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Interplay between quantum Zeno and anti-Zeno effects in a nondegenerate
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Quantum Zeno and anti-Zeno effects are studied in an asymmetric nonlinear optical coupler composed
of a probe waveguide and a system waveguide. The system is a nonlinear waveguide operating under the
nondegenerate hyper-Raman process, while both the pump modes in the system are constantly interacting with
the probe waveguide. The effect of the presence of the probe on the spatial evolution of the system in terms
of the number of photons in Stokes and anti-Stokes modes as well as the phonon number is quantified as the
Zeno parameter. The negative (positive) values of the Zeno parameter in the specific mode are considered as the
signatures of the quantum Zeno (anti-Zeno) effect in that mode of the system. It is observed that the initial phase
difference between all the coherent amplitudes involved in the Stokes and anti-Stokes generation processes can
be controlled to induce a transition between quantum Zeno and anti-Zeno effects for the hyper-Raman process
in both cases with and without phase matching. However, in the case of the hyper-Raman process in the system
waveguide without a phase matching, the phase mismatch parameters, due to difference in the wave vectors of
all the modes involved in the Stokes and anti-Stokes generation processes, can also be used analogously to cause
the desired crossover. Further, the general nature of the physical system and the perturbative technique used
here allow us to analytically study the possibilities of observing quantum Zeno and anti-Zeno effects in a large
number of special cases, including situations where the process is spontaneous or partially spontaneous and/or
the system is operated under a degenerate hyper-Raman process, or a simple Raman process.
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I. INTRODUCTION

The response of a quantum system to a measuring de-
vice can not only distinctively distinguish a quantum system
from a classical system; it also plays an extremely important
role in the subsequent evolution of the system. Interestingly,
sufficiently frequent interactions can even suppress the time
evolution. This phenomenon of suppressing (inhibition of) the
time evolution of a quantum system by frequent interaction is
known as the quantum Zeno effect (QZE) [1]. It was intro-
duced by Mishra and Sudarshan in 1977 [1], in an interesting
work, where they showed that if an unstable particle is contin-
uously measured, it will never decay. They realized that this
situation is analogous to one of the well-known Zeno’s para-
doxes, which were introduced by the Greek philosopher Zeno
of Elea in the 5th century BC and which have persistently
fascinated scientists and philosophers since then. Considering
the analogy, Mishra and Sudarshan referred to the quantum
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phenomenon analogous to the classical Zeno’s paradox as
Zeno’s paradox in quantum theory. This led to the formal
origin of QZE, but the quantum analog of Zeno’s paradox
was also studied before the work of Mishra and Sudarshan
[1]. Specifically, Khalfin had studied nonexponential decay of
unstable atoms [2] in the late 1950s and early 1960s.

Interestingly, it was soon recognized that measurement
can also lead to a phenomenon which can be viewed as the
inverse of QZE. In such a phenomenon, continuous mea-
surement (or interaction) leads to the enhancement of the
evolution instead of the inhibition (see Refs. [3–8]) and is
referred to as the quantum anti-Zeno effect (QAZE) or in-
verse Zeno effect. Interestingly, QZE and QAZE are known
to be evinced through various equivalent ways [9]. For the
present work, a particularly relevant manifestation of QZE
would be one in which QZE or QAZE is viewed as a process
led by continuous interaction between a system and a probe
[4]. Specifically, Kraus used the continuous interaction with
an external agent as “watchdog effect” [10] which was later
shown quantitatively related to the QZE by pulsed measure-
ment [11]. Along the same line, studies of the open quantum
system, i.e., a continuous interaction between a quantum sys-
tem and ambient environment, led to unification of dynamical
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decoupling with QZE [12] and found that the presence of QZE
or QAZE is decided by the parameters of the reservoir [13].
Specifically, in what follows, we aim to study the continuous
interaction-type manifestation of QZE in hyper-Raman pro-
cesses, where it will be considered that a nonlinear waveguide
is operating under a nondegenerate hyper-Raman process and
is continuously interacting with a probe waveguide. A change
in the dynamics of the nonlinear system waveguide due to
the presence of the probe waveguide is quantified as increase
or decrease in the photon numbers of Stokes and anti-Stokes
modes as well as the phonon number. Thus, QZE or QAZE in
the present scenario will lead to suppression or enhancement
of hyper-Raman scattering due to continuous observation by
an external probe. This is expected to reveal the origin of
nonclassical features in the hyper-Raman scattering and help
us to analyze whether generation of nonclassical states can be
controlled by using an auxiliary probe. Earlier, QZE has been
reported by some of the present authors in Raman processes
[14], an asymmetric and a symmetric nonlinear optical cou-
pler [6,8], and a parity-time symmetric linear optical coupler
[7]. However, it has never been studied in the systems involv-
ing the hyper-Raman process due to its intrinsic mathematical
difficulty.

Apart from the Raman process, QZE and QAZE have
already been studied in various optical systems, like vari-
ous types of optical couplers [6,14–17], parametric down-
conversion [17–19], parametric down-conversion with losses
[20], and an arrangement of beam splitters [21]. In these
studies on QZE in optical systems, often the pump mode
was considered strong, and thus the complexity of a com-
pletely quantum mechanical treatment has been circumvented.
Keeping this in mind, here we plan to use a completely quan-
tum mechanical description of the nonlinear optical coupler
composed of a probe and a nonlinear waveguide operating
under the hyper-Raman process. We have considered a general
Raman process here, namely the nondegenerate hyper-Raman
process, which allows us to reduce the corresponding results
for Raman and degenerate hyper-Raman processes. The sys-
tem of our interest, namely the nonlinear optical coupler, is
easily realizable using photonic crystals and optical fibers
[22–24]. Specifically, two waveguides, forming the directional
coupler, interact through evanescent waves which allows us to
control the interaction strength between them by regulating
the interaction length (see [23,24] for details).

