the experimental data very well, also see
[32]. This is because the driving field is a classical field con-
taining photon number (≈106) and the temperature is set to
be very low (≈25 mK ∼ 1

5 h̄ωc) in the experiment. The corre-
sponding photon fluctuations given by v(t, t ) are indeed very

FIG. 6. Decoherence dynamics of the cavity photons dissipating
into the spin ensemble for different coupling strength � between the
cavity and the spin ensemble; the same other parameters are taken as
given in the experiment [29]. (a), (b) The time evolution of the Green
function u(t, t0) for the coupling strength �/2π = 0.5, 1.0 MHz
and 4, 8.6 MHz, respectively. (c), (d) The corresponding dissipation
coefficient γ (t, t0 ) determined by Eq. (36).

very small, namely, v(t, t ) � |y(t, t0)|2, as shown in Fig. 3
[comparing the magnitude difference between Figs. 3(a) and
3(b)]. This gives the reason why the semiclassical approach
used in [29] can fit very well with the experimental data.

On the other hand, the oscillating damping in Figs. 4
and 5 manifest the non-Markovian decoherence dynamics of
the cavity field induced by the spin ensemble, here the cav-
ity leakage is very small (κ = 2π × 0.4 MHz � � = 2π ×
8.6 MHz) [29]. These oscillating dampings can be character-
ized by the dissipation coefficient γ (t, t0) in the exact master
equation (6) and can be explicitly computed through Eq. (7a)
which is again determined by the Green function u(t, t0) of
Eq. (32):

γ (t, t0) = −Re[u̇(t, t0)/u(t, t0)]. (36)

Some results are plotted in Fig. 6. Taking the same parame-
ters used in experiment [29], we find that when the coupling
strength �/2π < 2 MHz (weak couplings), the Green func-
tion u(t, t0) shows an exponential decay [see Fig. 6(a)], which
is the Markovian decoherence process. The corresponding
decay rate is given by the asymptotic value of γ (t, t0) [see
Fig. 6(c)]. The asymptotic value is γ (t → ∞, t0) � 2κ +
J (ωs), as expected in the experiment observation in [29].

For the strong coupling (here �/2π > 2 MHz), the de-
coherence dynamics is very different. The Green function
u(t, t0) is no longer a simple exponential decay, it involves an
oscillating damping for the cavity field as shown in Fig. 6(b).
Such oscillating damping leads to the stronger oscillation
of the dissipation coefficient γ (t, t0) in time, as shown in
Fig. 6(d). As it is well known, the oscillation of dissipation
coefficient between positive and negative values is the evi-
dence of non-Markovian decoherence dynamics. In particular,
the sudden change in the dissipation coefficient from a huge
positive value to a huge negative value corresponds to forward
and backward rapid photon (and information) flows between
the cavity and the spin ensemble in a rather short time. As
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the coupling becomes stronger and stronger, such forward
and backward rapid photon flows get faster and faster. This
is a direct and significant manifestation of non-Markovian
dynamics.

To understand further the above non-Markovian decoher-
ence feature induced by the spin ensemble, we take the
Lorentzian spectral density as a comparison. For the Lorentz
spectral density, J (ω) = 2�2 �

(ω−ωc )2+�2 , i.e., Eq. (31) with
q = 2, the Green function u(t, t0) can be analytically solved:

u(t, t0) = exp

{
−

(
iωc + �

2

)
(t − t0)

}
×

(
cosh

�′(t − t0)

2
+ �

�′ sinh
�′(t − t0)

2

)
, (37)

where �′ = √
�2 − 4�2. It is well known that the Markovian

and non-Markovian dynamics occur in the weak- and strong-
coupling regimes � < �/2 and � > �/2, respectively, with
� = �/2 being the transition point [27,50,51].

For the weak coupling � < �/2, Eq. (37) shows that the
cavity field mixes two decay processes with decay rates �± =
� ± �′,

ũ(t, t0) =1

2

(
1+ �

�′

)
exp

{
−1

2
(� − �′)(t − t0)

}
+ 1

2

(
1− �

�′

)
exp

{
−1

2
(� + �′)(t − t0)

}
, (38)

where u(t, t0) ≡ ũ(t, t0)e−iωc (t−t0 ). As we can see, both terms
in Eq. (38) show exponential decays with different decay
constants � ∓ �′, which lead to a positive-definite decay
coefficient γ (t, t0) in time, as a criterion for Markovianity
[51]. It also shows that the small-amplitude part (the second
term) decays faster (mainly happening in short time) and the
large-amplitude part (the first term) decays slower (lasting
longer), as the coupling increases. The overall effect shows
that the damping becomes stronger as the coupling increases.

