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Dissipation-assisted preparation of steady spin-squeezed states of SiV centers
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We propose an efficient scheme for generating spin-squeezed states at steady state in a spin-mechanical hybrid
system, where an ensemble of SiV centers is coupled to a strongly damped nanomechanical resonator. We show
that there exists a collective steady state in the system, which is exactly formed by the collective spin states plus
the zero excitation state of the mechanical mode. The generation of the steady spin-squeezed state is based on
a dissipative quantum dynamical process in which the mechanical dissipation plays a positive role but without
destroying the target state. We demonstrate that the spin-squeezed steady state can be deterministically prepared
via dissipative means, with the optimal spin squeezing up to 4/N in the ideal case, where N is the number of
spins. This work provides a promising platform for quantum information processing and quantum metrology.

DOI: 10.1103/PhysRevA.103.013709

I. INTRODUCTION

Spin-squeezed states are quantum-correlated states where
the fluctuation of one component of the total spin is sup-
pressed below the standard quantum limit. It has been proven
that spin-squeezed states are closely related to entangled
states [1–5], which lie at the heart of quantum information
[6–8] and quantum metrology [9–14]. For these reasons, var-
ious schemes for generating spin-squeezed states have been
proposed, for instance, the schemes based on nondemoli-
tion measurements [15–18], interactions with squeezed light
[19–21], and nonlinear interactions [22–24]. In particular, spin
squeezing using the one-axis twisting model has been realized
in experiments [25]. Despite the exciting progress, it still faces
enormous challenges to generate spin-squeezed states. Specif-
ically, due to the disturbance of the environment, most of
these spin-squeezed states are temporary and fragile. Recent
works on the generation of target states by “quantum reservoir
engineering” [26–30] provide us an avenue for investigating
spin squeezing. By appropriately designing the interactions
with the reservoir, the dissipation can play a positive role in
steering a system into the target state.

Solid defects in diamond including nitrogen-vacancy (NV)
[31–42], silicon-vacancy (SiV) [43–53], and germanium-
vacancy (GeV) [54] color centers have been extensively
studied in recent years. They consist of a substitutional impu-
rity atom replacing the carbon atom and adjacent to vacancies.
The color center exhibits excellent optical properties, which
makes it easy to manipulate and detect [55–58]. More im-
portantly, it has long coherence time [59–62], which can be
used as an excellent qubit and a weak signal detector [63–65].
In addition, the color center embedded in a solid-state de-
vice is sensitive to the crystal strain, thus giving rise to a
coupling with the mechanical mode. Hybrid systems directly
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mediated by crystal strain do not require extra structures, thus
avoiding the emergence of extra decoherence. Single-crystal
diamond, with desirable optical and mechanical properties,
is a natural carrier of color centers. Spin-mechanical hybrid
quantum systems based on color centers in diamond have been
used to produce spin-squeezed states [66–69]. Although me-
chanical resonators can achieve high quality factors [70–72]
with the great progress of nanofabrication techniques, the
produced quantum state is still inevitably spoiled by dissi-
pation and decoherence. Therefore, it is highly desirable to
prepare persistent and high-quality spin-squeezed states. Note
that dissipation-assisted schemes for spin squeezing have been
investigated in cavity QED [29] and photonic waveguide
systems [36]. However, the spin-phononic hybrid system we
considered is fundamentally different from the photonic sys-
tem. The solid-state phononic device could have important
applications in all-phonon quantum information processing
and quantum metrology.

In this work, we propose an efficient scheme to generate
spin-squeezed states at steady state in a hybrid system, where
an ensemble of SiV centers is coupled to a nanomechanical
resonator by crystal strain. Because of the excellent optical
and strain response of the ground states of the SiV center, it is
possible to design two pairs of Raman processes. In the case
of large detunings, we can adiabatically eliminate the high
energy levels, thus obtaining the desired interactions. We first
show that the system possesses a steady squeezed state with
no phonon excitations. Under the condition of large dissipa-
tions for the mechanical resonator, the mechanical mode will
continuously absorb energy from the SiV centers and subse-
quently decay back to its ground state, steering the spins into
a steady squeezed state. This process is verified by numerical
simulations. It is important to note that this process does not
depend on the initial state of the system. Consider the more
realistic case where there exists spin dephasing of SiV centers,
and the system gives rises to suppressed spin squeezing. Then,
we consider the case of a large number of spins via analytic
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FIG. 1. (a) A diamond nanomechanical resonator with an ensem-
ble of embedded SiV centers. The length, width, and thickness of the
beam are L, w, and t , respectively. Local perpendicular strain induced
by the bending of the beam couples the SiV centers to the mechanical
oscillator. There are two sets of coordinates: (x, y, z) corresponds to
the internal basis of the SiV center and (X,Y, Z ) corresponds to the
axes of the beam. (b) The level structure of the ground state of a
SiV center. Two time-dependent microwave driving fields induce the
Raman processes between |3〉 ↔ |2〉 and |4〉 ↔ |1〉.

