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Limit cycle phase and Goldstone mode in driven dissipative systems
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In this article, we theoretically investigate the first- and second-order quantum dissipative phase transitions
of a three-mode cavity with a Hubbard interaction. In both types, there is a mean-field (MF) limit cycle
phase where the local U(1) symmetry and the time-translational symmetry of the Liouvillian superoperator are
spontaneously broken. In MF, this spontaneous symmetry breaking manifests itself through the appearance of
an unconditionally and fully squeezed state at the cavity output, connected to the well-known Goldstone mode.
By employing the Wigner function formalism, hence, properly including the quantum noise, we show that away
from the thermodynamic limit and within the quantum regime, fluctuations notably limit the coherence time of
the Goldstone mode due to the phase diffusion. Our theoretical predictions suggest that interacting multimode
photonic systems are rich, versatile test beds for investigating the crossovers between the mean-field picture and
quantum phase transitions, a problem that can be investigated in various platforms including superconducting
circuits, semiconductor microcavities, atomic Rydberg polaritons, and cuprite excitons.
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I. INTRODUCTION

For many decades, quantum phase transitions (QPTs)
have been the subject of intense studies in several areas of
physics [1]. In a closed system with unitary dynamics, the
hallmark of an equilibrium QPT is the nonanalytic behavior
of an observable upon changing a physical parameter [2–5].
In recent years, a new frontier has emerged in many-body
physics, investigating nonequilibrium phase transitions. In
that regard and as a suitable test bed, driven-dissipative quan-
tum systems and their phase transitions have been the subject
of many studies. Observation of exciton-polariton BEC in
semiconductors [6,7] and cuprites [8] and their superfluid-
ity [9,10], probing the first-order phase transitions, dynamical
hysteresis, and Kibble-Zurek quench mechanism in microcav-
ities [11,12], and demonstration of dynamical bifurcation and
optical bistability in circuit QED [13–18] are a few examples
of the rapidly growing body of experimental explorations of
such physics in different platforms.

In parallel, some general aspects of nonequilibrium QPT
have been investigated theoretically [19,20], and for specific
systems such as coupled spins [21–23], interacting bosonic
systems [24–27], and semiconductor microcavities [28]. Due
to their coupling to a bath, driven-dissipative dynamics are not
given by a Hermitian Hamiltonian but with a superoperator
that supports a gapped mode at QPTs [29–31]. In spite of
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all the progress, a full theory of dissipative phase transition
(DPT) has not yet been developed and the study of spe-
cific examples can aid this theoretical endeavor and hone the
crossover between DPT and the phase transition in the ther-
modynamic limit (TD). Moreover, it can bring to the fore rich
and various phenomena such as highly entangled states. Al-
though due to their constant interaction with the environment,
open systems are inherently far from the thermodynamic equi-
librium, still there could be some parameter ranges where the
system asymptotically approaches the mean-field (MF) limit,
where quantum correlations and fluctuations can be ignored.

To be more specific, in this paper we focus our studies
on a driven-dissipative three-mode bosonic system subject
to Kerr-type intra- and intermodal interactions. To keep our
results and discussions general, we do not specify the na-
ture of the bosonic system. But let us remark that such
setup could be realized in various platforms, including cav-
ity Rydberg polaritons [32–34], excitons in 2D materials
and semiconductors [35,36], microwave photons in super-
conducting circuits [37], and interacting photons in optical
cavities [38].

Starting from the MF description we first explore the phase
transitions of the system as a function of its parameters, i.e.,
pump, detuning, interaction strength, and bare-cavity mode
spacing. We show that depending on the bare cavity fea-
tures, the phase transition can be either continuous (2nd-order
phase transition) or abrupt (1st-order phase transition) cor-
responding to an optical multistability, as studied for planar
microcavities [39]. In both cases, the phase transition mani-
fests itself by a nonzero amplitude of the unpumped modes
and is related to the dissipative gap closure of the Liouvillian.
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We show that within this range and up to the MF level,
there is an unconditionally squeezed mode at the output, at-
tributed to the spontaneous breaking of the local U(1) and
time-translational symmetry (TTS). While in TD limit, the
diverging quadrature of this state is related to the well-known,
freely propagating Goldstone mode [40–42], employing the
Wigner phase-space representation we show that within the
quantum limit this mode is susceptible to fluctuations and
becomes short lived. Since employing the Wigner formalism
allows us to properly include the quantum noise, we have been
able to explore the phase diagram more accurately and beyond
MF. That also helps to delineate the validity range of MF
when it comes to the study of QPT. In spite of its simplicity,
the investigated system reveals important dynamics of driven-
dissipative bosonic gases and could be a quintessential model
for further exploration of spontaneous symmetry breaking
(SSB) in open many-body systems.

The paper is organized as follows: In Sec. II we present the
general problem, its MF description in the form of a gener-
alized Gross-Pitaevskii equation (GPE), and the low-energy
excitation spectrum determined via Bogoliubov treatment.
We also summarize the stochastic formulation of the prob-
lem based on the truncated Wigner phase-space method. In
Sec. III we present the numerical results of the three-mode
cavity where various phase transitions are investigated and
discussed. Finally, the last section summarizes the main re-
sults of the paper and sets the stage for future directions that
can be explored in such systems.

II. PROBLEM FORMULATION

Consider a three-mode cavity with the following Hamilto-
nian describing the interaction dynamics between the modes
â1,2,3,

Ĥph =
3∑

n=1

(
ωmâ†

mâm + V0

2

3∑
m

â†
mâ†

nâmân

)
(1)

+ V0
(
â†2

2 a1a3 + â†
1â†

3â2
2

)
,

where ωm is the frequency of the mth mode of the bare cavity
and V0 is the interaction strength. We would like to emphasize
that the Hamiltonian could be the description of an exciton-
polariton system or an optical parametric oscillator.

A coherent drive at frequency ωL excites the pth mode of
the cavity at the rate of �0 as

ĤD = �0(âpe+iωLt + â†
pe−iωLt ). (2)

Assuming a Markovian single-photon loss for the mode-bath
coupling, the following Lindblad master equation describes
the evolution of the reduced cavity density matrix ρ̂ as

d ρ̂

dt
= −i[Ĥ, ρ̂] +

∑
m

γm(2âmρ̂â†
m − {â†

mâm, ρ̂}), (3)

where Ĥ = Ĥph + ĤD on the right-hand side describes the
unitary dynamics of the system and the second term captures
the quantum jumps and losses of the mth-cavity field at rate
γm.

Equivalently, we can derive the equations of motion for âm

operators and describe the dynamics via Heisenberg-Langevin

equations as [43]

˙̂am = − i(�m − iγm)âm − iV0

∑
nkl

ηmn
kl â†

nâkâl − i�0δmp

+
√

2γmξ̂m(t ), (4)

where in the above equation �m = ωm − ωL is the frequency
of the mth mode in the laser frame, ηmn

kl is the mode-specific
prefactor arising from different commutation relations, and
{ξ̂m(t )} describe stationary Wiener stochastic processes with
zero means and correlations as

〈ξ̂ †
m(t + τ )ξ̂n(t )〉 = nthδ(τ ) δmn, (5)

〈ξ̂m(t + τ )ξ̂ †
n (t )〉 = (1 + nth)δ(τ ) δmn.

In the above equations, nth is the number of thermal photons
at the given temperature.

For numerical calculations, the dimension of the relevant
(few-photon) Hilbert space grows rapidly with increasing
number of modes and particle number. Hence, the direct so-
lution of the density matrix in Eq. (3) is only possible for a
small number of modes and at a low pumping rate �0. For the
quantum Langevin equations in Eq. (4), the two-body interac-
tion generates an infinite hierarchy of the operator moments,
making them intractable as well.