For the strong coupling � > �/2, the cavity field damping
is analytically described by

ũ(t, t0) = 1

2

[(
1− �

ω′

)
eiω′(t−t0 )+

(
1+ �

ω′

)
e−iω′(t−t0 )

]

× exp

{
− �

2
(t − t0)

}
, (39)

where ω′ = √
4�2 − �2. It shows that the decay factor is

a simple exponential decay but the field amplitude strongly
oscillates as the coupling increases. This leads to the rapid os-
cillation of the dissipation coefficient γ (t, t0) between positive
and negative values in time, similar to the situation shown in
Fig. 6(d) for spin ensemble. This is the evidence of manifest-
ing non-Markovian decoherence dynamics, even though the
whole amplitude profile decays exponentially with a constant
decay rate � = � (note that a pure exponential decay without
amplitude oscillations corresponds to a Markovian process).

The rapidly oscillating dissipation coefficient γ (t, t0) be-
tween positive and negative values in time is the clear
signature for non-Markovian dynamics, manifested through
the rapidly forward and backward information flow between

the cavity and the reservoir. It is interesting to see whether
such a rapid information flow plays a similar role as dynamical
decoupling through a rapid time-dependent control modula-
tion (spin echo) for decoherence suppression [52,53], even
though the mechanisms are completely different. The former
comes from the symmetric spectral density where the spectral
density is the decoherence source, while the latter is generated
from the external control pulses. The analytical solution for
the Lorentzian spectral density shows that the decay rate for
the whole amplitude profile retains a constant as the coupling
increases, which seems to have no decoherence suppression
in the strong-coupling regime [19]. But by comparing to the
decay dynamics in the weak-coupling regime, we see that
the dominated decay process [the first term in Eq. (38)] is
enhanced as the coupling increases (because � − �′ increases
as � increases). Thus, the decay rate retains a constant (i.e.,
no increase) as � increases in the strong-coupling regime for
the Lorentzian spectral density may be considered as a modest
suppression of decoherence. In this sense, the rapidly forward
and backward information flow for the non-Markovian dy-
namics in the strong coupling provides the qualitative picture
how the decoherence is suppressed in the strong coupling,
comparing with the decoherence in the weak-coupling regime.
Such decoherence suppression becomes more significant for
the q-Gaussian spectral density of Eq. (31), a deformed
Lorentzian spectral density, as observed [29].

For a more intuitive understanding, we plot the decoher-
ence dynamics in Fig. 7 for the Lorentzian spectral density
and the Gaussian spectral density similar to that plotted in
Fig. 6. The results show that in the weak-coupling regime,
the decay is enhanced as the coupling increases for all three
spectral densities, but the strongest enhancement is Gaussian
spectral density, then the q-Gaussian, and then Lorentzian,
as shown from the steady-state values of the decay coeffi-
cients plotted in Figs. 6(c), 7(c) and 7(g). On the contrary,
for strong coupling, the decay of all three spectral densities is
suppressed, but the suppression is modest for Lorentzian, then
becomes strong for q-Gaussian, and stronger for Gaussian, as
shown through the decays of the amplitude profiles plotted in
Figs. 6(b), 7(b) and 7(f). This can also be seen from Figs. 6(d),
7(d) and 7(h), where the oscillations of the decay coefficients
between the huge positive and negative values become faster
and faster from Lorentzian to the q-Gaussian, then to Gaus-
sian, as a manifestation of decoherence suppression. These
decoherence suppression behaviors correspond to cavity pro-
tection effect studied in [19] but actually it is not the property
only for cavities but also for any other open systems with such
symmetric spectral densities.