methods. Ideally, by choosing the appropriate parameters, the
spin squeezing can be up to the magnitude of 4/N . In the pres-
ence of spin dephasing, the squeezing is suppressed. When
the particle number N increases, the effect of spin dephasing
will be reduced so that the spin squeezing is close to the
ideal case. This work presents a useful proposal for generating
spin-squeezed states via dissipative means, which may bring
abundant applications in quantum information processing and
quantum sensing.

II. THE MODEL

As illustrated in Fig. 1(a), the setup under consideration is
realized by a doubly clamped nanobeam with an ensemble of
embedded SiV centers. Here the diamond samples used in this
study have a [001]-oriented top surface, and the beam is along
the [110] direction (Y axis). Thus, there are four possible
orientations of SiVs—[111], [1̄1̄1], [11̄1], and [1̄11]—in a
diamond crystal. We choose the SiVs in the z‖[11̄1] direction,
and the total Hamiltonian is given by

H = HSiV + Hr + HI + Hd, (1)

where the individual terms represent the Hamiltonian of the
SiV centers, the mechanical mode of the diamond beam, the
strain coupling of the SiV centers to the mechanical mode,
and the classical driving, respectively.

For the SiV center, the electronic ground states consist of
four spin-orbit degenerate states |ex,↓〉, |ex,↑〉, |ey,↓〉, and
|ey,↑〉, with spin S = 1/2. In the presence of an external
magnetic field �B = B�ez, the level structure is affected by the
spin-orbit coupling (SOC), the Jahn-Teller (JT) effect, and
the Zeeman effect. Thus the Hamiltonian of the SiV center
is given by

HSiV = −λSOC �L · �S + HJT + f γLBLz + γSBSz. (2)

Here, γL and γS are the orbital and spin gyromagnetic ra-
tios, respectively. The spin-orbit coupling with the strength
λSOC/2π � 45 GHz [73] is much stronger than the other
terms. Therefore, we first consider the spin-orbit coupling

and treat the JT interaction and Zeeman interaction as
disturbances. In the above basis, as the projections of an-
gular momentum Lx, Ly vanish, the first term is reduced
to −λSOCLzSz. The corresponding eigenstates are two dou-
blet states |e−,↓〉, |e+,↑〉 and |e+,↓〉, |e−,↑〉, where |e±〉 =
(|ex〉 ± i|ey〉)/

√
2 are the eigenstates of the orbital angular

momentum operator Lz. Due to the JT interaction strength
ϒ 
 λSOC, we neglect the mixing of energy levels caused
by the JT effect and only consider the change of eigenen-
ergy ω =

√
λ2

SOC + 4ϒ2 . As the orbital Zeeman interaction
is suppressed by f ≈ 0.1, it can be neglected and the Zeeman
effect simply splits the spin states with ωB = γSB. Thus, the
Hamiltonian for a single SiV center reads [67,73]

HSiV = ωB|2〉〈2| + ω|3〉〈3| + (ω + ωB)|4〉〈4|. (3)

Besides, we add two controlled fields �1/2 with frequencies
ω1/2 to drive the transitions |1〉, |2〉 → |4〉, |3〉, respectively.
So, the corresponding Hamiltonian is given by

Hd = �1|4〉〈1|e−iω1t + �2|3〉〈2|e−iω2t + H.c. (4)

For the mechanical resonator, we choose a doubly clamped
diamond beam with a length L, width w, and thickness t , satis-
fying L � w, t . In the case of small beam displacements, the
strain ε = ε0(a + a+) is linear, where ε0 is strain induced by
the zero-point motion of the beam, and a+(a) is the creation
(annihilation) operator for the phonon mode with frequency
ω0. The corresponding Hamiltonian is

Hr = ω0a+a. (5)

The strain results in the mixture of the orbital states [73,74]
(see Appendix A). In the rotating-wave approximation, the
Hamiltonian for the strain coupling reads

HI = g(a+J− + aJ+), (6)

where J− = (J+)† = |1〉〈3| + |2〉〈4| is the spin-conserving
lowering operator. Finally, we combine the Hamiltonian of
the SiV and mechanical mode into the free Hamiltonian H0 =
HSiV + Hr.