The most straightforward approach is a classical MF
treatment where the correlations are approximated with
the multiplication of the expectation values, i.e., 〈âmân〉 ≈
〈âm〉 〈ân〉 = αmαn. These substitutions simplify the equations
of motion of the operators’ MFs in Eq. (4) to a set of coupled
nonlinear equations as

iα̇m = (�m − iγm)αm + V0

∑
nkl

ηmn
kl α∗

nαkαl + �0δmp. (6)

Equation (6) is a Gross-Pitaevskii type equation with added
drive and dissipation terms. In the steady state, the mean
values are determined as α̇m = 0. In this work, we use the
Jacobian matrix to check the dynamical stability of all steady
states.

Although the MF provides a good starting point, infor-
mation about quantum correlations is lost. To improve this,
we replace âm = αm + b̂m and linearize Eq. (4) around MF
determined from the steady state of Eq. (6). Defining B̂ =
[b̂1, . . . , b̂N , b̂†

1, . . . , b̂†
N ]T (superscript T stands for the trans-

pose) as the fluctuation operator vector with 2N components,
its time evolution is determined as

dB̂

dt
= MB̂ + D1/2�̂, (7)

where M is the Bogoliubov matrix at the MF αm, D =
diag(2γm), and �̂ is the noise operator vector of the Wiener
processes in Eq. (4). As shown in Appendix A, from B̂ one
can directly determine the covariance matrix, CB(ω), whose
entries are the stationary two-time correlations of the (zero-
mean) operators B̂i, B̂ j ,

i j (ω) = F 〈 lim
t→∞ B̂i(t + τ )B̂ j (t )〉 = 〈 ˜̂Bi(ω) ˜̂Bj (−ω)〉 , (8)

where F represents the Fourier transform of the correlation
with respect to to the delay τ , and ˜̂Bi(ω) is the Fourier trans-
form of B̂i(t ).
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Within the Born-Markov approximation, if the 2nd-order
dynamics is contractive and in the vicinity of the steady state
it dominates over the higher-order terms, then most of the
important correlations can be obtained from the linearized
Bogoliubov treatment as in Eq. (7). This is a self-consistent
criterion with M having a spectrum with negative real parts,
and is typically satisfied at large particle numbers and weak
interactions, as for the TD limit, where MF treatment is well
justified.

To examine the validity of the MF and linearization in
the quantum limit of a small number of particles, we further
employ the Wigner function (WF) representation to express
the system dynamics in terms of the analytic quasiprobability
distribution W (�α; t ) [43,44]. While the complete dynamics
of the Wigner function exactly reproduces the quantum dy-
namics, the presence of the third-order derivative terms in
the time evolution of W (�α; t ) makes the complete simulation
numerically intractable. The truncated Wigner dynamics that
originates from discarding the third-order derivative terms
results in a numerically efficient and stable Fokker-Planck
equation. Using Itô calculus, it can be further mapped to a
set of stochastic differential equations (SDEs) for αm with
the following general form [45] (more details can be found
in Appendix B):

dαm = Amdt +
∑

m′
Dm,m′ dNm, (9)

where dNm is a complex Wiener process describing a Gaus-
sian white noise.

Within the Wigner approach, the expectation value of any
symmetrically ordered operator Ôsym, which is formed by
an equally weighted average of all possible orderings of the
underlying bosonic operators âm and â†

m at time t , can be
obtained as

〈Ôsym(t )〉 = 〈〈Osym(t )〉〉 , (10)

where 〈〈.〉〉 indicates the average over the trajectories of the
stochastic equation. The expectation values of generic oper-
ators, e.g., normally ordered ones, are then straightforwardly
obtained taking into account the bosonic commutation rules
between the âm and â†

m operators.
Before leaving this section, we would like to emphasize

that the beyond-MF corrections of GPE in Eq. (6) need the ef-
fect of the 2nd and the 3rd normally and anomalously ordered
correlations. These terms contribute to the MF as state-
dependent noises. In the truncated Wigner function (TWF)
method, there are additional drift terms as well as Langevin
forces to capture those aforementioned quantum-field correc-
tions, partially. While the full dynamics of W (�α; t ) in Eq. (B6)
is equivalent to the master equation in Eq. (3), the TWF is an
approximation which can only be applied to initially positive
WF and preserves this property. It can be interpreted as the
semiclassical version of Langevin equations of Eq. (4). Thus,
the TWF and its equivalent SDE in Eq. (9) might not be able
to reproduce the quantum dynamics fully. However, it goes
beyond the MF-Bogoliubov treatment and can describe the
generation of non-Gaussian and nonclassical states [46].

III. RESULTS AND DISCUSSION

Throughout this section we assume identical field decay
rates for all cavity modes, i.e., γm = γ0, and express all other
rates normalized to this value. Similarly, time is expressed in
units of γ −1

0 . A coherent drive as in Eq. (2) excites the second
mode, i.e., â2. Hence, the 1st and 3rd modes are populated
equally (more discussions can be found in Appendix A). Ther-
mal fluctuations due to the bath are assumed to be zero, i.e.,
nth = 0. Part of the full quantum mechanical calculations is
done with QuTip open-source software [47,48]. The numeri-
cal convergence in each case has been tested by increasing the
number of random initializations (MF), random trajectories
(SDE), and the truncation number in Fock states (density
matrix) to have a relative error � 10−5 in the particle number.

In a driven-dissipative system, the interplay between co-
herent excitation rate and its detuning, incoherent loss, and
interaction leads to notable changes in system properties, typ-
ically known as dissipative phase transition. In the multimode
case we consider here, we have an additional important pa-
rameter governing the DPT, namely δD = 2ω2 − (ω1 + ω3),
which is the anharmonicity of the bare cavity. We call the
cavity harmonic if δD = 0 and anharmonic otherwise. Note
that harmonic and anharmonic do not refer here to the devia-
tions from bosonicity or the nonlinearity of the field dynamics,
which is encoded in the V0 parameter, but rather to the spatial
shape of the external potential acting on photons and giving
rise to the spectrum of cavity modes.

Similar phase diagrams and multistability phenomena have
been studied for exciton-polaritons in planar cavities where
δD vanishes [39]. However unlike the planar case where a
continuum of modes is available, here the frequencies of
the generated pairs are set by the bare cavity modes and
the interaction, self-consistently. Note that we are focus-
ing here on cavity configurations, to be distinguished from
running-wave optical parametric oscillators for which differ-
ent phase-matching conditions apply [49].

Figures 1(a), 1(b) show the phase diagram of a harmonic
cavity as a function of the interaction strength V0 and the
laser detuning �0, respectively. The phase diagram closely
resembles the DPT of a single-mode cavity depicted in
Figs. 11(a), 11(b) in Appendix C. While it is in the (�1)
phase, i.e., the yellow region, the pumped mode has one stable
stationary state.

In the (�2) phase, i.e., the orange region, there are two
distinct values for the pumped mode. Finally, in the (�3)
phase, i.e., the red region which only appears in the multimode
case, the system is within a tristable phase and the pumped
mode has three stable MF stationary states. In Fig. 2 we plot
〈n̂1,2〉 for V0 = 0.1, 1 at �0 = −3 as a function of the pumping
rate varied along the dotted lines (I), (II) in Figs. 1(a), 1(b)
respectively. There, the black lines show all the MF solutions
determined from Eq. (6). However, not all of the solutions
are stable in terms of the elementary excitation spectrum. As
mentioned in the previous section, we determine the stable
branches based on the Bogoliubov matrix eigenvalues. In each
panel, the solid black lines show the stable solutions and
the dashed black lines indicate the unstable branches. The
stable solutions can be determined directly via integrating the
coupled equations of motions for the MF. The purple line with
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FIG. 1. MF dissipative phase diagram of a three-mode harmonic
cavity, i.e., 2ω2 = ω1 + ω3, as a function of (a) the interaction
strength V0 and (b) the laser detuning �0. In each panel the yellow
(�1), orange (�2), and red (�3) regions correspond to the presence
of one, two (bistability), and three stable (tristability) stationary
states for the pumped mode, respectively. In (a) the detuning is fixed
at �0 = −3 and in (b) the interaction strength has the constant value
V0 = 1. The dotted vertical lines [labeled (I) and (II)] at V0 = 0.1
and �0 = −3 indicate the cuts through the phase diagram studied in
subsequent figures. Rates are in units of γ0.