It may also be worth pointing out that for frequency-
dependent spectral densities, the corresponding decoherence
dynamics cannot be characterized by a single decay constant.
This is because for non-Markovian decoherence dynamics,
the decay is always time dependent, as characterized by the
time-dependent decay coefficient in the exact master equation
as well as in the exact quantum Langevin equation. It is the
time-dependent decay coefficient that depicts the transient
decoherence dynamics (the oscillations) in the real-time do-
main. The detailed decoherence dynamics is rather sensitive
to the spectral density profile [27,49]. The perfect decoher-
ence suppression for the rectangular spectral density studied
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FIG. 7. Decoherence dynamics of the cavity coupled to a spin
ensemble in the weak and strong couplings. The top panel is for a
Lorentzian spectral density. (a), (b) The time evolution of the Green
function u(t, t0 ). (c), (d) The corresponding dissipation coefficient
γ (t, t0 ). The bottom panel is for a Gaussian spectral density. (e),
(f) The time evolution of the Green function u(t, t0). (g), (h) The
corresponding dissipation coefficient γ (t, t0 ).

in [19] is indeed arisen from the localized modes, as we
have also shown earlier in the tight-binding spectral density
[21,22], as well as will be discussed in the next section for
the hole-burning spectral density, where the existence of lo-
calized bound states provides another physical mechanism for
decoherence suppression.

IV. DECOHERENCE SUPPRESSION
BY HOLE-BURNING SPECTRA

In another experiment of Putz et al. [30], the spectral
density of the spin ensemble is modified by the spectral hole-
burning technique which was proposed in [33]. The spectral
density after hole-burning frequencies at ωs±�R

2 is shown in
Fig. 1(b) [also see Fig. 8(a)]. In Fig. 8(b), the intersection
points of the self-energy �(ω) with the red line are located
at frequencies ωs±�R

2 , which result in two localized modes
[27] by the conditions: J (ω) = 0 and ω − ωs − �(ω) = 0 of
Eq. (24) if the cavity leakage κ can be ignored. The Green

FIG. 8. (a)–(d) The same plot as Fig. 2 but the spectral density
has been modified by the spectral hole burning at ω = ωs±�R

2 .

function u(t, t0) is then given by

u(t − t0) =Z (ω+)e−iω+(t−t0 ) + Z (ω−)e−iω−(t−t0 )

+
∫ ∞

0

dω

2π

Jh(ω)e−iω(t−t0 )

[ω − ωc − �(ω)]2 + [Jh(ω)/2]2

(40)

with two localized modes ω± = ωc ± �R/2. More explicitly,
the two localized modes correspond to two bound states

|B(ω±)〉 = Z (ω±)

(
a†+�

∫ ∞

0
dω

ρh(ω)

ω± − ω
b†

ω

)
|0, {0ω}〉,

(41)

where Jh(ω) = 2π�2ρh(ω), and ρh(ω) is the hole-burned
density of state of the spin ensemble spectrum shown in
Fig. 1(b). As one can see, the above bound states are the bound
states of collective quasiparticles correlating the origin cavity
mode with all different modes in the spin ensemble together
through their couplings under the hole-burning modification
of the spin ensemble spectrum. These two localized bound
states correspond to the hybridized polaritonic states [30,33]
observed as the peaks in the spectral transmitted steady-state
intensity, as shown in Fig. 4d of Ref. [30]. More specific,
putting the first two terms of Eq. (40) together has been called
a collective dark state in [30]. The last term in Eq. (40) comes
from the branch cut that leads to the cavity field damping,
which is called the subradiant states in [30].

It should be pointed out that these localized bound states
are not the same as the dark states studied in quantum optics
[54]. Here, the wave-function amplitude Z (ω±) is fully deter-
mined by the spectral density of the broadening spin ensemble
incorporating the hole burning. As shown from Eq. (41), each
localized bound state can trap all different frequency modes
together because of the spectral broadening that the cavity
coupled with. But, the above two bound states themselves cor-
respond to two independent quasiparticles and are uncoupled
from each other so that no Rabi oscillation occurs between
these two localized bound states through the controls of the
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FIG. 9. Cavity intensity for the q-Gaussian spectral density without (a), (b) and with (c), (d) the spectral hole burning, under a sinusoidal
driving field, in which (a) and (c) are the theoretical calculations from our theory; (b) and (d) are the experimental measurements by Putz et al.,
as shown by Figs. 3(e)–3(f) in Ref. [30].

coupling � and the driving field f (t ), their wave-function
amplitudes Z (ω±) are fixed. Thus, it is not easy to retrieve
photon states back when the photons are trapped in these
localized bound states because these states correlate collec-
tively all possible modes from the spin ensemble. In other
words, because localized bound states correlate all possible
modes from the spin ensemble, these localized bound states
can suppress decoherence but lack the property of the dark
states for retrieving information back with high efficiency
[54].