The key idea of this scheme is to design an appropriate
interaction and bring the system into the desired state by
means of dissipations. We first consider the case where there is
only mechanical dissipation. Assuming that the characteristic
time scale of the system Hamiltonian is much longer than
the reservoir correlation time, the environment can therefore
be considered a memoryless reservoir. So we can get the
Markovian master equation

dρ

dt
= −i[H, ρ] + κD[a]ρ, (7)

where D[o]ρ = 2oρo† − ρo†o − o†oρ is the standard Lind-
blad operator and κ is the mechanical dissipation rate.

To get more insight into the underlying physics, we first
apply several transformations to the Hamiltonian to get an
effective Hamiltonian. First, in a rotating frame where the
classical fields are not oscillating in time just by the following
unitary operation UR = eiRt , with

R = ω1|4〉〈4| + ω2|3〉〈3|, (8)

the Hamiltonian for a single SiV center becomes HR =
URHU †

R + iU̇RU †
R .
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Next, in the case of large detunings � � �1/2, we ap-
ple the Schrieffer-Wolff (SW) transformation [75] US = eS

with S = �1
�

(|4〉〈1| − |1〉〈4|) + �2
�

(|3〉〈2| − |2〉〈3|) and � =
ω + �B − ω1 = ω − �B − ω2, which satisfy [HR

0 , S] = HR
d .

Keeping the terms up to ( �1/2

�
)2 and ignoring the energy shifts,

we obtain

HS = HR
0 + 1

2

[
HR

d , S
] + eSHR

I e−S. (9)

Finally, turning to the interaction picture by performing the
unitary transformation UI = e−iHR

0 t , we have the following
Hamiltonian:

HI = ga+
(

|1〉〈3|e−i�t + �1

�
|4〉〈3|ei2ωBt − �2

�
|1〉〈2|

)

+ga+
(

|2〉〈4|e−i�t + �2

�
|3〉〈4|e−i2ωBt − �1

�
|2〉〈1|

)
+ H.c. (10)

Under the condition �,ωB � g,�1/2, the fast oscillating
terms e±i�t and e±i2ωBt can be completely discarded in the
rotating-wave approximation. In this case, we implement the
standard Raman-transition process with the � type and we can
eliminate the high energy levels under the large detuning con-
dition. Therefore, the states |3〉, |4〉 can be safely eliminated
to obtain the effective Hamiltonian

Heff = g�

�
a+(sin θσ+ + cos θσ−) + H.c., (11)

where sin θ = �1/� with �2 = �2
1 + �2

2 and σ− = (σ+)† =
|1〉〈2|. We further introduce the collective operators S− =
(S+)† = ∑

j σ
j

− and Sz = 1
2

∑
j (|2〉 j〈2| − |1〉 j〈1|), which sat-

isfy the usual angular momentum commutation relations

[S+, S−] = 2Sz, [Sz, S±] = ±S±. (12)

For an ensemble of SiV centers, the sum runs over all SiV
centers, and we obtain the total effective Hamiltonian

Heff = g�

�
a+(sin θS+ + cos θS−) + H.c.

= g�

�
a+D− + H.c., (13)

where D− = D†
+ = sin θS+ + cos θS−. The coupling g�/� is

therefore an effective Rabi frequency. Meanwhile, the effec-
tive master equation is given by

dρ

dt
= −i[Heff, ρ] + κD[a]ρ. (14)

The Hamiltonian Heff describes the transition between the
states {|1〉, |2〉}, creating or annihilating a phonon, while the
Lindblad term will drive the transition from the phonon state
|n〉 to |n − 1〉. Hence, the combined effect of the unitary and
dissipative dynamics drives the system to the state |�〉 =
|ψ〉|0〉, i.e., the tensor product of the steady state |ψ〉 of SiV
centers and the phonon vacuum state |0〉. Since the steady
state satisfies dρ/dt = 0, the steady state of SiV centers
should obey the equation

D−|ψ〉 = 0. (15)

Assuming the total spin of the system as S = N/2, one
can expand the steady state in the basis of the eigenstates of

FIG. 2. (a) The spin-squeezing parameter calculated from
Eqs. (7), (14), and (18) with N = 4 and κ = 0.5g. The initial state
is that all the SiV centers are in the state |1〉 and the mechanical
mode is in the vacuum state. (b) The spin-squeezing parameter from
Eq. (14) for different initial states, where N = 100 and κ = g. The
other parameters are � = 20g, � = g, and tan θ = 0.2.