diamonds shows the data calculated using the SDE method
averaged over 2000 random trajectories, and the solid red
line in panels (c), (d) depicts the results of the full density
matrix (DM) calculations as a benchmark. It can be seen
that the phase transitions are discontinuous, i.e., a first-order
PT. Moreover, for all modes the difference between stable
MF branches decreases upon increasing the interaction from
V0 = 0.1 to V0 = 1 in Figs. 2(a), 2(b) and Figs. 2(c), 2(d)
respectively. Aside from the finite region around the multista-

FIG. 2. Population of the 1st and the 2nd mode in a harmonic
cavity, i.e., δD = 0, as a function of the pumping rate �0 calculated
from MF (solid black lines for stable and dashed lines for unstable
solutions) and SDE (purple diamonds). Solid red line in panels (c),
(d) show the density matrix solutions for comparison. V0 = 0.1 in
panels (a), (b) and V0 = 1 in (c), (d). In both cases �0 = −3 and all
rates are normalized to γ0.

FIG. 3. Number of photons in the 1st, 3rd modes of a three-mode
anharmonic cavity (2ω2 
= ω1 + ω3), as a function of the (a) inter-
action strength V0 and (b) anharmonicity δD, determined from MF,
where all rates are in units of γ0. In (a) δD = 5 and in (b) V0 = 1 and
the laser is always resonantly pumping the 2nd mode �0 = 0. (�1),
(�3) indicate two different phases of zero and nonzero population
of the first mode. The dotted vertical lines [labeled (I) and (II)] at
V0 = 0.1 and δD = 5 indicate the cuts through the phase diagram
studied in subsequent figures.

bility, also it can be seen that the results of MF, SDE, and DM
agree quite well (note a similar tendency for the single-mode
case in Fig. 12 of Appendix C). For the 1st mode on the
other hand, both Figs. 2(a) and 2(c) indicate that the finite MF
tristable region (�3 in the DPT) is the only parameter range
where this mode gets a nonzero amplitude.

As already mentioned, the QPT of a harmonic cavity and
of a single-mode cavity are very similar and, as can be seen
from comparing Fig. 1 and Fig. 11, the multimode tristability
region is a subset of the single-mode bistability region. In
other words, the multistability is a necessary but not suffi-
cient condition for having the parametric pair generation of
unpumped modes. To establish a physical qualitative picture,
one can consider the symmetric sidebands generated due to
the self-interacting cavity mode (Fig. 13). These sidebands
are always generated due to the pumped mode and in a mul-
timode cavity they overlap with the unpumped modes hence
behaving as excitation for them. When the pumping rate due
to these sidebands exceeds the linewidth of the mode, i.e.,
the cavity decay rate, one can get nonzero MF amplitude for
the unpumped modes as well. By populating those modes
their self-interaction becomes important as well and they start
to move out of resonance. Hence the pumping rate via the
sidebands decreases, and the MF amplitude of these modes
vanishes again; i.e., the parametric process stops. That ex-
plains why one has a finite region of nonzero values for the
1st and 3rd modes as shown in Figs. 2(a), 2(c).

The situation is different in an anharmonic cavity where
δD 
= 0. Figures 3(a), 3(b) show the average number of pho-
tons in unpumped modes 〈n̂1,3〉 as a function of the interaction
strength V0, the pumping rate �0, and the anharmonicity
parameter δD. For better illustration, in Figs. 4(a), 4(b) and
Figs. 4(c), 4(d) we plot the average number of photons in
all cavity modes as a function of the pump rate at weak
(V0 = 0.1) and strong (V0 = 1) interaction, respectively, when
the pumping rate is continuously increased along the (I) and
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FIG. 4. Population of the 1st (3rd) and the 2nd mode, in an
anharmonic cavity with δD = 5, as a function of the pumping rate
(�0) calculated from MF (black dots), SDE (purple diamonds). Solid
red line in panels (c), (d) shows the DM solutions for comparison.
V0 = 0.1 in panels (a), (b) and V0 = 1 in (c), (d). In both cases
�0 = 0 and the rates are normalized to γ0.

(II) dotted lines in Figs. 3(a), 3(b). Unlike the harmonic cavity
case, here we only have two phases (�1), (�3), where the
transition occurs continuously (but is nonanalytic), i.e., in a
second-order PT, with a unique-valued order parameter in
each phase.

As elaborated in Appendix A, for the single-mode cavity,
the interaction of the pumped mode (2nd mode here) with
itself creates energetically symmetric sidebands. In a multi-
mode case, the interplay between the intra- and intermode
interactions leads to the excitation of other modes both in
the harmonic as well as anharmonic cavities. Similarly for
both, MF predicts a threshold and a finite parameter range for
nonzero amplitude of the 1st mode. While the lower threshold
is set solely by the pumped mode when V0n2 � γ2, the upper
threshold is dependent on the population of the other two
modes as well as their relative energies. (The lowest and
highest pumping rate is set by the constraints on �0,�p,
respectively, as detailed in Appendix A.)

When quantum fluctuations are included, however, either
via SDE or full density matrix (DM) calculations, a unique,
continuous, and nonzero solution for all three modes is pre-
dicted at all pumping rates. In both cavities and for the
pumped mode, MF, SDE, and DM results agree quite well in
(�1) phase. For the parametrically populated modes however,
the SDE and DM results are in good agreement over the whole
range but are remarkably different from MF. However, the
rising slope of the former analyses always coincides with the
transition to the MF (�3) phase.

Spontaneous symmetry breaking and Goldstone mode

In the absence of the coherent pump, the Liouvillian super-
operator L of Eq. (3) has a continuous global U(1) symmetry,

FIG. 5. Temporal behavior of the mean fields α j (t ) within the
MF (�3) phase in a three-mode (a) harmonic cavity at �0 =
1.85, �0 = −3 and (b) anharmonic cavity at �0 = 2, δD = 5, and
V0 = 1. In both panels the blue, green, and red lines correspond to
the 1st, 2nd, and 3rd mode, respectively. The time is in units of γ −1

0 ,
and TLC indicates the limit-cycle period.

which is broken by a coherent drive of Eq. (2). However, with
the Hamiltonian of Eq. (1) for the three-mode cavity, L still
has a local U(1) symmetry as it remains unchanged under the
following transformations for any arbitrary phase �0 [40]:

â1 → â1e+i�0 , â3 → â3e−i�0 . (11)

If the MF amplitudes α1,3 = 0, then the steady state respects
the Liouvillian’s symmetry and can be unique. However, for
α1,3 
= 0 as occurs within the (�3) phase, the MF solutions are
not U(1)-symmetric anymore. Hence, there is a spontaneous
symmetry breaking (SSB) accompanied by a DPT. However,
it is evident that the set of all solutions is invariant under
the aforementioned rotations. In other words, within the (�3)
phase there is a continuum of MF stationary states.

Figures 5(a), 5(b) show the typical temporal behavior of
the order parameters αm within the MF (�3) phase of the
harmonic and anharmonic cavities, respectively. As can be
seen, while the pumped mode m2 is time invariant (green line),
the parametrically populated modes m1,3 (blue and red lines)
show self-sustained oscillations with a random relative phase,
reflecting the value the U(1) phase acquires in the SSB.

In the frame rotating with the laser, the Liouvillian L is
TTS, which indeed is the symmetry of the solutions within the
(�1), (�2) phase. Within the (�3) phase, however, the order
parameter becomes time periodic and thus breaks the time-
translational symmetry. Therefore, in both of the harmonic
and anharmonic cavities, the MF (�3) phase is accompa-
nied by SSB of the local U(1) symmetry and the TTS. This
oscillatory behavior, known as the limit-cycle (LC) phase,
is a clear distinction of DPT from its equilibrium counter-
parts [50–52]. From Fig. 5, the LC period can be determined
as TLC ≈ 6.28 and TLC ≈ 0.83, corresponding to ωLC = 1, 7.5
for the harmonic and anharmonic cavities, respectively. These
frequencies agree with the theoretical predictions of �̃1,3 in
Appendix A.