The two sharp peaks at ωs±�R
2 in Fig. 8(c) show the po-

sitions of the two localized modes, respectively, located at
the hole-burning frequencies in the spectral density. In other
words, the hole-burning positions proposed in [33] generate
the two special cavity localized bound states discussed above.
A similar idea for such decoherence suppression was pro-
posed earlier in [23] but of course the hole-burning technique
proposed in [33] is excellent for such a realization of deco-
herence suppression. As a result, the Green function u(t, t0)
keeps oscillation in time, contributed from these two localized
modes, as shown in Fig. 8(d). In other words, the cavity
field will not reach a steady state with the spin ensemble,
as a dissipationless process (decoherence suppression) arisen
from the spectral hole burning. This changes significantly the
decoherence dynamics of the cavity field, as observed in [30].
Note that in the ideal case, the peaks in Fig. 8(c) should be δ

functions, as the evidence of perfect localized states. However,
due to the existence of a small cavity leakage (κ �= 0), the

peaks have a small finite width which results the cavity field
in a very slow decay in the long time, which is not plotted in
Fig. 8(d).

In the experiment [30], the cavity intensity is measured
while applying a sinusoidal modulated pulse. Figure 9 shows
a comparison of the cavity intensity with and without the
spectral hole burning to the spin ensemble spectrum. Both
the theoretical calculations and the experimental results show
that, without the spectral hole burning, the cavity intensity has
an exponential decay (a linear decay in logarithmic timescale)
after the driving field is turned off [see Figs. 9(a) and 9(b)].
While, with the spectral hole burning, the cavity damping
slows down significantly after the driving field is turned off
[see Figs. 9(c) and 9(d)]. In other words, the coherence time is
substantially improved. This is the effect of the dissipationless
localized modes due to the spectral hole burning on the spin
ensemble, as shown in [30].

Also note that the theoretical and the experimental results
shown in Figs. 9(c) and 9(d) do not fit each other very well.
This is because the decoherence dynamics is rather sensitive
to the position and also the shapes of the burning holes. In
addition to the spectral hole burning at frequencies given in
[30,33], we also consider burning frequencies at different po-
sitions to see how the decoherence dynamics of the cavity field
sensitively depends on the shape of the spectral density. In
Fig. 10(a), the spectrum is burnt at ωs=ωc. Theoretically, there
may exist a localized mode at frequency ωs if the cavity decay
κ can be negligible so that the decoherence can be suppressed.
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FIG. 10. (a)–(d) The same plot as Fig. 8 with a burning frequency
at ω = ωs. (e) The corresponding cavity intensity for a sinusoidal
driving field.

However, because the slope of J (ω) at ωs [see Fig. 10(a)] is
so steep such that the amplitude of this localized mode is very
very small, as shown by a tiny dip at ωs in the Fig. 10(c).
In other words, the burning frequency almost has no effect
on the cavity decoherence dynamics, as shown in the inset of
Fig. 10(d). The experimentally observable cavity intensity is
plotted in Fig. 10(e) for a sinusoidal driving field. The result is
very similar to the solution without the hole burning as shown
in Fig. 9(a).

If the spectrum is burnt at ωs±�R
4 as shown in Fig. 11(b),

then the decoherence dynamics also has not much differ-
ence in comparing with the case without hole burning [see
Figs. 2(d) and 11(d) and also 10(d)], even though the decay is
slowed down a little bit. This is because no localized bound
state can be generated in this case; the two conditions given
by Eq. (24) cannot be simultaneously satisfied. This shows
that the burning frequencies must be chosen very close to
the position of the intersection points with the red line in
Fig. 11(b), i.e., at the half-maximum of the spectral density
so that the dissipationless localized modes between the cavity
and the spin ensemble can be formed and the wave-function
amplitude of these localized bound states can be visibly large.
Finally, we examine an example of how much the burning fre-
quency is close to the intersection points ωs ± 1

2�R between
the self-energy �(ω) and the red line in Fig. 8(b) such that

FIG. 11. (a)–(d) The same plot as Fig. 8 with a pair-burning
frequency at ω = ωs±�R

4 . (e) The corresponding cavity intensity for
a sinusoidal driving field.

the decoherence can be effectively suppressed. As shown in
Fig. 12, when the hole burning is made at ωs ± ( 1

2 + 0.05)�R

(a little bit away from the intersection points ωs ± 1
2�R), the

decoherence suppression is significantly reduced. We further
find that the visible decoherence suppression by hole burning
shows up only in the very narrow windows ωs + ( 1

2 ± 0.1)�R

and ωs − ( 1
2 ± 0.1)�R. No suppression effect can be seen

outside of the above windows because no localized bound
state can be effectively formed. These detailed analyses show
that the hole-burning spectral density at the right positions
generates localized modes. These localized modes correspond
to collective bound states of the cavity entangled with all
possible modes in the spin ensemble that can largely suppress
the cavity decoherence.