Sz as |ψ〉 = ∑
m cm|S = N/2, ms = −N/2 + m〉. By solving

Eq. (15), we get the recursion relation between cm and cm+2.
Assuming c1 = 0, we only have the even terms left:

cm=2n = (−1)n tann θ

(
N/2

n

)(
N

2n

)−1/2

c0. (16)

Here
(A

B

) = A!
B!(A−B)! are the binomial coefficients and the nor-

malization condition of the state
∑

m |cm|2 = 1 determines the
value of c0. Note that the mean spin of the steady state is along
the −z direction, and the fluctuation (�S2

x ) is suppressed. This
is exactly the steady spin-squeezed state that we expect. To
quantify the degree of squeezing, we use the spin-squeezing
parameter introduced by Wineland et al. [76,77]. For this
system, the spin-squeezing parameter reduces to

ξ 2 = N
〈
S2

x

〉
|〈Sz〉|2 . (17)

III. NUMERICAL SIMULATIONS

If the mechanical dissipation is sufficiently large, the me-
chanical mode can be adiabatically eliminated. The reduced
master equation for the SiV centers is

dρN

dt
= γD[D−]ρN , (18)

where γ = g2�2/�2κ is the collective decay rate induced by
mechanical dissipation.

Figure 2(a) shows the results given by Eqs. (7), (14), and
(18). We can find that the values for the squeezing parameter
calculated from the effective Hamiltonian (13) are almost the
same as those obtained from Hamiltonian (1), demonstrating
the reasonability of adiabatic eliminations of the high energy
levels. Furthermore, we find that the squeezing parameter at
the steady state is the same for the two cases obtained from
Eqs. (14) and (18), respectively. This demonstrates that, in the
large-dissipation limit, the phononic degree of freedom can
be adiabatically eliminated from the dynamics. Figure 2(b)
shows the results for the squeezing parameter obtained from
Eq. (14) with different initial states. The system almost simul-
taneously evolves into the unique steady spin-squeezed state
independent of the initial state. Therefore, we can conclude
that Eq. (18) approximately equals Eq. (14) in the large-
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FIG. 3. The spin-squeezing parameter as a function of tan θ with
N = 100 spins.

dissipation limit. Subsequent discussions are uniformly based
on Eq. (18).

Assuming the initial state as |N/2,−N/2〉, we plot the
spin-squeezing parameter of the numerical solution [78] com-
pared with the steady state |ψ〉 as a function of tan θ = �1/�2

in Fig. 3. As expected, the numerical result coincides with
the steady state case, indicating that the system evolves to the
desired spin-squeezed state.

When tan θ = 0, the spin-squeezing parameter ξ 2 = 1
is the standard quantum limit (SQL) corresponding to a
spin coherence state. When tan θ < 1, the numerical result
completely coincides with the steady-state case, and the spin-
squeezing parameter is less than 1, indicating that the steady
state is a spin-squeezed state. The degree of spin squeezing
can be enhanced continuously with the increasing of tan θ .
When tan θ → 1, there is a large deviation between these two
cases, since the evolution time of the system will increase
rapidly and become infinite at tan θ = 1. This is due to the
fact that the evolution rate is proportional to cos(2θ ), which
can be seen in the following analysis.

As the Hamiltonian commutes with the total spin S2 and
the master equation does not break the conservation of total
spin, the total spin will be a constant of motion. Therefore,
this steady squeezed state could be produced independent of
the z component of the angular momentum. The time evo-
lution of the spin-squeezing parameter for an ensemble of
spins with different Sz is shown in Fig. 4. When t = 0, all

FIG. 4. Time evolution of the squeezing parameter ξ 2 for initial
states with different ms. The parameters are N = 100, (a) tan θ = 0.2
and (b) tan θ = 0.9.