For about two decades, since the pioneering work of
Mishra and Sudarshan, QZE remained as a problem of
theoretical interest without any practical applications. The
scenario started changing from the beginning of the 1990s
as it became possible to experimentally realize QZE using
different routes [25–27]. This enhanced the interest on QZE
and that in turn led to many new proposals for applications
of QZE [25,28–31]. For example, applications of QZE were
proposed for the enhancement of the resolution of absorption
tomography [30,31], reduction of communication complex-
ity [32], and combating decoherence by confining dynamics
in decoherence-free subspace [33]. Further, proposals for
quantum interrogation measurement [25] and a counterfactual
direct quantum communication protocol [29,34] using QZE
have garnered much attention. Efforts have also been made
to investigate QZE in the macroscopic world for large black
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FIG. 1. Schematic diagram of an optical coupler of length L
composed of a system waveguide, operating under a nondegener-
ate hyper-Raman process, interacting with a probe. The coupling
coefficients as well as optical (namely, probe ap, nondegenerate
hyper-Raman pump a1, a2, Stokes b, and anti-Stokes d) and phonon
(c) modes are indicated in the diagram.

holes [35] and in nonlinear waveguides in the context of
stationary flows with localized dissipation [36]. Inspired by
these applications of QZE, the general nature of the nonlinear
(nondegenerate hyper-Raman) process under consideration,
and availability of nonlinear optical couplers in integrated
optics and optical fibers [37,38], here we study the possibility
of QZE and QAZE using a completely quantum treatment in
an asymmetric nonlinear optical coupler.

Using a perturbative technique (known as the Sen-Mandal
technique [24,39–41]) for obtaining an operator solution of
Heisenberg’s equations of motion, we have obtained closed-
form analytic expressions for the spatial evolution of the
relevant field operators present in the system momentum
operator that provides a completely quantum mechanical
description of the nonlinear optical coupler composed of
the probe and a nonlinear waveguide operating under the
hyper-Raman process. It is well established that this method
produces better results compared to the conventional short-
length approach [24,39–41] as the present solution is not
restricted by length or time. In what follows, we will see that
the use of this perturbative technique has revealed compact
analytic expressions for the Zeno parameter which clearly
illustrate that in the system under consideration (and in many
special cases of it), it is possible to observe QZE and QAZE
in Stokes, anti-Stokes, and phonon modes for the suitable
choices of system parameters. Further, it will be shown that
phase difference and mismatch parameters can be controlled
to execute a crossover between QZE and QAZE.

The rest of the paper is organized as follows. In Sec. II,
we briefly describe the hyper-Raman process based on the
asymmetric nonlinear optical coupler system of our interest.
Subsequently, we report the expressions of the Zeno param-
eter for both photon and phonon modes in the system in
Sec. III. A detailed discussion of the obtained results is sum-
marized in Sec. IV. Finally, the paper is concluded in Sec. V.

II. PHYSICAL SYSTEM

The physical system of our interest is actually a codi-
rectional asymmetric nonlinear optical coupler composed of
a probe and a system, which is a nonlinear waveguide op-
erating under the hyper-Raman process (see Fig. 1 for a
schematic diagram). The momentum operator of the complete
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(probe+system) physical system is given by

G = Gprobe + Gsystem + GInt:

Gprobe = kpa†
pap,

Gsystem = ka1 a†
1a1 + ka2 a†

2a2 + kbb†b + kcc†c + kd d†d

+ (ga1a2b†c† + χa1a2cd† + H.c.),

GInt = �apa†
1a†

2 + H.c., (1)

where h̄ = 1 (the same convention is used in the rest of the
paper), and H.c. stands for the Hermitian conjugate. The anni-
hilation (creation) operators ap(a†

p), ai(a
†
i ), b(b†), c(c†), and

d (d†) correspond to the probe pump (indexed by subscript
p), nondegenerate hyper-Raman laser (this is also a pump,
but it is indexed by subscript i = 1, 2 to distinguish from
the probe pump), Stokes, vibration (phonon), and anti-Stokes
modes, respectively. All the field operators introduced here
obey the usual bosonic commutation relation. Wave vectors
corresponding to the probe, pump 1 and 2, Stokes, phonon,
and anti-Stokes modes are denoted by kp, ka1 , ka2 , kb, kc,
and kd , respectively. The Stokes and anti-Stokes coupling
constants are described by parameters g and χ , respectively.
Further, � denotes the interaction constant between the probe
and the two pump modes present in the hyper-Raman pro-
cess in the system. The probe interacts with the system
waveguide continuously through the evanescent waves. Fol-
lowing the continuous observation analog of QZE [4], we
can describe G = Gsystem + Gmeasurement where Gmeasurement =
Gprobe + GInt, and by controlling the coupling strength � we
can tune the effect of the probe mode on the reduced dynamics
of the hyper-Raman waveguide. Notice that the probe mode
interacts with non-degenerate pump modes of the system
waveguide only unlike [14] where the probe interacts either
with the Stokes or anti-Stokes mode. This allows us to ob-
serve QZE and QAZE in both Stokes and anti-Stokes modes
simultaneously which was not permitted in the framework of
[14].