V. CHARACTERIZING QUANTUM MEMORY WITH
TWO-TIME CORRELATION FUNCTIONS

The above two sections provide a rather complete descrip-
tion of dissipation (decay) dynamics of the hybrid quantum
system that has been experimentally measured. As it is shown,
the dissipation dynamics is determined by the Green function
u(t, t0), from which we find how the driving-field-induced
cavity response field y(t, t0) changes in time through Eq. (12).
It depicts the information of cavity state decays induced by
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FIG. 12. (a)–(d) The same plot as Fig. 8 with a burning frequency
at ω = ωs ± ( 1

2 − 0.05)�R. (e) The corresponding cavity intensity
for a sinusoidal driving field.

the spin ensemble through the spectral density J (ω). In this
section, we show how the fluctuations (noises) characterize
the non-Markovian memory dynamics between the cavity
and the spin ensemble. To explore the memory effect, we
shall study the two-time correlation functions, which measure
the correlation of a past event with its future and there-
fore provide a physically observable definition of memory
[38]. In the meantime, the two-time correlation function is
now experimentally measurable in the real-time domain. In
quantum optics, the familiar two-time correlation functions
are the first-order and the second-order coherence functions,
defined by

g(1)(t, t + τ ) = 〈a†(t )a(t + τ )〉√
〈a†(t )a(t )〉〈a†(t + τ )a(t + τ )〉

, (42a)

g(2)(t, t + τ ) = 〈a†(t )a†(t + τ )a(t + τ )a(t )〉
〈a†(t )a(t )〉〈a†(t + τ )a(t + τ )〉 , (42b)

which can be calculated in terms of the functions u(t, t0),
v(τ, t ), and y(t, t0) in out theory. Explicitly, let t0 = 0,

〈a†(t )a(t + τ )〉 =u∗(t )u(t + τ )〈a†(0)a(0)〉
+ y∗(t )y(t + τ ) + v(t + τ, t )

+ u∗(t )y(t + τ )〈a†(0)〉
+ u(t + τ )y∗(t )〈a(0)〉. (43)

FIG. 13. The contour plot of two-time correlation function
〈ã†(t )ã(t + τ )〉 under the rectangular driving field (a) in the q-
Gaussian spectral density and (b) with the spectral hole burning.

The second-order correlation function is more complicated
although it can still be expressed in terms of the basic Green
functions u(t ), v(τ, t ), and y(t ).

Here, we only present the result 〈a†(t )a(t + τ )〉 and
g(1)(t, t + τ ) to demonstrate the memory effect in this hybrid
quantum system. Because the cavity is initially empty, the
above solution is reduced to

〈a†(t )a(t + τ )〉 = y∗(t )y(t + τ ) + v(t + τ, t ). (44)

It shows that the coherence function is divided into two parts,
the first part (the first term) is related to the coherence of
the driving-field-induced cavity field at two different times,
and the second term is associated with spin-ensemble-induced
photon correlation. The cavity intensity studied in the pre-
vious two sections is the special case with the delay time
τ = 0. In Fig. 4, it shows that the driving-field-induced cavity
photons dissipate into the spin ensemble in a finite timescale,
then the cavity field reaches a saturation (steady state). After
turning off the driving field, the remained photons in the cavity
continuously dissipate into the spin ensemble, mixed with the
photons retrieved back from the spin ensemble. The question
to ask is how these photons coherently correlate with the
photons previously injected into the cavity through the driving
field.