FIG. 5. Time evolution of the squeezing parameter ξ 2 starting
from initial states with different total spins. Here the parameters
are N = 8, tan θ = 0.2. (a) � = 0. The steady state does depend on
the total spins of the initial state. (b) � = 0.1γ . The spin dephasing
breaks the dependence on the total spin.

the spin-squeezing parameters ξ 2 � 1, which means that they
are not squeezed at the initial time. Then under the assistance
of mechanical dissipation, the system starting from different
initial states is steered into the same steady squeezed state. It
indicates that one total spin corresponds to a common steady
state. Compared to Fig. 4(a), Fig. 4(b) gives a reduced squeez-
ing parameter, which is exactly the result shown in Fig. 3.
In addition, since the effective decay rate decreases as tan θ

increases, the evolution time increases.
Now we consider the more realistic case, where the de-

phasing of SiV centers with a rate � is taken into account.
The corresponding master equation can be obtained as

dρN

dt
= γD[D−]ρN + �

∑
j

D
[
σ j

z

]
ρN . (19)

Here the Pauli operator σz = |2〉〈2| − |1〉〈1|. Such a single-
particle process may break the conservation of the total spin.
We present the numerical solutions of Eq. (19) with N = 8 in
Fig. 5. Figure 5(a) shows the time evolution of the squeezing
parameter starting from initial states with a different total spin
in the case of no dephasing, i.e., � = 0. We find that all the
curves decrease continuously with time, but they correspond
to a different final state. The bottom curve, corresponding to
the case of the total spin S = N/2, gives the spin-squeezing
parameter ξ 2 ≈ 0.67.

In Fig. 5(b), the spin dephasing with the rate � = 0.1γ

is taken into account. With the same initial conditions as in
Fig. 5(a), the spin-squeezing parameters eventually evolve
to the same value, which implies that spin dephasing cou-
ples different total spin-S manifolds and the system has a
unique steady state independent of the total spins. Compared
to Fig. 5(a), the first parts of the curves are remarkably similar,
where the collective decay induced by phonon dominates the
entire evolution. As time goes on, although the dephasing rate
is very small, it still shows a great influence: a steady spin-
squeezed state completely independent of the initial state is
obtained. If we focus on the case with the total spin S = N/2,
the existence of spin dephasing reduces the degree of squeez-
ing and seems to compete with the squeezing process caused
by the phonon decay. But the dependence of the system on the
initial state is completely eliminated. In addition, when using
a spin ensemble to prepare the spin squeezing, the degree of
squeezing usually increases with the number of particles.

013709-4



DISSIPATION-ASSISTED PREPARATION OF STEADY … PHYSICAL REVIEW A 103, 013709 (2021)

FIG. 6. Spin squeezing ξ 2 for (a) N = 10 and (b) N = 100 spins.
Exact solution of steady state (solid red line) and the analytic approx-
imate solution (dashed blue line).

IV. APPROXIMATE ANALYTIC SOLUTIONS

In order to measure the degree of squeezing in the case of
large particle numbers, it is better to find the expression for the
spin-squeezing parameter under proper approximations. Note
that the spin-squeezing parameter ξ 2 is given by the ratio of
〈S2

x 〉 to 〈Sz〉2, and we first neglect spin dephasing and solve for
the time evolution of 〈S2

x 〉 and 〈Sz〉 from Eq. (18):

d〈Sz〉
dt

= −2γ (cos2 θ〈S+S−〉 − sin2 θ〈S−S+〉), (20)

d
〈
S2

x

〉
dt

= −2γ (sin θ − cos θ )

×〈(sin θS− + cos θS+)(SxSz + SzSx ) + H.c.〉. (21)

Due to the main spin along the −z axis, we use lineariza-
tion 〈Sz〉 ≈ −N/2 and define the small fluctuation as δSz =
Sz + N/2 to get the simplified equations

d〈δSz〉
dt

= −2Nγ cos(2θ )

[
〈δSz〉 − sin2 θ

cos(2θ )

]
(22)

d
〈
S2

x

〉
dt

= −2Nγ cos(2θ )

{〈
S2

x

〉 − N[1 − sin(2θ )]

4 cos(2θ )

}
. (23)

We can see that they decay exponentially in time, and γeff =
2Nγ cos(2θ ) is the effective rate. When the system reaches
steady state, the expectation values of the two operators will
not change. We can substitute the steady-state solution of the
equations into Eq. (17):

ξ 2 = N2[1 − sin(2θ )] cos(2θ )

[N cos(2θ ) − 2 sin2 θ ]2
. (24)

In Fig. 6, we compare this approximate expression with
the exact solution of the steady state |ψ〉. The approximation
is valid only if tan θ is small. When tan θ gets large, the
approximate result gradually deviates and even breaks the
Heisenberg limit at tan θ = 1. The deviation comes from two
reasons:

(1) With the increase of tan θ , the probability of occupying
the highly excited states increases, as shown in the numerical
solution. That means 〈Sz〉 → 0, resulting in a rapid increase
of spin-squeezing parameter.