We obtain the Heisenberg equations of motion for the mo-
mentum operator (1) of the system of interest, which gives us
six coupled differential equations for the six bosonic operators
present in the expression of the momentum operator. To obtain
the spatial evolution of all the operators we use Sen-Mandal
perturbative technique as dimensionless quantities gz, χz,
and �z are small compared to unity. In Appendix A, we
have reported Heisenberg’s equations of motion and spatial
evolution of the relevant number operators for the Stokes, anti-
Stokes, and phonon modes using the Sen-Mandal technique.
Mathematical details of the perturbative solution are given in
Appendix B. Further, it is worth stressing that we neglect the
losses in the nondegenerate hyper-Raman waveguide system
considering a one-passage arrangement [14], while inclusion
of the damping terms is expected to reduce the quantum ef-
fects only.

In the next section, we will show that the obtained number
operators would provide us analytic expressions of the Zeno
parameter for the respective modes. The general nature of
the solution and the process under consideration allow us to
deduce the results for Raman and degenerate hyper-Raman
processes as well as the corresponding short-length solution

in the limiting cases. Further, the present solution inherently
introduces phase mismatch parameters in the Stokes and anti-
Stokes generation, and thus provides the solution for a set
of Raman processes in both cases with and without phase
matching.

III. QUANTUM ZENO AND ANTI-ZENO EFFECTS

In order to investigate the QZE and QAZE in a hyper-
Raman active medium, we consider the initial composite
coherent state |ψ (0)〉 as the product of the initial coherent
states of the probe, pump, Stokes, phonon, and anti-Stokes
modes as |α〉, |α j〉, |β〉, |γ 〉, and |δ〉, respectively. Hence, the
initial state is considered to be

|ψ (0)〉 = |α〉 ⊗ |α1〉 ⊗ |α2〉 ⊗ |β〉 ⊗ |γ 〉 ⊗ |δ〉, (2)

and the field operator ap operating on the initial state gives

ap(0)|ψ (0)〉 = α|ψ (0)〉, (3)

where α = |α|eiϕp is the complex eigenvalue with |α|2 initial
mean number of photons and ϕp phase angle in the probe
mode a. In a similar manner, coherent state parameters for all
the optical and phonon modes involved in the hyper-Raman
process can be defined as 
 j = |
 j |eiϕ j for complex ampli-
tudes 
 j : 
 ∈ {α, β, γ , δ} and corresponding phase angle
ϕ j with j ∈ {1, 2, b, c, d} for the nondegenerate pump 1 and
pump 2, Stokes, phonon, and anti-Stokes modes, respectively.

To quantify the role of the external probe in controlling
the dynamics of hyper-Raman scattering we use the Zeno
parameter [6–8] introduced as the difference of photon or
phonon numbers in the presence and absence of the probe.
We define the Zeno parameter as [6–8]

Zi = 〈Ni〉 − 〈Ni〉�=0, (4)

where i ∈ {b, c, d} and Ni = i†i is the number operator. The
conditions Zi < 0 and Zi > 0 correspond to the occurrence
of QZE and QAZE in ith mode. Clearly, the negative (posi-
tive) values of the Zeno parameter represent that the number
of photons or phonons in the system waveguide (i.e., 〈Ni〉)
decreases (increases) from that in the absence of the probe
waveguide (i.e., 〈Ni〉�=0). We have reported the dynamics of
number operators for Stokes, anti-Stokes, and phonon modes
in Appendix A.

In what follows, we report the Zeno parameters for
Stokes, anti-Stokes, and phonon modes obtained using these
expressions.

To begin with, using Eq. (A2) in Eq. (4), the Zeno parame-
ter for the Stokes mode is computed as

Zb = Cb

{
cos θ2

�kS (�kD + �kS )
+ cos (�kSz + �kDz − θ2)

�kD(�kD + �kS )

− cos (�kSz − θ2)

�kD�kS

}
, (5)

where we have used the initial phase differences among
the different modes involved in the probe-Stokes and
probe–anti-Stokes interactions as θ1 = (ϕd − ϕp − ϕc) and
θ2 = (ϕp − ϕb − ϕc), respectively. Also, we have Cb =
2�g(|α1|2 + |α2|2 + 1)|α||β||γ |. Similarly, we have intro-
duced phase mismatch parameters in Stokes, anti-Stokes,
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FIG. 2. Spatial evolution of the number of photons and phonons
〈Nj〉∀ j ∈ {b, d, c} for Stokes, anti-Stokes, and phonon modes is
shown in the smooth (blue), dashed (red), and dot-dashed (cyan)
lines, respectively. The black dotted line corresponds to the constant
of motion 〈(Nb − Nd − Nc )〉. We have chosen here the coupling coef-
ficients χ = 1.2g and � = 1.5g with initial coherent state amplitudes
for all modes α = 9, α1 = 8.5, α2 = 8.3, β = 7, γ = 0.01, δ = −1.
We have also used θ j = 0 and �kS = 2 × 10−2g = 2�kA = 20�kD.
All the quantities shown here and in the rest of the plots are
dimensionless.

and second-order coupling between the probe and system
waveguides as �kS = −ka1 − ka2 + kb + kc, �kA = ka1 +
ka2 + kc − kd , and �kD = ka1 + ka2 − kp.