Figure 13(a) shows the two-time correlation function
〈a†(t )a(t + τ )〉 of the cavity field for a rectangular driving
field with the same parameters used in Fig. 4. The result
shows that the coherence between time t and t+τ decays
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FIG. 14. The same plot as Fig. 13 with a reduced driving field
amplitude by an order of 10−4.

gradually before the driving field is turned off. However,
once the driving field is turned off, the value of the corre-
lation function drops to be a negative value. This negative
correlation corresponds to an opposite π phase coherence
between the cavity fields at time t and t+τ , respectively. This
is clearly shown by Eq. (34), and is manifested significantly
in Fig. 13(a). Moreover, we have pointed out that this π -phase
shift of the cavity field at a later time turns out a reduction
of the damping oscillation period time by a half, which is
also clearly seen in Fig. 13(a). On the other hand, Fig. 13(b)
shows how the correlation function is changed by the spectral
hole burning. The coherence behavior with the spectral hole
burning obviously lasted much longer, which indicates that
the spectral hole burning can effectively suppress the deco-
herence and maintain the cavity field coherence for a longer
time.

However, the correlation functions shown in Fig. 13 are
actually dominated by the classical coherences or classical
correlations because the cavity field contains a large num-
ber of photons (the order of ∼106) which is in the classical
regime. To make the quantum coherence manifest, one should
use a very weak driving field that maybe only contains one
photon or less. The results are presented in Fig. 14. As
one can see, after reducing the driving field amplitude by a
order of 10−4 (about the single-photon regime), the two-time
correlations are significantly changed. This change is mainly
because the quantum noise correlation given by v(t, t + τ )
becomes no longer negligible. The diagonal fringes in Fig. 14
are the manifestation of this quantum noise correlation.

FIG. 15. The contour plot of two-time quantum correlation func-
tion (subtracting the classical part) with (a) the q-Gaussian spectrum.
(b) The spectral hole burning.

To see more clearly the quantum correlations, we plot the
noise correlation alone by subtracting the classical part

〈a†(t )a(t + τ )〉 − 〈a†(t )〉〈a(t + τ )〉 = v(t + τ, t ). (45)

The result is presented in Fig. 15. Actually the quantum noise
correlation itself is independent from the driving field, it man-
ifests the quantum memory effect between the cavity system
and the spin ensemble, and is sensitive to the spectral structure
of the spin ensemble. Figures 15(a) and 15(b) show a clear dif-
ference of the quantum correlations between the q-Gaussian
spectrum and the corresponding spectral hole burning. As one
can see from Fig. 15(a), without spectral hole burning, there
is no obvious quantum correlation for the injected cavity field
with the cavity field after the driving field turned off. But, with
the spectral hole burning, the spin-ensemble-induced decoher-
ence is suppressed and quantum memory can be maintained,
which is displayed by the fringes in the right-bottom corner
in Fig. 15(b). It shows a long-time correlation or a long-
time quantum memory effect in this hybrid quantum systems,
which should be interest to measure in further experiments.

To further examine the average quantum correlations per
photon and the photon-number dependence of decoherence
suppression, we plot in Fig. 16 the normalized correlation
function, i.e., the first-order coherence function g(1)(t, t + τ )
of Eq. (42a), to see the role of the quantum fluctuations
and the relevant mechanism of decoherence suppression that
may alter in the regimes of large and small photons. The
result plotted in Fig. 16(a) corresponds to the large photon-
number regime, the same case as that plotted in Fig. 13(a). By
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FIG. 16. The contour plot of the first-order coherence function
g(1)(t, t + τ ) (a) with the driving field strength ∼106 as shown in
Fig. 13(a), (b) with the reduced driving field amplitude by an order
of 10−4, as shown in Fig. 14(a).

comparing the results of Figs. 16(a) and 13(a), one sees that
the correlation patterns look quite different. However, the cor-
relation properties in two plots are indeed similar. The result
of Fig. 16(a) can be easily obtained from the fact that in the
large photon-number regime (the classical field regime) where
the driving field contains about 106 photons so that quantum
fluctuations v(t, t + τ, ) can be negligible [see Figs. 3(a) and
3(b)]. Thus, for the large photon-number regime, the correla-
tion function (45) is simply reduced to

〈a†(t )a(t + τ )〉 � y∗(t )y(t + τ ). (46)

As a result, the first-order coherent function g(1)(t, t + τ ) of
Eq. (42a) becomes

g(1)(t, t + τ ) � y∗(t )y(t + τ )

|y(t )||y(t + τ )| (47)

which equals to 1 before the driving field is turned off, and
oscillates between ±1 after the driving field is turned off, as
shown precisely by Fig. 16(a). In other words, g(1)(t, t + τ )
clearly shows that in the large photon-number regime, there
is no quantum correlation or, more precisely speaking, the
correlation per photon is negligible between the cavity fields
before and after the driving field is turned off, as has also been
shown by Fig. 15(a).