The SSB of this continuous symmetry can be interpreted
in terms of the gapless Goldstone mode. The eigenvalues {λ}
of the Bogoliubov matrix M in Eq. (7) directly determine
the excitation energies around a MF stationary state, with
Re(λ) being the excitation linewidth and Im(λ) its frequency.
It is straightforward to check that due to the relative-phase
freedom of the unpumped modes, M has a kernel along the
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FIG. 6. Output X, P spectra of the modes in the (a), (b) harmonic
cavity at �0 = −3, �0 = 1.85, and (c), (d) anharmonic cavity at
�0 = 0, �0 = 2, calculated from the MF-Bogoliubov. In each panel
the solid blue, red, and green lines correspond to the spectrum of
the pumped (m2), symmetric (m+), and antisymmetric (m−) modes,
respectively. Due to its divergence, the momentum of the antisym-
metric mode is scaled down in panels (b), (d). The frequency axis is
in units of γ0.

following direction [40] (more information is in Appendix A):

G = [α1, 0,−α3,−α∗
1 , 0, α∗

3 ]T , (12)

where T means the transpose.
λG = 0 implies that in the local oscillator’s frame, G is

a zero energy mode (ω = 0) with zero linewidth, i.e., an
undamped excitation. To investigate the implications of this
mode on quantum correlations, we employ Eq. (7) to calculate
the X, P-quadrature spectra of the cavity output. Figure 6
shows the quadrature correlations of the output 2nd mode
and (m± ∝ m1 ± m3), i.e., the symmetric and antisymmetric
superpositions of the two unpumped modes. Panels (a), (b)
show the spectra of the harmonic cavity at �0 = 1.85, and
panels (c), (d) show the same quantities for an anharmonic
cavity at �0 = 2, which correspond to the point B within
the MF LC phase, and on the rising slope of the SDE and
DM results in Fig. 2(c) and Fig. 4(c). Although the spectral
features of the pumped and the symmetric mode depend on
detailed cavity features, the antisymmetric mode quadratures
in harmonic and anharmonic cavities look alike [solid green
lines in Figs. 6(c), 6(d)]. While SX− is always fully squeezed
at the origin, the spectrum of its conjugated variable SP− di-
verges. From Eq. (12) it is clear that SP− is indeed the spectrum
of the gapless Goldstone mode. Since in the MF picture this
mode encounters no restoring force, its fluctuation diverges.
(The analytic form of the spectra and further information can
be found in Appendix A.)

To examine the robustness of the Goldstone mode and the
consequent unconditional squeezing, we employ the SDE to
study the beyond-MF behavior of the cavity state. Figure 7
shows the number state occupation probability (pn) and the

FIG. 7. Histograms of number state occupation probability pn

and color maps of the Wigner function of the (a)–(d) 1st mode
and (e)–(h) 2nd mode, in a three-mode harmonic cavity when �0 =
−3,V0 = 1 for different pumping rates �0 highlighted as (A, B, C,
D) in Figs. 2(c), 2(d). In each phase-space map the white dashed lines
show the axes (X = 0, P = 0) in the XP plane and the light blue stars
or circles correspond to the predicted MF.

Wigner function distribution of the harmonic cavity at four
different pumping rates �0 = 1, 1.85, 3.5, 10 corresponding
to the (A, B, C, D) points in Fig. 2 at V0 = 1, respectively.
Panels (a)–(d) show these quantities for the 1st mode and
panels (e)–(h) show the ones for the 2nd mode. As can be
seen in all panels (a)–(d), distributions of the 1st mode are
azimuthally symmetrically independent of the pumping rate,
which is consistent with the local U(1) symmetry of the un-
pumped modes and their phase freedom, i.e., 〈â1,3〉 = 0.

Within the (�1) phase at low pumping rate and before
the parametric threshold, MF predicts zero amplitude for the
1st mode, while the 2nd mode looks like a coherent state
[Figs. 7(a), 7(e)]. As the pumping rate increases [point B in
Figs. 2(c), 2(d)], the system enters the LC phase in which
mode 2 has three stable stationary states, as shown with three
stars in Fig. 7(f), and the unpumped modes acquire a finite
amplitude. The black circle in Fig. 7(b) shows the loci of
MF stationary states. For larger values of the pump, close to
the upper threshold of the multistability region [point C in
Figs. 2(c), 2(d)], the system transitions to the uniform (�1)
phase again where the 2nd mode attains a unique stationary
state and the 1st mode has zero MF. However, as can be seen
in Fig. 7(g) the cavity state is far from coherent due to the
larger interaction at this photon number.

At even larger pumping rate shown in Figs. 7(d), 7(h)
corresponding to the point D in Figs. 2(c), 2(d) [far within
the (�1) phase], the 2nd mode is a non-Gaussian state whose
phase-space distribution is reminiscent of the single-mode
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FIG. 8. Histograms of the number state occupation probability
pn and color maps of the Wigner function of the (a)–(d) 1st mode
and (e)–(h) 2nd mode in a three-mode anharmonic cavity when �0 =
0, δD = 5 and at V0 = 1 for different pumping rates �0 highlighted
as (A, B, C, D) in Figs. 4(c), 4(d). In each phase-space map the white
dashed lines show the axes (X = 0, P = 0) in the XP plane and the
light blue stars or circles correspond to the predicted MF steady-state
amplitudes.

cavity in this regime (Fig. 12 of Appendix C). Also it is worth
mentioning that in spite of the similar symmetric distribution
of the 1st mode and its vanishing mean, its variance clearly
changes as the system traverses the different phases.

For completeness, in Fig. 8 we detail the state of the an-
harmonic cavity through its different phases at four pumping
rates of �0 = 1, 2, 3.5, 10 corresponding to (A, B, C, D)
points in Figs. 4(c), 4(d). As can be seen the overall behavior
of the cavity modes looks like that of the harmonic case,
with the main distinction of always having one unique MF
stationary state.

To study the robustness of the Goldstone mode in the pres-
ence of quantum fluctuations, from SDE analysis we calculate
the correlation and spectrum of in-cavity P̂− as

g(1)(τ ) = 〈 lim
t→∞ P̂−(t + τ )P̂−(t )〉 , (13)

SP− (ω) = F (g(1)(τ )), (14)

where P̂− = i(â− − â†
−)/

√
2 is the momentum of the m−

mode. When using SDE trajectories to calculate such corre-
lations, we are making a semiclassical assumption to evaluate
the two-time operators replacing them with classical quanti-
ties and neglecting commutators [45].

The results are shown in Fig. 9 when the interaction V0 is
increased from 0.1 to 1 (brown to yellow lines). Panels (a), (b)
are the spectra and correlations in the (�1) phase while (c), (d)

FIG. 9. SDE calculations of the (a), (c) spectral density in the
laser frame (in units of γ0) and (b), (d) delayed temporal correlation
of P quadrature of in-cavity m− mode in an anharmonic cavity. The
upper row shows the behavior in the (�1) phase and the lower row
shows that with the MF LC phase. The interaction is changed from
V0 = 0.1 to V0 = 0.5 to V0 = 1.0, yellow to red to brown, respec-
tively. The dashed lines show the Lorentzian fit in (a), (c) and the
exponential fits in (b), (d).

are within the (�3) phase where LC is predicted by MF. For
direct comparison with LC oscillations of Fig. 5(b) and high-
lighting ωLC , the spectral densities in (a), (c) are shown in the
laser (ωL) frame, directly. Defining a dimensionless parameter
N where V0 = V/N → 0+ is the TD limit, the pumping rate is
scaled by

√
N , so that V0�

2
0 is kept fixed. That way one can

make the interaction per particle small (TD) but at the same
time still have the same total interaction.