In a similar manner, the Zeno parameter for the anti-Stokes
mode is computed using Eqs. (4) and (A4) and the following
analytic expression is obtained:

Zd = Cd

{
cos θ1

�kA(�kA − �kD)
− cos (θ1 + �kDz − �kAz)

�kD(�kA − �kD)

+ cos (θ1 − �kAz)

�kD�kA

}
, (6)

where Cd = 2�χ (|α1|2 + |α2|2 + 1)|α||γ ||δ|. The Zeno pa-
rameter for the phonon mode was also computed analytically
using Eqs. (4) and (A3), but it was found that the same can be
expressed as the difference of the other two Zeno parameters,
i.e.,

Zc = Zb − Zd . (7)

This is a direct consequence of the conservation law:
[G, Nb − Nd − Nc] = 0, and thus using this constant of mo-
tion [42] Eq. (7) follows. Apparently, this should be the case
with degenerate hyper-Raman and Raman processes in the
system, too, provided the probe-system interaction is with
the pump mode; however, the probe-system interaction may
be with the Stokes and anti-Stokes modes as in the case of
earlier works [14].

For the sake of completeness, we have illustrated here spa-
tial evolution of the number of Stokes and anti-Stokes photons
as well as phonons in the nonlinear optical coupler in Fig. 2.
We have explicitly shown that the quantity 〈Nb − Nd − Nc〉
remains constant during the evolution. Here and in what fol-

lows, the results obtained are mostly dependent on the relative
dimensionless quantities.

IV. DISCUSSION

There are some interesting scenarios to consider for the
present study, namely spontaneous, stimulated, and partially
stimulated cases. These three cases are described depending
upon the type of the Raman process undergoing in the system
waveguide. Specifically, pump intensity is always nonzero
αi �= 0, while the Stokes, anti-Stokes, and phonon modes may
be initially in vacuum or coherent states. Thus, we have with
S = {β, γ , δ} the following:

(1) Spontaneous Raman process: U = 0 ∀U ∈ S.
(2) Stimulated Raman process: U �= 0 ∀U ∈ S.
(3) Partially stimulated Raman process: U = 0 and V �= 0

with U ∈ S and V ∈ S\U .
Note that the probe mode has nonzero intensity initially in

all cases, i.e., α �= 0, as otherwise QZE and QAZE cannot be
observed. Specifically, from the expressions of C j , we can eas-
ily observe that in the spontaneous case, Zj = 0 ∀ j ∈ {b, c, d}.
Thus, neither QZE nor QAZE is observed in the spontaneous
case. In other words, the presence of the probe does not affect
the dynamics of boson numbers in the spontaneous hyper-
Raman scattering in the validity of the perturbative solution.
The stimulated case, i.e., when all the coherent modes are
initially prepared with nonzero intensity, will be discussed in
detail later. Prior to that, we may discuss the partially stim-
ulated cases, where among Stokes, anti-Stokes, and phonon
modes, initial intensity is nonzero for at most two modes and
the same for other mode(s) is zero; of course, the pump modes
have nonzero initial intensity. Consider a particular type of
stimulated case, where β �= 0, γ �= 0, δ = 0. In this case,
we obtain Zd = 0 �= Zb = Zc, while with β = 0, γ �= 0, δ �=
0 we obtain Zd = −Zc �= 0 = Zb. Thus, in the first type of
partially stimulated case mentioned above, for a particular
choice of phase difference and mismatch parameters, if we
observe QZE (QAZE) in the Stokes mode, we will observe
QZE (QAZE) in the phonon mode, too, but the anti-Stokes
mode will not show any of the effects. Similarly, in the sec-
ond type of partially stimulated case, for a particular choice
of phase difference and mismatch parameters, if we observe
QZE (QAZE) in the anti-Stokes mode, we will observe QAZE
(QZE) in the phonon mode; the Stokes mode will not show
any of the effects. The other possibility of a partially stimu-
lated process with β �= 0, γ = 0, δ �= 0 leads to a trivial case
where Zj = 0 ∀ j ∈ {b, c, d} as Zj ∝ |γ |. There are a couple
of other possibilities where two of the parameters β, γ , δ

are simultaneously zero. It is easy to see that neither QZE
nor QAZE will be observed in those cases. Specifically, for
β = 0, γ = 0, δ �= 0 and β �= 0, γ = 0, δ = 0, we would not
obtain QZE or QAZE in any mode as γ = 0 would ensure
that Zj = 0 ∀ j ∈ {b, c, d}. The same situation will arise in
the case β = 0, γ �= 0, δ = 0 as C j will vanish ∀ j ∈ {b, c, d}.
On the other hand, if the probe interacts with the Stokes or
anti-Stokes mode we may expect to observe QZE or QAZE
with the phonon vacuum in analogy to that in the Raman
coupler [14].