On the other hand, when the driving field strength is
reduced to a small photon number (quantum regime), the
quantum fluctuations v(t, t + τ, ) cannot be negligible so that

the simplified formula (47) is no longer valid. We plot the first-
order coherence function g(1)(t, t + τ ) in Fig. 16(b) where the
driving field is reduced by an order of 10−4. By comparing
the results plotted in Figs. 14(a) and 16(b), it shows that
g(1)(t, t + τ ) and 〈a†(t )a(t + τ )〉 provide very similar correla-
tion properties in the small photon-number (quantum) regime,
where the noise correlation or quantum memory effect is dom-
inated. This shows how noise correlation provides indeed a
quantitative description of quantum memory, as we discussed
in details in Sec. II D. Through the study of two-time correla-
tion functions, one can see the big difference of the quantum
and classical correlations.

VI. DISCUSSIONS AND PERSPECTIVES

In conclusion, we provide a master equation approach
to study the decoherence dynamics of the hybrid quantum
systems consisting of a microwave cavity strongly coupled
with an inhomogeneous broadening spin ensemble. The spin
ensemble is made by negatively charged nitrogen-vacancy
(NV) defects in diamond. Under the experimental condition
that fewer spins (∼106) are excited for a large spin (∼1012)
ensemble, the spin ensemble can be treated by a bosonic
ensemble under the Holstein-Primakoff approximation, and
from which we can derive the exact master equation for the
cavity system. Our exact master equation describes the tran-
sient dynamics of the cavity system under the control of the
external driving field in both the classical and the quantum
regimes. The study of non-Markovian decoherence dynamics
of the cavity coupled strongly to the spin ensemble is reduced
to solve the Green functions u(t, t0), v(τ, t ) and the response
function y(t, t0) with respect to the driving field, as given
explicitly by Eqs. (12) and (32). These Green functions can
be analytically solved. Thus, the exact master equation and
the corresponding exact results depict explicitly the detailed
dissipation, quantum and thermal fluctuations, quantum cor-
relations, and quantum memory effects in a rather complete
manner that other approaches cannot provide.

We apply the theory to the experiments by Putz et al.
[29,30] and interpret the corresponding experimental observa-
tion. The experimental observations have also been described
with the semiclassical mean-field approach in terms of the
Volterra integral equation in [29,30]. Our results lead to a
clearer and complete physical picture of the non-Markovian
decoherence. In particular, we find that the suppression of the
decoherence in the strong-coupling regime is due to the rapid
forward and backward photon flows between the cavity and
the spin ensemble arising from the symmetric spectral den-
sities of open systems, and such phenomena are not limited
to cavity systems. The rapid forward and backward photon
flows, as a typical non-Markovian decoherence effect, be-
come faster with the coupling increasing, as manifested by
the rapid oscillations between huge positive and negative val-
ues for time-dependent decay coefficient γ (t, t0) given in the
exact master equation, which also characterize the transient
non-Markovian decoherence dynamics. Moreover, we find
that the further suppression of decoherence through spectral
hole burning [30] is due to the fact that the hole-burning
spectral density generates localized bound states which is dis-
sipationless and can significantly suppress decoherence. The
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latter is indeed the general and the most efficient mechanism
to suppress decoherence through long-time non-Markovian
dynamics [27], and may have potential applications for the
further development for quantum information technology.

We further show that the quantum memory in this hy-
brid quantum system can be quantified with the two-time
correlation functions. From a measurement perspective, the
correlation between past events and their future is a physically
clear and experimentally measurable memory quantity. We
study the two-time correlation function and the first-order
coherence function, and show how the cavity field correlated
each other before and after the driving field turned off. In
particular, we show how the quantum correlation or quantum
memory can be manifested in the correlation function in the
quantum regime with a low driving field intensity, which can
be measured in further experiments. Furthermore, based on
our exact master equation, we can solve explicitly the reduced

density matrix of the cavity field in this system [see, for
example, Eq. (26)], from which one can further study how the
quantum states is stored in the spin ensemble and if one can
retrieve them back in a later time through the experimental
study with quantum state tomography [22]. Also, as an exper-
imentally realized strong-coupling hybrid quantum system, it
will be very interesting to study the strong-coupling quantum
thermodynamics and its potential application for quantum
heat engines with the exact master equation theory [55–57].
These will be our next research.
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