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Direct approach to realizing quantum filters for high-precision measurements
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Quantum noise sets a fundamental limit to the sensitivity of high-precision measurements. Suppressing it can
be achieved by using nonclassical states and quantum filters, which modify both the noise and signal response.
We find an approach to realizing quantum filters directly from their frequency-domain transfer functions,
utilizing techniques developed by the quantum control community. It not only allows us to construct quantum
filters that defy intuition, but also opens a path towards the systematic design of optimal quantum measurement
devices. As an illustration, we show an optical realization of an active unstable filter with anomalous dispersion,
proposed for improving the quantum-limited sensitivity of gravitational-wave detectors.
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I. INTRODUCTION

In high-precision measurements, our understanding of
physics is predominantly limited by quantum noise, arising
due to the fundamental quantum fluctuations of the probing
fields [1–4]. This is particularly true for laser interferometric
gravitational-wave detectors [5] where the quantum shot noise
dominates at high frequencies due to the positive dispersion
of the arm cavities [6]. Quantum and classical noises are
also limiting factors in quantum optomechanical experiments
[7,8] and searches for new physics using an interferometer
[9,10]. To achieve a maximal signal-to-noise ratio, it is es-
sential to engineer the frequency-dependent response of the
measurement devices depending on the frequency content of
the signal being measured. For example, advanced gravita-
tional wave detectors are tuned to have maximum sensitivity
in a frequency range containing the binary black hole inspiral
waveform; however, not all of the binary neutron star inspiral
waveform is observed [11]. Quantum filters are designed to
engineer this response. As illustrated in Fig. 1, there are three
ways that the measurement device can be augmented with
quantum filters. First, the input filter, coupling the noise input
to the probe degrees of freedom, shapes how the quantum
fluctuations enter the device. Next, the coherent feedback
filter, coupled to the probe degrees of freedom and input-
output fields, modifies the dynamics of the probe [12–15].
This can enhance the response to the signal of interest when
the quantum system is converted into a probe coupled to a
classical signal. Finally, the output filter, coupling the probe
degrees of freedom to the readout port, modifies the response
of readout to the detector’s the output field. As a simple
example, an optical Fabry-Perot cavity is used as an input
filter to in implementing frequency-dependent squeezed light
[16–18].

*Corresponding author: jbentley@star.sr.bham.ac.uk

Until now, formulating a physical realization of a given
quantum filter with a desired frequency response required a
combination of intuition and prior experience, making more
complicated frequency responses difficult to engineer. We
adopt the general formalism for describing linear stochastic
quantum networks and the synthesis of such networks, re-
cently developed by the quantum control community [12,19–
31]. This allows us in this paper to develop a formalism
for systematically realizing quantum filters for high-precision
measurements directly from their frequency-domain transfer
matrices. Although all of the components of the formalism
existed previously, here the entire process of going from the
transfer matrix to physical realization has been given, and the
concept of using the formalism to produce quantum filters
for high-precision measurement is introduced, as well as the
method of transforming an unrealizable state space realization
to a realizable one.

The starting point of this approach is to convert the
frequency-domain transfer matrix into a state-space represen-
tation. However, such a mapping is not unique, and in fact
infinitely many different state-space representations exist. We
apply the concept of physical realizability, which was first
introduced in Ref. [12] and further discussed in Refs. [20]
and [[29], Chapter 2]. It tells us whether a given time-domain
state-space representation of the system obeys quantum me-
chanics. Requiring that the state space is physically realizable
sets a significant constraint on the range of this mapping.
However, when a state-space realization satisfies certain con-
ditions, following [32], we can transform that state-space
representation of the frequency-domain transfer matrix to one
that is physically realizable. Applying the network synthesis
theory can then lead to the physical setup of the quantum filter.

This approach has powerful implications on how both
passive and active quantum filters are designed, making the
realization of filters with arbitrarily complicated frequency re-
sponses a possibility. Since in principle we can view the entire
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FIG. 1. Flowchart illustrating the different places quantum filters
can be used within a quantum measurement device. We consider a
generic device consisting of a probe (e.g., a mirror-endowed test
mass or an atomic ensemble) coupled to some classical signal, which
receives an input (e.g., nonclassical squeezed light) and whose output
field is measured by the readout scheme (e.g., homodyne readout).

measurement device as a many degrees-of-freedom quantum
filter, this approach also provides a method for designing
optimal quantum measurement devices. The outline of this
paper goes as follows. In Sec. II we present the mathematical
details of this approach. In Sec. III we apply it to find an
optical realization of the active unstable filter, the original
proposal of which was based upon optomechanics. We show
that the optical loss is the limiting factor for the proposed
optical realization. In Sec. IV we summarize our result and
provide an outlook of applying this approach to the design of
the optimal measurement devices.