From Eqs. (5) and (6), we can verify that C j ∝
2�(|α1|2 + |α2|2 + 1)|α||γ | ∀ j ∈ {b, c, d} which is always
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FIG. 3. Spatial evolution of Zeno parameter Zj for (a) Stokes, (b) anti-Stokes, and (c)–(d) phonon modes as a function of the phase
difference parameter θi. In (c), we have shown Zc(θ1 = θ2). We have also used �kS = �kA = 10−2g = 10�kD. The rest of the parameters are
the same as in the previous figure. The dashed (red) contour lines represent a crossover between QZE and QAZE.

positive and increases with coupling between the probe and
system as well as the initial pump and probe intensities and the
phonon numbers. Additionally, we can verify that Cb ∝ g|β|
and Cd ∝ χ |δ|. Thus, we can conclude that the coefficients
C j can only alter the depth of Zeno parameters by a scaling
factor, but cannot induce a transition from QZE to QAZE or
vice versa. Therefore, we can summarize that the occurrence
of QZE or QAZE would depend only on the phase differ-
ence parameters and phase mismatches; i.e., we can safely
restrict our discussion on the possibility of observing QZE
and QAZE to a situation where the parametric dependence of
the relevant Zeno parameters is viewed as Zb(DkD, DkS, θ2)
and Zd (DkD, DkA, θ1). This analytic result helps us to clearly
visualize the interplay between QZE and QAZE, and it also
answers the following: What controls the dynamics of QZE
and QAZE and which physical parameters may cause transi-
tion from one of them to the other? Before we discuss this
further, it is worth discussing the behavior for the hyper-
Raman system waveguide with phase matching.

Considering the phase-matching condition, that is, �kD =
�kS = �kA = 0, we can obtain from Eqs. (5)–(7), in the
limits of phase mismatches tending to zero, that

(Zb)R = − 1
2Cbz2 cos θ2 (8)

and

(Zd )R = − 1
2Cd z2 cos θ1, (9)

where R corresponds to the results with the phase-matching
condition. Notice that phase difference parameters are sig-
nificant in the presence of QZE and QAZE as (Zj )R ∝
− cos θi, while the depth of the Zeno parameters increases
with C j and propagation length z. We know that cos θi >

0 ∀ θi ∈ [0, π
2 ] ∪ [ 3π

2 , 2π ] and cos θi < 0 ∀ θi ∈ [π
2 , 3π

2 ]. Thus,
QAZE (QZE) is observed in both Stokes and anti-Stokes
modes when cos θi is negative (positive). In this case, (Zc)R =
−(Cb cos θ2 − Cd cos θ1)z2, which has dependence on both the
phase difference parameters. If we consider θ1 = θ2, this will
reduce to (Zc)R|θ1=θ2

= −(Cb − Cd )z2 cos θi, and thus, in this
special case, QZE (QAZE) would be observed in the phonon
mode if g

χ
>

|δ|
|β| (

g
χ

<
|δ|
|β| ). Interestingly, most of the obser-

vations made here regarding phase difference parameters are
also applicable in hyper-Raman case with small phase mis-
matches (cf. Fig. 3).

Consider a special case of the hyper-Raman process with-
out phase matching in the system waveguide, when �kD =
�kS = −�kA in the support on the phonon mode as �kS =
−�kA ensures 2kc = kd − kb. In this case, Eqs. (5)–(7) can be
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simplified to obtain

Zj = −1

2
C jz

2 cos[�kDz + (−1)iθi]sinc2

(
�kDz

2

)
, (10)

where i = 1 for j = d and i = 2 for j = b. It clearly shows
that the general solution used here is modulated with the sinc
function of the phase mismatch parameter [43,44]. Conse-
quently, the present solution and the corresponding results are
applicable to a relatively long length of the optical coupler
in comparison to the corresponding short-length solution. No-
tice in Eq. (10) that Zj ∝ cos [�kDz + (−1) jθi], and thus a
crossover between QZE and QAZE can be attained by con-
trolling the phase mismatch �kDz. Therefore, if we assume
the phase difference parameter θi = 0, we can conclude that
Zj is negative (i.e., QZE is observed) only when �kDz ∈
[0, π

2 ] ∪ [ 3π
2 , 2π ]; otherwise QAZE is observed.

To further stress this point, we have shown variation of the
Zeno parameters with phase mismatch parameters in Fig. 4,
where we can clearly see that a transition from QZE (QAZE)
to QAZE (QZE) can be caused in both optical modes (phonon
mode) for large values of phase mismatch after traversing
sufficiently through the optical coupler. In all the plots, we
have considered �kS = �kA (unless stated otherwise) in the
support on the pump mode as 2(ka1 + ka2 ) = kb + kd .

Taking into consideration both the phase mismatch param-
eters together (considering θ j = 0), a transition from QZE to
QAZE in the Stokes mode can be induced for smaller values
of the phase mismatch parameter than that shown in Fig. 4(a)
by increasing the other phase mismatch parameter [shown in
Fig. 5(a)]. In contrast, QZE for the anti-Stokes mode can be
maintained for larger values of phase mismatch in anti-Stokes
generation by increasing the value of phase mismatch between
the pump modes of the system and probe waveguides [cf.
Figs. 4(b) and 5(b)]. Similarly, QAZE can be made more
dominant by increasing phase mismatch between the pump
modes of the system and probe as shown in Fig. 5(c). Interest-
ingly, phase mismatches in Stokes and anti-Stokes generation
processes have starkly opposite effects on the Zeno parameter
as the former increases it while the latter decreases it [cf.
Fig. 5(d)].

Further extension of the present results with the phonon
mode initially coherent to the chaotic phonon mode [43] gives
that all the Zeno parameters become zero. Our results can
also be used to deduce the presence of QZE and QAZE for
degenerate hyper-Raman and Raman system waveguides from
Eqs. (5)–(7) by considering α2 = α1 and α2 = 0, respectively.
Therefore, we can conclude from the reduced results in those
cases that the presence of QZE and QAZE in the parametric
space will remain unchanged, though some changes in the
depth of the Zeno parameter are expected due to changes in
the scaling factors C j .