As can be seen in Figs. 9(a), 9(b) the observables are almost
unchanged when the system is in the (�1) phase, where MF
predicts zero amplitude for m−. From Fig. 9(a) we can see that
SP− is very small with a large linewidth (note that the data for
V0 = 0.5, 0.1 are shifted upward to provide clarity). Similarly,
the temporal behavior in panel (b) shows a short correlation
time.

On the contrary, when the system transitions to the MF LC
phase by virtue of increasing the pumping rate, the spectral
densities shown in Fig. 9(c) increase and an apparent reso-
nance feature appears that becomes more prominent at weaker
interaction closer to the TD limit, hence, the validity range of
MF.

Similarly the temporal correlations in panel (d) show pro-
longed coherence times that increase at weaker interaction. To
quantify these features better, we fit a Lorentzian line shape
with the following form to SP− (ω):

L(ω) = a

(ω − ωpeak )2 + 2
+ c. (15)

The fits are shown with dashed lines in Figs. 9(a), 9(c)
and the center and linewidth fit parameters are presented in
Table I. Within the (�1) phase, ωpeak and  slightly change
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TABLE I. The Lorentzian fit parameters to the spectral den-
sity of P− quadrature within the MF (�1) and (�3) phase as in
Figs. 9(a), 9(c). All rates are in terms of γ0.

V0 = 0.1 V0 = 0.5 V0 = 1.0

ωpeak (�1) 8.7 8.5 9
ωpeak (�3) 7.5 7.7 7.9
 (�1) 5.6 5.4 6.5
 (�3) 0.4 1.7 3.2

with the interaction V0. Throughout the LC phase, on the
other hand, ωpeak ≈ 7.5, i.e., the LC oscillation frequency
ωLC in Fig. 5(b). Moreover, starting from a narrow resonance
( ≈ 0.4) at weak interaction (large N), the linewidth clearly
increases ( ≈ 3.2) by increasing the interaction (small N).
Similar values were obtained by fitting the correlation func-
tions with exponential functions, i.e., the dashed lines in
Figs. 9(b), 9(d) independently.

Finally, we study the behavior of the P−-quadrature
linewidth for the whole quantum-to-TD-limit transition, i.e.,
from small to large N . The results are depicted in Fig. 10 with
red squares. The solid red line is the number of particles in this
mode (right y axis), and the the solid blue line is a power-law
fit to the data, indicating the linewidth narrowing scales as
N−0.9±0.03. In other words, while the gapless Goldstone mode
picture in the TD limit (kernel of MF-Bogoliubov matrix) is
corroborated well by a small  ≈ 0 of the P− quadrature for
large N , approaching the quantum limit the decay rate notably
increases due to the phase diffusion. It is worth comparing this
tendency with the Schawlow-Townes laser linewidth scaling
as N−1 [53].

To investigate the m−-mode noise spectra as well, we show
the Wigner function distribution of this mode at a few different
interaction points. As can be seen at larger N (point C), hence
the weaker interaction, the phase-space distribution resembles
the one of an X -squeezed state. However, upon increasing the
interaction (points A, B) the squeezing decreases. This clearly
confirms the phase diffusion effect in reducing the coherence
time of the generated pairs. Besides, this effect becomes more
dominant deep into the quantum range where the fluctuations
should not be ignored.

FIG. 10. The linewidth of the P− quadrature (in units of γ0), i.e.,
the Goldstone mode, within the MF LC phase as a function of the
dimensionless parameter N . The red squares are the SDE calculation
results while the solid blue line is a power-law fit to the data. The
solid red line shows the average number of particles in this mode
(right axis). The inset color maps show the TWF distribution of the
m− mode at a couple of interaction strengths.

IV. CONCLUSIONS

Exploring dissipative phase transitions is one of the im-
portant topics of open quantum systems. There, the interplay
between dissipation, drive, and interaction can lead to a rich
test bed to investigate dynamics of many-body systems far
from their equilibrium. Among the interesting features that
can be studied in these systems are the generation of steady-
state many-body correlations, the sharp dependence of system
parameters with applications in metrology, and the emergence
of classical properties in quantum systems. In this article, we
theoretically investigate the first- and second-order quantum
dissipative phase transitions of in a three-mode cavity with
intra- and intermodal two-body interaction as a prototypical
model. We showed the emergence of a MF limit-cycle phase
where the local U(1) symmetry and the TTS of the Liouvil-
lian are spontaneously broken. We explained the connection
between this phase and the Goldstone mode well studied in
the TD limit. Including the effect of quantum noise by em-
ploying the truncated Wigner function formalism, we showed
the breakdown of MF predictions within the quantum regime.
Within this range, fluctuations notably limit the coherence
time of the Goldstone mode due to the phase diffusion.

Concerning the experimental realizations, the model and
the results are applicable to a wide variety of driven-
dissipative interacting bosonic platforms, including circuit
QED, semiconductor excitons, and multimode cavities with
cold atoms [32,54], where the figure of merit V0/γ can be
tuned properly. It is also interesting to explore the feasibility
of using such platforms in creating non-Gaussian states as
an instrumental ingredient for quantum information proto-
cols based on continuous variable entanglement and photonic
quantum logic gates [15,55–57].
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APPENDIX A: COVARIANCE MATRIX FROM
MF-BOGOLIUBOV

As described in the main text, the equations of motion for
the vector of fluctuation operators B̂ = [b̂(t )] are given by
the linearized Eq. (7). From this equation we can determine
directly the Fourier transform of fluctuation operator B̂ for the
inside-cavity fields as

B̂(ω) = −(iωI + M )−1D1/2�̂(ω), (A1)

where ω is the frequency in the local oscillator (ωLO) rotating
frame. For dynamically stable solutions, i.e., for the real part
of the spectrum of M being negative-definite, the above solu-
tion always exists. We define the following covariance matrix
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spectrum with entries as in Eq. (8),

C(in)
B (ω) = 〈B̂(ω)B̂†(−ω)〉 = 〈B̂(ω)B̂(ω)†〉

= (iωI + M )−1D1/2 〈�̂(ω)�̂†(−ω)〉
× D1/2(iωI + M )−1†

,

where the superscript (in) refers to the inside-cavity fields,
and the subscript B emphasizes the operators. 〈�̂(ω)�̂†(−ω)〉
is the noise spectral density, solely dependent on bath features,
e.g., thermal photons density in our case. The coupling rate of
the in-cavity field with the surrounding bath is captured via

the matrix D. Other detailed information about the bare cavity
modes, pumping, and interactions are contained in the matrix
M. At any stable MF, the spectrum of M has negative real
parts, so C(in)

B (ω) is a well-defined quantity over the whole
spectrum except ω = 0, in the case where M has a kernel.

Employing the input-output formalism the output-field co-
variance matrix can be determined directly from C(in)(ω). For
a single-sided cavity we have

B̂out = D1/2B̂in − �̂, (A2)

which leads to the following covariance matrix for the output
field as

C(out )
B (ω) = 〈B̂(out )(ω)B̂(out )(ω)†〉 = [I + D1/2(iωI + M )−1D1/2] 〈�̂(ω)�̂†(−ω)〉 [I + D1/2(iωI + M )−1D1/2]†. (A3)

Equation (6) for MF can be solved to determine the MFs as well as the detunings, self-consistently. From now on, αm → |αm|eiφm

and we drop the amplitude sign for brevity. Assuming the pump as �0e−iφp , one can show the following relations:(α1

α3

)2
= γ3

γ1
, sin(�0) =

√
γ1γ3

V0α
2
2

, �0 sin(�p) = α2
[
1 + 2α2

2α1α3 sin(�0)
]
,

�̃1 = γ1

γ1 + γ3
(2�2 − δD) + V0α

2
2

γ2(γ1 + γ3)

[
2(γ1 − γ3) + 2

(
γ1α

2
1 − γ3α

2
3

) + (
γ1α

2
3 − γ3α

2
1

)]
,

�̃3 = γ3

γ1 + γ3
(2�2 − δD) − V0α

2
2

γ2(γ1 + γ3)

[
2(γ1 − γ3) + 2

(
γ1α

2
1 − γ3α

2
3

) + (
γ1α

2
3 − γ3α

2
1

)]
, (A4)

where �0 = 2φ2 − φ1 − φ3, �p = φp − φ2.