(2) At tan θ ∼ 1, the approximate result gives rise to
〈Sz〉 = sin2 θ

cos(2θ ) − N
2 → ∞, an infinite denominator, which

drives the spin-squeezing parameter down to zero.
We plot the time evolution of 〈δSz〉/N with different tan θ

in Fig. 7(a) to obtain the region where the approximation
is reasonable and desirable. The linearization that we used

FIG. 7. (a) Time evolution of δSz/N for different tan θ with N =
100. (b) The optimal squeezing ξ 2

o as a function of N . The red curve
corresponds to the analytic approximate solution with tan2 θ = N

N+10 .
The blue curve corresponds to 4/N .

is equivalent to 〈δSz〉/N ≈ 0. As tan θ increases, 〈δSz〉/N at
the steady state increases so rapidly that the approximation
completely fails. Therefore, here we choose 〈δSz〉/N � 0.1 to
satisfy the linear approximation. One can get tan2 θ � N

N+10
and verify that the approximate solution is valid in Fig. 6.
Although this condition is approximate, it can be verified
that tan2 θ = N

N+10 is close to the region where the minimum
value occurs. Therefore, we assume that the spin-squeezing
parameter near this region is the optimal parameter that leads
to maximal squeezing. The corresponding squeezing param-
eter ξ 2

o (red line) is shown in Fig. 7(b). As N increases, the
spin-squeezing parameter decreases dramatically and it can
be found that it fits well with ξ 2

o = 4/N (blue line) for very
large N .

Finally, we take into account the spin dephasing to study
the degree of squeezing in the case of very large N . Once
again, by using Eq. (19) we obtain

〈δSz〉∞ = sin2 θ

cos(2θ )
, (25)

〈
S2

x

〉
∞ = N

4

Nη[1 − sin(2θ )] + 4

Nη cos(2θ ) + 4
, (26)

where η = γ /� is the single spin cooperativity. Note that the
spin-squeezing parameter should be equal to Eq. (24) when
Nη is large. We present the calculation of the spin-squeezing
parameter with different η in Fig. 8. We find that the dephasing
only slightly affects the spin-squeezing parameter for a wide
parameter range. It competes with the squeezing process in-
duced by the mechanical dissipation. However, as the value of
tan θ increases, the dephasing effect will be significant. The
spin-squeezing parameter has a minimum value correspond-
ing to the optimal squeezing in the presence of dephasing.

FIG. 8. The analytic approximate solution as a function of tan θ

in the presence of dephasing for (a) N = 100 and (b) N = 1000
spins.
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By increasing the number of SiV centers and decreasing the
dephasing rate, the system will work very well even for large
tan θ .

V. EXPERIMENTAL FEASIBILITY OF THIS SCHEME

In order to examine the feasibility of this scheme in ex-
periment, we now discuss the relevant parameters. For the
beam, we consider a single-crystal diamond nanomechanical
resonator with dimensions (L,w, t ) = (6.29, 0.5, 0.5) μm.
The material properties are Young’s modulus E ≈ 1.05 TPa,
mass density ρ ≈ 3500 kg m−3, and Poisson ratio ν = 0.2.
As the splitting of the orbital states of SiV centers is about
46 GHz, the corresponding resonance frequency of the bend-
ing mode is ω0/2π ≈ 45.9 GHz. Generally, the SiV centers
in a diamond crystal have four different orientations. In the
case of static magnetic fields along the [11̄1] orientation, these
four types of SiV centers have different Zeeman splittings.
Only the SiV centers in the [11̄1] orientation resonate with the
driving field and are considered while other SiV centers can
be neglected due to off resonance. In this case, the coupling
between a single SiV center and the mechanical mode is given
by g = (1 + ν)dε0 ≈ 2π × 10 MHz.

In addition, we assume the driving field �1/2π =
6.7 MHz, �2/2π = 7.4 MHz, i.e., �/2π = 10 MHz, and
tan θ = 0.9. And the detuning �/2π in our scheme is about
200 MHz, thus satisfying the condition � � g, �. The me-
chanical dissipation rate is κ/2π ∼ 10 MHz. For a single SiV
center, the effective decay rate induced by the mechanical
dissipation is γ = g2�2/�2κ ∼ 2π × 25 kHz. We assume the
temperature is T = 100 mK, and thus the average phonon
number is n ≈ 0, which leads to the correlation time of the
thermal reservoir, tR ≈ h̄/kBT . Since tS/tR ∼ 103, the Marko-
vian approximation is justified.