In view of the availability of on-chip Raman devices
[45,46], photonics often used in quantum information ex-
periments [22,23,37,38], a few attempts at hyper-Raman
scattering [47,48], and the recent set of experiments exploiting
Raman processes for quantum technology [49,50], we antici-
pate the current results would soon become verifiable for the
set of Raman processes presented here.

0 0.04 0.07
0

10

20

30

40

50

gz

k S
/g

−0.6

−0.3

0

0.3

(a)

0 0.04 0.07
0

10

20

30

40

50

gz

k S
/g

−0.1

−0.05

0

0.05

(b)

0 0.04 0.07
0

10

20

30

40

50

gz

k S
/g

−0.5

−0.25

0

0.25

(c)

FIG. 4. Spatial evolution of Zeno parameter Zj as a function of
the phase mismatch parameter for (a) Stokes, (b) anti-Stokes, and
(c) phonon modes considering both the phase difference parameters
θi = 0 with �kD = 10−3g and �kA = �kS . The rest of the parame-
ters are the same as in the previous figure.

V. CONCLUSION

The dynamics of a nonlinear waveguide operating under
the hyper-Raman process is obtained in terms of the spatial
evolution of the photon and phonon numbers of the Stokes,
anti-Stokes, and vibration modes. We subsequently consider
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FIG. 5. Variation of Zeno parameters as a function of the phase mismatch parameters for (a) Stokes Zb(�kS, �kD ), (b) anti-Stokes
Zd (�kA = �kS, �kD ), (c) phonon Zc(�kA = �kS,�kD ), and (d) phonon Zc(�kS, �kA, �kD = 10−3g) modes considering both phase differ-
ence parameters θi = 0 and gz = 0.07. The rest of the parameters are the same as the previous figure.

that this waveguide (referred to as a system) is constantly
gazed upon by a probe waveguide interacting with the non-
degenerate pump modes of the hyper-Raman process. We
obtain the dynamics of the system waveguide in this combined
system-probe optical coupler in a completely quantum treat-
ment by solving the Heisenberg’s equations of motion for the
corresponding momentum operator. These two cases allow us
to quantify the effect of the presence of the probe waveguide
on the system waveguide as the Zeno parameter. Specifically,
if the presence of the probe is found to enhance (suppress)
the generation of bosons in Stokes, anti-Stokes, and phonon
modes it is referred to as QAZE (QZE).

The conservation of Stokes–anti-Stokes photon and
phonon numbers is reflected in the relation between the Zeno
parameters for the concerned modes. To be specific, the Zeno
parameter for the phonon mode is the difference between
that of the Stokes and anti-Stokes modes. The present study
allows us to conclude that both QZE and QAZE disappear
in spontaneous and some of the partially stimulated cases.
Interestingly, the Zeno parameter depends on the intensities of
pump, probe, and phonon modes as well as the system-probe
coupling strength. However, none of these parameters can
cause a crossover from QZE to QAZE and vice versa, as
they always remain positive and thus can only alter the depth

of the Zeno parameter. A similar effect was shown by the
spatial evolution for the small values of the phase mismatch
parameters.

Interestingly, the hyper-Raman based optical coupler in
both cases with and without phase matching shows de-
pendence on phase difference parameters in Stokes and
anti-Stokes generation processes. Similarly, the phase mis-
match parameters offer another set of control parameters to
induce a transition between QZE and QAZE. In short, we have
analytically obtained the solution of an interesting question:
Which physical parameters control the dynamics of QZE and
QAZE, and which of them can cause a transition from QZE to
QAZE and vice versa?

Due to the general nature of the system under consider-
ation, namely the nondegenerate hyper-Raman process, the
obtained results can be reduced to corresponding Raman
and degenerate hyper-Raman processes. Specifically, the de-
pendence on all the parameters and the nature of the Zeno
parameter in these special cases is expected to be similar to
the present case with only a scaling factor. Further, the present
study reveals that generation of nonclassical states can be con-
trolled by introducing an auxiliary probe mode. For instance,
for a suitable choice of phase difference parameters θ1 =
θ2 = π hyper-Raman scattering may lead to a larger Stokes
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and anti-Stokes photon generation. In view of some recent
results [49], this can be exploited to enhance generation of
Stokes–anti-Stokes photon pairs in hyper-Raman scattering.
We conclude the present work in hope that this work focused
on a foundationally relevant topic will lead to applications in
counterfactual quantum communication and computation as
the physical system considered here and all its special cases
are physically realizable using current technologies available
in the domain of integrated optics as well as conventional bulk
optics.
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APPENDIX A: MATHEMATICAL DETAILS OF THE SOLUTION

The Heisenberg’s equations of motion for all six modes in the probe and system waveguides can be obtained as
.
ap(z) = i(kpap + �a1a2),
.
a1(z) = i(ka1 a1 + ga†

2bc + χa†
2c†d + �apa†

2),
.
a2(z) = i(ka2 a2 + ga†

1bc + χa†
1c†d + �apa†

1),
.

b(z) = i(kbb + ga1a2c†),
.
c(z) = i(kcc + ga1a2b† + χa†

1a†
2d ),

.