Note that �̃1,3 are the renormalized detunings after ex-
tracting the LC oscillations. They therefore depend on other
system parameters. From these equations it is clear that if
γ1 = γ3 then the field amplitudes α1,3 and their renormalized
detunings are the same. Moreover, �̃1,3 becomes MF inde-
pendent, solely dependent on mode frequencies and the pump
detuning. The difference between �1,3 in Eq. (4), i.e., the
detuning in the laser rotating frame, and �̃1,3 in the above
equation is the LC oscillations depicted in Fig. 5 of the main
text. It is straightforward to check that the LC oscillations have
the following frequency:

�̃1,3 − �1,3 = ±ωLC = ±ω3 − ω1

2
. (A5)

Note that the last equation respects the local U(1) symmetry
of Eq. (11).

To study the squeezing it is often more suitable to
investigate the behavior of field quadratures, related to
field operators B̂ via a unitary transformation U as R̂ =
[X1, P1, X2, . . . , P3] = UB̂. The generalized quadratures of

these modes are defined as follows:

X̂2(θ2) = Â2eiθ2 + Â†
2e−iθ2

√
2

. (A6)

The momentum quadratures are defined similarly. Their co-
variance matrix reads as

CXP(ω) = 〈R̂(ω)R̂(ω)†〉 = UCB(ω)U †. (A7)

For the three-mode cavity investigated in this work, we define
new modes via a rotation of m2 and symmetric and antisym-
metric superpositions of the (also rotated) modes m1, m3 as

Â2 = â2eiφ2 , Â± = α1â1eiφ1 ± α3â3eiφ3√
α2

1 + α2
3

. (A8)

Note that P̂− is the operator associated with the Goldstone
mode G in Eq. (12).

A direct calculation of M for the XP operators indicates
that for (θ1 + φ1) = (θ3 + φ3), MXP = M4×4

⊕
M2×2, decou-

pling the dynamics of the m2, m+ modes from that of m−. For
θ2 = −φ2 the Bogoliubov matrix has the following form:

MXP =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�0
α2

sin φ2 4V0α
2
1 cos �0 + �0

α2
cos φ2 −2

√
2V0α1α2 sin �0 −2

√
2V0α1α2 cos �0 0 0

2V0α
2
2 − �0

α2
cos φ2 4V0α

2
1 sin �0 + �0

α2
sin φ2 2

√
2V0α1α2(2 + cos �0 ) −2

√
2V0α1α2 sin �0 0 0

2
√

2V0α1α2 sin �0 −2
√

2V0α1α2 cos �0 0 2V0α
2
2 cos �0 0 0

2
√

2V0α1α2(2 + cos �0 ) 2
√

2V0α1α2 sin �0 6V0α
2
1 −2V0α

2
2 sin �0 0 0

0 0 0 0 −2V0α
2
2 sin �0 0

0 0 0 0 −2V0(α2
1 + α2

2 cos �0 ) 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.
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Clearly, M has a kernel along P−, hence a gapless mode without any further dynamics.
The output spectrum of this mode can be directly obtained from C(out )

B (ω) in Eq. (A3). For brevity we define a matrix N as

N = I + D1/2(iωI + M )−1D1/2. (A9)

From Eq. (A3) we get

C(out )
XP (ω) = U [N (U †U ) 〈�(ω)�†(−ω)〉 (U †U )N†]U † = (UNU †)[U 〈�(ω)�†(−ω)〉U †](UNU †)†, (A10)

UNU † = U [I + D1/2(iωI + M )−1D1/2]U † = I + D1/2U (iωI + M )−1U †D1/2

= I + D1/2[U (iωI + M )U −1]−1D1/2 = I + D1/2(iωI + MXP )−1D1/2, (A11)

where MXP = UMU −1 is the Bogoliubov matrix of the generalized rotated quadratures. Note that in the above equation we
implicitly assumed identical losses for all modes, i.e., D1/2 = √

2γ0I . Finally, the quadrature spectra of the m− mode will be
obtained as

SX− (ω) = 1

2

(
(MXP55 + 2γ0)2 + ω2

M2
XP55

+ ω2

)
= 1

2

(
ω2

M2
XP55

+ ω2

)
,

SP− (ω) = 1

2

(
1 + 4γ0

[
γ0

(
ω2 + M2

XP55
+ M2

XP65

) + M65(2γ0 + M55)
]

ω2
(
ω2 + M2

55

)
)

= 1

2

(
1 + 4γ 2

0

(
ω2 + M2

XP55
+ M2

XP65

)
ω2

(
ω2 + M2

XP55

)
)

, (A12)

where we used the expression for �0 from Eq. (A4) to
simplify the final form of the spectrum. These two spec-
tra have simple interpretations: First, they show that at the
local oscillator frame 〈�2P−〉 diverges while 〈�2X−〉 van-
ishes. Moreover, for all frequencies the momentum quadrature
is always above the standard quantum limit (SQL; � 0.5),
and SX− � 0.5 below SQL, indicating the squeezing of this
quadrature. Both quantities asymptotically approach SQL at
large frequencies, as expected for the asymptotic vacuum
noise.

APPENDIX B: WIGNER REPRESENTATION

The Wigner representation of the density matrix ρ̂ in the
complex plane can be derived from Eq. (3) by assigning
c-numbers α±

m for each degrees of freedom and using the fol-
lowing relations to replace the operator algebras with calculus
ones on analytic function W . A detailed explanation of the
Weyl transformation and Wigner function representation can
be found in [43,44,58,59]. The basic tool for our purposes is
the translation of operator products involving the density op-
erator to c-number differential operators applied to the Wigner
function as given by

âmρ̂ →
[
α−

m + 1

2

∂

∂α+
m

]
W (α±

m ; t ),

â†
mρ̂ →

(
α+

m − 1

2

∂

∂α−
m

)
W (α±

m ; t ), (B1)

ρ̂âm →
(

α−
m − 1

2

∂

∂α+
m

)
W (α±

m ; t ),

ρ̂â†
m →

(
α+

m + 1

2

∂

∂α−
m

)
W (α±

m ; t ). (B2)

Different terms of the master equation can be replaced with
their equivalent form in terms of W (α±

m ), where α±
m = (α∓

m )∗.
For the bare-cavity dynamics (the commutator with ωmâ†

mâm

and the decay terms), we have

∂

∂α−
m

[(iωm + γm)α−
m ] + γm

2

∂2

∂α−
m ∂α+

m

+ c.c.+, (B3)

where c.c.+ in these equations represents the complex conju-
gate.

The self-phase modulation (SPM) as â†2

m â2
m gets trans-

formed to

∂

∂α−
m

(
α−2

m α+
m − α−

m

) + 1

4

∂3

∂α−
m ∂2α+

m

α+
m + c.c.+ (B4)

The cross-phase modulation (XPM) â†
mâ†

nânâm, n 
= m gives

∂

∂α−
m

(
α−

m α−
n α+

n − α−
m

2

)
+ ∂

∂α−
n

(
α−

n α−
m α+

m − α−
n

2

)

− ∂3

∂α−
m ∂α+

m ∂α−
n

(
α−

n

2

)
− ∂3

∂α−
n ∂α+

n ∂α−
m

(
α−

m

2

)
+ c.c.+

(B5)

And finally the exchange term as â†
1â†

3â2
2 + H.c. gets the fol-

lowing form:

∂

∂α−
1

(
α−2

2 α+
3

) + ∂

∂α−
3

(
α−2

2 α+
1

) + ∂

∂α−
2

(2α−
1 α−

3 α+
2 ) + c.c.+

− ∂3

∂α+
3 ∂2α−

2

(
α−

1

4

)
− ∂3

∂α−
1 ∂α−

3 ∂α+
2

(
α−

2

2

)

− ∂3

∂α+
1 ∂2α−

2

(
α−

3

4

)
.