At 100 mK temperature, the spin-dephasing rate of single
SiV centers is �/2π ∼ 100 Hz, which means the spin coher-
ence time is T2 ∼ 10 ms. According to Fig. 4, the time for
the system to reach the steady spin-squeezed state is about
40 μs, which is much shorter than the spin coherence time.
Experimentally, the SiV center density has reached 8 ppm
[79], so it is easy to reach 104 color centers in our scheme.
In this case, we predict that the spin-squeezing parameter can
be up to 4 × 10−4 with the appropriate parameters.

VI. CONCLUSION

In conclusion, we have proposed a scheme to generate a
steady spin-squeezed state in a spin-mechanical hybrid sys-
tem. We find a collective steady state in the system, which
is exactly formed by the collective spin states plus the zero
excitation state of the mechanical mode. In the case of large
detuning, the system of total spin S = N/2 can be steered
to a steady squeezed state with the assistance of mechanical
dissipation. In the ideal case, the squeezing ξ 2

o ∼ 4/N can be
achieved. In the presence of spin dephasing, the spin squeez-
ing is reduced. The generation of the steady spin-squeezed
state is not dependent on the initial state of the system and
the degree of spin squeezing can reach the result in the ideal
case as N increases. This spin-mechanical system provides a
promising platform for studying the nonclassical state.
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APPENDIX A: STRAIN COUPLING

The detailed derivation for the strain coupling between
SiV centers and mechanical resonators has been discussed in
Refs. [73,74,80]. Here we follow the discussions and present
the key results. In what follows, we use two sets of coordi-
nates: the internal basis of the SiV center and the axes of the
diamond crystal (X‖[11̄0],Y ‖[110], Z‖[001]). There are four
possible directions of the color center inlaid on the diamond
sample, [1̄11], [11̄1], [1̄1̄1], and [111], respectively. For a
long and thin beam, the bending modes can be described by
elasticity theory and Euler-Bernoulli flexure theory. The wave
equation for beam deflections of the neutral axis obeys

EI
∂4U

∂Y 4
= −ρA

∂2U

∂t2
, (A1)

where U represents the beam deflection in the Z direction
and Y is along the length of the beam. Here, E ≈ 1.05 TPa
is Young’s modulus of diamond, I = wt3/12 is the moment
of inertia of the beam, ρ ≈ 3500 kg m−3 is the mass den-
sity of diamond, and A = wt is the cross-section area in
the transverse plane. Solutions of the above equation for a
doubly clamped beam take the form Un(t,Y ) = un(Y )e−iωnt .
According to the boundary conditions u(0) = u′(0) = u(L) =
u′(L) = 0, un(Y ) is given by

un(Y ) = cos knY − cosh knY − cos knL − cosh knL

sin knL − sinh knL

×(sin knY − sinh knY ). (A2)

The wavenumbers kn satisfy cos knL cosh knL = 1, and the
eigenfrequencies are given by

ωn = k2
n

√
EI

ρA
. (A3)

We consider the frequency near 46 GHz, which is obtained
when kL = 67.55. For small beam displacements, the strain
induced by the beam motion is linear: ε = ε0(a + a+). Here,
ε0 is the strain induced by the beam zero-point motion and a is
the annihilation operator of the phonon mode. Assuming that
the SiV center is located in the midpoint along the beam and
away from the neutral axis of the beam, i.e., Y = L/2, R0 ≈
t/2, the strain induced by the zero-point motion of the
beam is

ε0 = −R0

√
h̄

2ρALωn

∂2un(L/2)

∂Y 2
≈ 8 × 10−9. (A4)

In the beam’s basis, the strain tensor is given by

εb =
⎡
⎣−νε 0 0

0 ε 0
0 0 −νε

⎤
⎦, (A5)
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where ν = 0.2 is the Poisson ratio. Now we need to transform
the above strain tensor from the beam’s basis into the SiV’s
basis. For the SiVs oriented along the [111] and [1̄1̄1] direc-
tions, the transformed strain tensors are

ε[111] =
⎡
⎣ 1

3 (1 − 2ν)ε 0 −
√

2
3 (1 + ν)ε

0 −νε 0

−
√

2
3 (1 + ν)ε 0 1

3 (2 − ν)ε

⎤
⎦, (A6)

ε[1̄1̄1] =
⎡
⎣ 1

3 (1 − 2ν)ε 0
√

2
3 (1 + ν)ε

0 −νε 0√
2

3 (1 + ν)ε 0 1
3 (2 − ν)ε

⎤
⎦. (A7)

For the SiVs oriented along the [1̄11] and [11̄1] directions, the
transformed strain tensors are the same:

εt =
⎡
⎣−νε 0 0

0 ε 0
0 0 −νε

⎤
⎦. (A8)

By projecting the strain tensor onto the irreducible repre-
sentation of D3d , the strain coupling within the framework of
linear elasticity theory can be given by

Hstrain =
∑

r

Vrεr, (A9)

where r runs over the irreducible representations. It can
be shown that the only contributing representations are the
one-dimensional representation A1g and the two-dimensional
representation Eg. We have

εA1g = t⊥(εxx + εyy) + t‖εzz,

εEgx = d (εxx − εyy) + f εzx, (A10)

εEgy = −2dεxy + f εyz,

where t⊥, t‖, d , and f are four strain-susceptibility parame-
ters. It is valid to drop the f terms due to f /d ∼ 10−4. The
effects of these strain components on the electronic states are

described by

VA1g = |ex〉〈ex| + |ey〉〈ey|,
VEgx = |ex〉〈ex| − |ey〉〈ey|,
VEgy = |ex〉〈ey| + |ey〉〈ex|. (A11)

Since VA1g is the identity matrix, the εA1g term only gives
rise to the uniform energy shift of all states and can be ne-
glected. Finally, we rewrite the strain Hamiltonian in the basis
of |e+〉, |e−〉:

Hstrain = d (εxx − εyy)(L− + L+), (A12)

where L+ = L†
− = |3〉〈1| + |2〉〈4| is the orbital raising opera-

tor. We find the common form of the coupling for four kinds
of SiVs, and the difference is only the strength of the cou-
pling: ga = 1

3 (1 + ν)εd and gt = (1 + ν)εd corresponding to
([111], [1̄1̄1]) and ([1̄11], [11̄1]) orientations. Finally, by us-
ing a rotating-wave approximation, we get the Hamiltonian in
the text:

Hstrain = gaJ+ + H.c., (A13)

where J− = (J+)† = |1〉〈3| + |2〉〈4| is the spin-conserving
lowering operator. For the SiV center in [1̄11], [11̄1] orien-
tations, the coupling strength is

g = (1 + ν)εd ∼ 2π × 10 MHz. (A14)

APPENDIX B: EFFECTS OF MAGNETIC FIELDS

To avoid the nonuniform coupling, we adjust the magnetic
field to pick up the color centers in a certain orientation. The
static magnetic field �B = (Bx, By, Bz ) is represented in the
internal coordinate of the four color centers. In the basis of
|ex,↓〉, |ex,↑〉, |ey,↓〉, and |ey,↑〉, we neglect the small orbital
Zeeman effect and the Hamiltonian of the single SiV center is
given by

HSiV =

⎡
⎢⎢⎢⎣

ϒx + 1
2γSBz

1
2γSBx − 1

2 iγSBy ϒy − 1
2 iλSOC 0

1
2γSBx + 1

2 iγSBy ϒx − 1
2γSBz 0 ϒy + 1

2 iλSOC

ϒy + 1
2 iλSOC 0 −ϒx + 1

2γSBz
1
2γSBx − 1

2 iγSBy

0 ϒy − 1
2 iλSOC

1
2γSBx + 1

2 iγSBy −ϒx − 1
2γSBz

⎤
⎥⎥⎥⎦. (B1)

The eigenvalues of the above matrix can be directly solved as

E = ±
√

ϒ2 + 1
4λ2

SOC + 1
4γ 2

S B2
z ±

√
γ 2

S B2
z

(
ϒ2 + 1

4λ2
SOC) + 1

4

(
γ 2

S B2
x + γ 2

S B2
y

)2
, (B2)

where ϒ =
√

ϒ2
x + ϒ2

y . For example, we choose the direction

of the magnetic field along the [11̄1] direction, and the magni-
tude satisfies γS| �B| = 2π × 20 GHz. For the SiV in the [11̄1]
direction, the energy level splittings are

�ω41/2π ≈ 66 GHz, (B3)

�ω32/2π ≈ 26 GHz. (B4)

For the other three kinds of SiV centers, these values become

�ω′
41/2π ≈ 53 GHz, (B5)

�ω′
32/2π ≈ 39 GHz. (B6)

If we choose the frequencies of the driving fields as ω1/2π ≈
66 GHz and ω2/2π ≈ 26 GHz, only the SiV centers in the
[11̄1] direction can be excited, and the other SiV centers are
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off resonant with the driving field. Therefore, only the SiV
centers in the [11̄1] direction are selected to participate in the

Raman process. In addition, the orbital splitting for all the
color centers is ω/2π ≈ 46 GHz.
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