d (z) = i(kdd + χa1a2c). (A1)

This set of coupled-operator differential equations is not exactly solvable in the closed analytic form. A perturbative solution of
the coupled differential equations (A1) is obtained up to the quadratic terms in the interaction constants (g, χ , and �). Using
the obtained spatial evolution of all the field and phonon modes in the closed analytic form, we obtain the number operators for
Stokes, phonon, and anti-Stokes modes as

〈Nb〉 = |β|2 + | j2|2|α1|2|α2|2(|γ |2 + 1) + [{
j1 j�2α

�
1α

�
2βγ + j1 j�3α

�2
1 α�2

2 βδ + j1 j�4 (|α1|2 + 1)βγ 2δ�

+ j1 j�5|α2|2βγ 2δ� + j1 j�6 (|α1|2 + 1)α�βγ + j1 j�7|α2|2α�βγ + j1 j�8|α1|2|α2|2|β|2 + j1 j�9|β|2
× (|α1|2 + 1)|γ |2 + j1 j�10|α2|2|β|2|γ |2 + c.c.

}]
, (A2)

〈Nc〉 = |γ |2 + |k2|2|α1|2|α2|2(|β|2 + 1) + |k3|2(|α1|2 + 1)(|α2|2 + 1)|δ|2 + [{
k1k�

2α
�
1α

�
2βγ

+ k1k�
3α1α2γ δ� + k1k�

4 (|α1|2 + 1)α�βγ + k1k�
5|α2|2α�βγ + k1k�

6|α1|2αγ δ�

+ k1k�
7 (|α2|2 + 1)αγ δ� + k2k�

3α
2
1α

2
2β

�δ� + k1k�
8|α1|2|α2|2|γ |2 + k1k�

9 (|α1|2 + 1)

× |β|2|γ |2 + k1k�
10|α2|2|β|2|γ |2 + k1k�

11|α1|2|γ |2|δ|2 + k1k�
12(|α2|2 + 1)|γ |2|δ|2

+ k1k�
13|α1|2|α2|2|γ |2 + k1k�

14(|α1|2 + |α2|2 + 1)βγ 2δ�
} + c.c.

]
, (A3)

and

〈Nd〉 = |δ|2 + |l2|2|α1|2|α2|2|γ |2 + [{
l1l�

2α�
1α

�
2γ

�δ + l1l�
3 (|α1|2 + 1)β�γ �2δ + l1l�

4 |α2|2β�γ �2δ

+ l1l�
5α�2

1 α�2
2 βδ + l1l�

6 (|α1|2 + 1)α�γ �δ + l1l�
7 |α2|2α�γ �δ + l1l�

8 (|α1|2 + 1)|γ |2|δ|2
+ l1l�

9 |α2|2|γ |2|δ|2 + l1l∗
10(|α1|2 + 1)(|α2|2 + 1)|δ|2} + c.c.

]
, (A4)

respectively. The functional forms of coefficients of complex
amplitude parameters are

j1 = eizkb,

j2
j1

= g(1 − e−iz�kS )

�kS
,

j3
j1

= gχ (�kA − �k1e−iz�kS − �kSeiz�k1 )

�kA�k1�kS
,

j4
j1

= j5
j1

= gχ (�kA + �kSe−iz�k2 − �k2e−iz�kS )

�kA�kS�k2
,

j6
j1

= j7
j1

= g�(�kD + �kSe−iz�k3 − �k3e−iz�kS )

�kD�kS�k3
,

j8
j1

= − j9
j1

= − j10

j1
= g2(1 − e−iz�kS − i�kSz)

�k2
S

, (A5)
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k1 = eizkc ,

k2

k1
= g(1 − e−iz�kS )

�kS
,

k3

k1
= χ (1 − e−iz�kA )

�kA
,

k4

k1
= k5

k1
= g�(�kD + �kSe−iz�k3 − �k3e−iz�kS )

�kD�kS�k3
,

k6

k1
= k7

k1
= �χ (−�kD + �kAe−iz�k4 − �k4e−iz�kA )

�kA�kD�k4
,

k8

k1
= −k11

k1
= −k12

k1
= −χ2(1 − e−iz�kA − i�kAz)

�k2
A

,

k9

k1
= k10

k1
= −k13

k1
= −g2(1 − eiz�kS − i�kSz)

�k2
S

,

k14

k1
= k15

k1
= gχ{�k2(e−i�kAz − e−i�kSz ) + �k1(1−e−i�k2z )}

�kS�kA�k2
,

(A6)

and

l1 = eizkd ,

l2
l1

= −χ (1 − eiz�kA )

�kA
,

l3
l1

= l4
l1

= gχ (�kS + �kAeiz�k2 − �k2eiz�kA )

�kS�kA�k2
,

l5
l1

= gχ (�kS + �k1eiz�kA − �kAeiz�k1 )

�kS�k1�kA
,

l6
l1

= l7
l1

= �χ (�kD − �kAeiz�k4 + �k4eiz�kA )

�kD�kA�k4
,

l8
l1

= l9
l1

= l10

l1
= −χ2(1 − eiz�kA + i�kAz)

�k2
A

, (A7)

where �kS = (−ka1 − ka2 + kb + kc), �kA = (ka1 + ka2 +
kc − kd ), �kD = (ka1 + ka2 − kp), �k1 = �kA − �kS , �k2 =
�kA + �kS , �k3 = �kS + �kD, and �k4 = �kA − �kD.