When inserted into Eq. (3), one can determine the equation
of motion for W (�α; t ) as

∂

∂t
W (α±

m ; t ) = LW [W (α±
m ; t )]. (B6)

In the above equation LW is a 3rd-order differential opera-
tor acting on the function W (�α; t ) and is equivalent to the
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superoperator L acting on the density matrix ρ̂. If the 3rd-
order derivatives in LW [.] are ignored, the resulting truncated
Wigner function W turns into a Fokker-Planck equation with
the following general form [45],

∂

∂t
W (�α; t ) ≈ −

∑
m

∂αm (AmW ) + 1

2

∑
m,m′

∂2
αmαm′ (DDT W ),

(B7)
where Am, D represent the drift and diffusion matrices in a
stochastic process, respectively.

APPENDIX C: SUMMARY OF DPT IN A SINGLE-MODE
CAVITY

To be able to directly compare some features of the multi-
mode case with the single-mode cavity and shed some light on
the connection between DPT and the Liouvillian gap closure
here we summarize some results for a single-mode cavity
case. More detailed information about various properties can
be found in [11,24–26].

First-order DPT in a single-mode cavity

Starting from Eq. (6) we can drive the following equation
for the mean photon number in the cavity mode as

V 2
0 n3 + 2�0V0n2 + (

�2
0 + 1

)
n = �2

0, (C1)

where n = |α2|2 is the photon number and all the rates are
normalized to γ0, as usual. This cubic equation can be solved
exactly to give three values for n at each �0. However, n
being a real positive quantity imposes additional constraints
for having a physical result. The discriminant of this cubic
equation reads

� = −V 2
0

[
27V 2

0 �4
0 + 4V0�0�

2
0

(
9 + �2

0

) + 4
(
1 + �2

0

)2]
.

(C2)
For a repulsive interaction, i.e., V0 > 0 and for a red-detuned
coherent excitation �0 � 0, the discriminant � � 0; hence
the system always has a single real solution which is posi-
tive in this case �2

0/V 2
0 � 0. Following a dynamical stability

analysis one can show that this solution is stable as well and,
hence, it is the solution of the nonlinear cavity, as depicted in
the phase diagram of Fig. 11(b). For a blue-detuned excitation
�0 < 0, the same argument holds while the term in square
brackets remains positive. For each detuning �0, this puts an
upper and lower bound on the pumping rate �0. These are the
boundaries between the yellow and orange regions in Fig. 11.

These two threshold pumping values lead to two differ-
ent values for n in Eq. (C1), hence an abrupt change in the
particle number as shown in Fig. 12. For pumping rates in
between, Eq. (C2) leads to � < 0; hence three different real
solutions for the cubic Eq. (C1) exist. Moreover, these roots
are positive; hence indeed they can be physical solutions for
n. However, the dynamical stability analysis indicates that
only particle numbers satisfying (V0n + �0)(3V0n + �0) � 0
are stable MF solutions. Since the upper and lower branches
should remain continuous, and the intermediate solution for n
within the multistability region is not stable, it could be left
out from further considerations. That means the orange multi-
stable region in Figs. 1(a), 1(b) is a bistable phase. Physically

FIG. 11. MF dissipative phase diagram of a single-mode cavity
as a function of (a) the interaction strength V0 and (b) the laser
detuning �0. In each panel the yellow (�1) and orange (�2) re-
gions correspond to one and two (bistability) stationary states for the
pumped mode, respectively. In (a) the detuning is fixed at �0 = −3
and in (b) the interaction strength has the constant value V0 = 1. The
dotted vertical lines [labeled (I) and (II)] at V0 = 0.1 and �0 = −3
indicate the cuts through the phase diagram studied in subsequent
figures.

the instability of this solution is due to the divergence of para-
metrically generated side peaks shown in Figs. 13(a), 13(b).
The Bogoliubov matrix M in this case has the following form:

M =
[−i(�0 − iγ0) − i2V0n −iV0n

iV0n i(�0 + iγ0) + i2V0n

]
. (C3)

The eigenvalues of this matrix read as

�± = −γ0 ± i
√

(�0 + V0n)(�0 + 3V0n). (C4)

From the above equation it is clear that for (V0n +
�0)(3V0n + �0) � 0, the system is always stable as predicted
before.

Figures 11(a), 11(b) show the MF-DPT of a single-mode
cavity as a function of the interaction strength (V0), the
detuning (�0), and the pumping rate (�0). In each panel
the yellow region shows the single-solution conditions while
the orange ones correspond to the parameter ranges where the
system has two different stable solutions (bistability region).

To better understand the system behavior in different
phases we investigate the dependence of the cavity photon
number on the pumping rate �0, at a fixed detuning �0 = −3.
The results obtained from the three different methods are com-
pared in Figs. 12(a), 12(b) for weak [V0 = 0.1 corresponding
to the dotted line (I) in Fig. 1(a)] and strong interaction
[V0 = 1 corresponding to the dotted line (II) in Fig. 11(b)],
respectively.

As can be seen, at low pumping rate and for both weak
and strong interaction V0, a displaced thermal state emerges
inside the cavity. The effective temperature T increases with
interaction strength starting from from 0 at V0 = 0. Notice the
larger deviation of g(2)(0) from unity when the interaction is
increased as from Fig. 12(a) to 12(b). Within this range there
is a good agreement between all three approaches.

As the pumping rate increases, however, the MF predicts
a bistable behavior corresponding to a first-order phase tran-
sition, while both DM and SDE give a unique solution. In
the MF picture, once the system reaches any of the stable
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FIG. 12. Number of photons as a function of pumping rate
(�0) in a single-mode cavity with two-body interaction strength of
(a) V0 = 0.1 [dotted line (I) in Fig. 11(a)] and (b) V0 = 1 [dotted
line (II) in Fig. 11(b)]. The black dots show the mean-field result.
The solid red line is the full density matrix result, and the purple
diamonds represent the SDE results. The solid green line shows
the intensity fluctuation g(2)(0). For each interaction strength the
blue histograms show the number state occupation probability pn at
different pumping rates, before the bistability (first row), within the
bistability (two middle rows), and after the bistability (last row). In
each case, the color maps show the corresponding Wigner function
distribution in the XP phase space. The white dashed lines show the
axes (X = 0, P = 0) in that plane. Also the light blue stars in those
panels indicate the predicted MFs. We use �0 = −3 in all cases.

stationary states the dynamics stops and the system stays
there forever. Quantum mechanically, however, due to fluc-
tuations these solutions are only metastable states and the
system can switch between them. The signature of the quan-
tum tunneling or switching between these states can be clearly
observed in an increase of the intensity fluctuation g2(0)
within the bistability region as depicted by the solid green
line in Figs. 12(a), 12(b). Its deviation from unity outside the
bistability range is another apparent deviation from MF.

To explore the tunneling phenomenon further, we compare
the behavior of the system at weak [Fig. 12(a)] and strong
[Fig. 12(b)] interaction as a function of the pumping rate. As
can be seen by decreasing the interaction, the onset of bistabil-
ity, the average number of cavity photons, and the difference
between stable branches all increase. At weaker interactions,
hence larger particle number, the fluctuations can be neglected
and the quantum mechanical predictions approach the stable

FIG. 13. Inelastic output intensity spectrum in the laser reference
frame, i.e., ω − ωL , when the pumping rate is increased on the
MF (a) lower and (b) upper branches at �0 = −3,V0 = 1. (c) and
(d) show their corresponding X, P variance spectra calculated from
Eq. (A11). Solid lines show X spectra and dashed lines are their
corresponding P spectra.