APPENDIX B: DESCRIPTION OF PERTURBATIVE
SOLUTION

The set of coupled differential equations (A1) involves
nonlinear operators and thus these are not exactly solvable in
the closed analytical form under the weak pump condition.
In the Sen-Mandal perturbative technique, we assume the
spatial evolution of an arbitrary mode in terms of the product
of all the powers of the initial values of operators A(z) =∑

i, j,k,l,m,n,o,p,q,r,s,t Fya†i
p (0)a j

p(0)a†k
1 (0)al

1(0)a†m
2 (0)an

2(0) ×
b†o(0)bp(0)c†q(0)cr (0)d†s(0)dt (0). However, this would be
an infinite series which is truncated to include only Fy with
not higher than quadratic terms in 
t ∀
 ∈ {g, χ, �}. For

instance, the assumed solution for Stokes mode is obtained as

b(z) = j1b(0) + j2a1(0)a2(0)c†(0) + j3a2
1(0)a2

2(0)d†(0)

+ j4a1(0)a†
1(0)c†2(0)d (0) + j5a†

2(0)a2(0)c†2(0)d (0)

+ j6ap(0)a1(0)a†
1(0)c†(0) + j7ap(0)a†

2(0)a2(0)c†(0)

+ j8a†
1(0)a1(0)a†

2(0)a2(0)b(0) + j9a1(0)a†
1(0)b(0)

× c†(0)c(0) + j10a†
2(0)a2(0)b(0)c†(0)c(0). (B1)

To obtain all the coefficients jn we use the fact that the spatial
evolution of the Stokes mode b(z) is defined as

b(z) = eiGzb(0)e−iGz

= b(0) + iz[G, b] + (iz)2

2!
[G, [G, b]] + . . . , (B2)

where all the nested commutators are obtained as

[G, b] = −(kbb + ga1a2c†) (B3)

and

[G, [G, b]] = k2
bb + g

(
ka1 + ka2 + kb − kc

)
× a1a2c†−gχ

(
a2

1a2
2d† − a1a†

1c†2d − a†
2a2c†2d

)
+ gΓ (apa1a†

1c† + apa†
2a2c†)

−g2(a†
1a1a†

2a2b − a1a†
1bc†c − a†

2a2bc†c), (B4)

etc., ignoring all the terms beyond the quadratic powers of the
interaction constants g, χ , and �. We use all the functions of
operators occurring in the higher-order nested commutators
with unknown coefficients jn. From the set of assumed so-
lution for the spatial evolution all the operators we obtain a
set of coupled differential equations of all the coefficients Fy

using Eq. (B1) in Eq. (A1), as

.

j1(z) = ikb j1,
.

j2(z) = i(kb j2 + gg1h1k�
1 ),

.

j3(z) = i(kb j3 + gg1h1k�
3 ),

.

j4(z) = i(kb j4 + gg1h3k�
1 ),

.

j5(z) = i(kb j5 + gg3h1k�
1 ),

.

j6(z) = i(kb j6 + gg1h4k�
1 ),

.

j7(z) = i(kb j7 + gg4h1k�
1 ),

.

j8(z) = i(kb j8 + gg1h1k�
2 ),

.

j9(z) = i(kb j9 + gg1h2k�
1 ),

.

j10(z) = i(kb j10 + gg2h1k�
1 ). (B5)

The solution of coupled differential equations of Fy with
initial conditions Fy = δy,1 at t = 0 gives us the analytical
form of jn (and other Fy) reported in Eq. (A5).

Here, it will be apt to note that in a strict sense,
the validity of the short-length solution [51] is limited by
|
zξ | < 1, where 
 = max {g, χ, �} and ξ = max ξ ∀ξ ∈
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{α, α1, α2, β, γ , δ}. This gives us the validity of the short-
length solution for propagation lengths z < 1/|
ξ |, while the
present perturbative solution has enlarged validity for finite

times due to modulation by the sinc function related to the
phase mismatches, which ensures the convergence (see [43]
for details).

[1] B. Misra and E. C. G. Sudarshan, J. Math. Phys. 18, 756 (1977).
[2] L. A. Khalfin, Dokl. Akad. Nauk SSSR 115, 277 (1957) [Sov.

Phys. Dokl. 2, 232 (1958)]; Zh. Eksp. Teor. Fiz. 33, 1371 (1958)
[Sov. Phys. JETP 6, 1053 (1958)]; Dokl. Akad. Nauk SSSR 141,
599 (1961) [Sov. Phys. Dokl. 6, 1010 (1962)].

[3] A. Venugopalan, Resonance 12, 52 (2007).
[4] P. Facchi and S. Pascazio, in Quantum Zeno and Inverse Quan-

tum Zeno Effects, edited by E. Wolf, Progress in Optics, Vol. 42
(Elsevier, Amsterdam, 2001), pp. 147–218.

[5] S. Pascazio, Open Systems and Information Dynamics 21,
1440007 (2014).

[6] K. Thapliyal and A. Pathak, Proc. SPIE 9654, 96541F1
(2015).

[7] J. Naikoo, K. Thapliyal, S. Banerjee, and A. Pathak, Phys. Rev.
A 99, 023820 (2019).

[8] K. Thapliyal, A. Pathak, and J. Peřina, Phys. Rev. A 93, 022107
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[43] K. Thapliyal and J. Peřina, Phys. Lett. A 383, 2011 (2019).
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