MF solutions. In the tunneling picture it can be understood as
an increase of the barrier height at weaker interactions hence,
rare tunneling events. This rate will be noticeably decreased
upon increasing the interaction strength. The photon-number
distribution within the bistability region and the correspond-
ing Wigner function clarify this point better (middle panels
of Fig. 12). At weaker interaction and within the bistability
region, the number-state occupation probability pn is bimodal
and the peak intensities move toward higher photon number
as the bistable phase is traversed (�0 = 6.3, 6.5). Similarly,
the corresponding Wigner function has two well-separated
local maxima in the XP plane around the MF stationary states
that are depicted as black and white stars in each case. Upon
increasing the interaction, both the occupation probability as
well as the phase-space distribution show overlaps between
the two states, which indicates that the tunneling can indeed
be activated via fluctuations, as can be seen in Fig. 12 for
�0 = 2.2, 2.7 at V0 = 1.

If we increase the pumping rate even further, the system
transitions to a unique-solution phase again (�1), as indicated
by the singly peaked number-state occupation shown with
the blue histograms at the bottom of Fig. 12. Unlike the
low-power case however, the Wigner function has a banana-
shaped distribution indicating the large asymmetry between
X, P quadratures. In Appendix D one can find further discus-
sion about the switching dynamics using one quantum Monte
Carlo trajectory and prolonged correlation times within the
bistability region.

Next, we investigate the quantum properties of the gen-
erated photons by calculating the output spectra of the
case investigated in Fig. 12(b). The results are shown in
Figs. 13(a), 13(b) obtained from the Bogoliubov matrix on
the lower and upper MF branches, respectively. In this case,
the parametric process leads to the generation of photon pairs
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FIG. 14. (a) Real and (b) imaginary parts of the first three eigen-
values (EV) of the Liouvillian as a function of pumping rate �0

in a single-mode cavity. The dashed and solid lines correspond to
V0 = 0.1, 1, respectively, at a fixed detuning of �0 = −3. All rates
are in terms of γ0.

which appear as side peaks in the output intensity spectra,
shown with the red and blue lines in Fig. 13(a). Notice that
here we only focus on the correlation properties of b̂, i.e., on
the inelastic part of the spectrum. Sb(ω) is reminiscent of the
Mollow triplet fluorescence spectrum of a coherently driven
two-level system at high intensities.

Upon increasing the pumping rate (�0) the effective de-
tuning between the cavity mode and the laser frequency
as well as the sideband spacing decrease. For spacing less
than the linewidth γ0, the double-peaked spectrum on the
lower branch morphs to a single-peaked feature at the laser
frequency ωL, i.e., the solid green line in Fig. 13(a). In-
creasing the pumping rate further on the upper branch, the
effective detuning and the sideband spacing increase again.
This transition can be observed in Fig. 13(b) where the
single-peaked spectrum at �0 = 1.7 (solid red line) turns into
double-peaked spectra at higher pumping rates [green and
cyan lines in Fig. 13(b)]. Unlike the lower branch, however,
the sideband spacing monotonically increases with increas-
ing the pumping rate and hence, no further MF bistability is
observed. The corresponding output X, P quadratures, shown
in Figs. 13(c), 13(d) for the lower and upper MF branches,
respectively, indicate that there is always a partially squeezed
quadrature (lines dip below SQL = 0.5). Aside from a finite
region around the bistability threshold, the quadratures mostly
satisfy 〈�2X 〉 〈�2P〉 ≈ 0.5, hence, a minimum-uncertainty
state as predicted by MF-Bogoliubov.

We consider an open system whose density-matrix dynam-
ics are described via a Liouvillian L as ˙̂ρ = Lρ̂. If there is a
steady state ρ̂ss, it is a zero-eigenvalue eigenstate of Liouvil-
lian: Lρ̂ss = 0. Therefore, for a stable dynamics the real part
of the spectrum of L is upper bounded at λ = 0.

Dissipative phase transitions typically go along with a
closing of the dissipative gap, defined the max{Re(λ) : λ 
=
0, λ ∈ spec(L)}. To illustrate the closure of the gap at the DPT
threshold, we calculate the Liouvillian spectrum of the single-
mode cavity discussed in the main text. Figures 14(a), 14(b)
show the real and imaginary parts of the first three eigenvalues
of L as a function of the pumping rate �0 for V0 = 0.1 (solid
lines) and V0 = 1 (dashed lines), respectively. The blue line
shows the eigenvalue of the steady state, i.e., λ = 0. While
far away from MF bistability regions the slowest timescale is
set by the cavity decay rate, within the bistability range both

FIG. 15. Particle number as a function of time in a single-mode
cavity at different interaction strength and within the MF bista-
bility region for (a) V0 = 0.1, �0 = 6.5, (b) V0 = 0.5, �0 = 3, and
(c) V0 = 1, �0 = 2.2, determined from one trajectory of a quantum
Monte Carlo simulation. In each panel the black dotted lines show the
MF stationary states. The detuning is fixed at �0 = −3. The rates are
in units of γ0, and the time in units of γ −1

0 .

interactions acquire a slower dynamics, set by an eigenvalue
Re(λ1) � −1. As can be seen in Fig. 14(b) within this range
the imaginary part of this eigenvalue vanishes as expected
from a slowed-down dynamics approaching the steady state.

Interestingly, in Fig. 14(a) the gap between λ1 and zero de-
creases with decreasing the interaction, which implies a frozen
dynamics around each MF steady state in the thermodynamic
limit. This is also consistent with the tunneling picture and the
switching times discussed in Fig. 12.

APPENDIX D: QUANTUM MONTE CARLO AND THE
SWITCHING RATE IN FIRST-ORDER DPT

As discussed in the main text and described in Appendix C,
in the thermodynamic limit the 1st-order PT is associated

FIG. 16. Instantaneous photon number n(t ) in a single-mode
cavity as a function of time (in units of γ −1

0 ) for V0 = 1, �0 = −3
and at (a) �0 = 1 and (b) �0 = 2.2. (c), (d) show the first-order cor-
relation of the fluctuations as a function of delay τ . In each panel the
solid blue line shows the density matrix (DM) calculations and the
red line indicates the stochastic differential equation (SDE) results.
The green lines in panels (c), (d) are the least-squares exponential fits
to the correlation function tails.
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with an abrupt jump at the critical parameter corresponding
to multiple MFs (Fig. 15(a)). As the system departs from this
limit, e.g., by increasing the interaction hence decreasing the
particle number, the quantum jumps due to the fluctuations
increase and hinder the MF multistability picture and lead to
a unique solution when the system dynamics is treated fully
quantum mechanically (Figs. 15(b) and 15(c)). The presence
of these local minima, however, suggests that the quantum
trajectory is most probable to be attracted to these stationary
states.

This new timescale or the tunneling rate can be observed
in any temporal dynamics of correlations of observables as
well. Figures 16(a), 16(b) show the photon number relaxation
toward the steady state at strong interaction V0 = 1 for �0 =
1, 2.2, respectively. Figures 16(c), 16(d) show the behavior of

their corresponding first-order correlation g(1)(τ ) as a function
of the delay τ . For all cases the dynamics are determined via
both full density matrix (DM in solid blue lines) as well as
the stochastic differential equations (SDE in solid red lines).
As can be seen the results from two approaches agree pretty
well and they both predict different timescales in the unique
[Figs. 16(a), 16(c)] and bistable [Figs. 16(b), 16(d)] region.
While the former shows a fast relaxation toward the steady
state with a rate of γ0, the latter has a bimodal behavior. An
exponential fit to the coherence tails, shown in solid green
lines in Figs. 16(c), 16(d) indicates that the dynamics starts
with a γ0-scale behavior. Within the bistable region, however,
the dynamics are slowed down by a factor of 2.5, related to the
switching rate between two metastable solutions as predicted
by the MF treatment.
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