II. DIRECT APPROACH

We now provide the details of the approach. The process
to find a physical realization, e.g., an optical layout and its
associated parameters, from a given set of transfer functions
is general to multi-input multi-output lossless linear quantum
systems; losses and other noise sources can be added later
by augmenting the system description. Our starting point is
the frequency-domain transfer function matrix, which is the
square matrix that relates the frequency-domain system out-
puts y(s) to its inputs u(s):

G(s) = C(−sI − A)−1B + D,

yi(s) =
∑

j

Gi j (s)u j (s), (1)

where (A, B,C, D) are the system matrices as defined below,
and I is the identity matrix, and we assume that the number
of inputs is equal to the number of outputs. Here the Laplace
transform is defined as f (s) = ∫ ∞

0− e+st f (t ) dt , with the lower
bound at t = 0− so that an impulse can be added at t = 0. For
a given transfer matrix a nonunique state-space representation
can be found of the form [33–37]:

ẋ = A x + B u, (2)

y = C x + D u, (3)

which is a nonunique time-domain representation of the sys-
tem’s dynamics. Here the quantity x ∈ L2n×1 (L being the
space of linear operators on the relevant Hilbert space H) is
a vector of conjugate operator pairs representing the internal

n degrees of freedom of the system, u ∈ L2m×1 is the vector
of m system inputs, and y ∈ L2m×1 is the vector of m system
outputs. Note that in a quantum mechanical state-space, two
conjugate operators are used to represent each individual de-
gree of freedom of the system hence the factors of 2. In the
context of quantum optomechanics, x̂ represents the cavity or
oscillator eigenmodes for the cavities and mechanical oscil-
lators in the system, while û and ŷ are continuous Bosonic
fields in free space [24,38]. The dynamical matrix A ∈ C2n×2n

describes the internal dynamics of the system, the input ma-
trix B ∈ C2n×2m describes the coupling of the input into the
system, the output matrix C ∈ C2m×2n describes the coupling
of the system to the output, and the direct feed-through matrix
D ∈ C2m×2m describes the coupling of the input directly to the
output. (A, B,C, D) are together called the system matrices
and fully describe the linear dynamics of the system.

The system is called physically realizable (and a cor-
responding physical realization can be designed) if, in the
Heisenberg picture evolution of the system, the commutation
relations are preserved [12]:

∀i, j d[xi, x j] = 0, [yi(t ), y†
j (t

′)] = δ(t − t ′)δi j, (4)

where the differential is treated using the quantum Itô rule,
meaning that the cross-products of the differentials of the
operators must be calculated [39–41]. The conditions on
the system matrices for all such evolutions to preserve
these commutation relations are found by using Eqs. (2)
and (3) to calculate the increment of the system state dxi

in Eq. (4) for an infinitesimal time period dt . For an n
degree-of-freedom system described using complex mode op-
erators (as are usually used in quantum optics) such that x =
(â1, â†

1, . . . , ân, â†
n)

T
with m inputs and outputs described by

u = (û1, û†
1, . . . , ûm, û†

m)
T

and similarly for y, the constraints
on the system matrices are given by

AJ + JA† + BJmB† = 0, (5)

JC† + BJmD† = 0, (6)

DJmD† = Jm, (7)

where J = diag(1,−1, . . . , 1,−1) ∈ R2n×2n and Jm =
diag(1,−1, . . . , 1,−1) ∈ R2m×2m [42]. See Appendix A of
Ref. [20] for a proof of these constraints. So now we have a
restriction on the possible system matrices that can lead to a
physically realizable system.

Now we consider how to generate such a physically realiz-
able state-space model from the system’s transfer matrix. The
conventional procedure for transforming the transfer matrix
to a minimal state-space model is outlined in Refs. [33,35].
Such a state-space model constructed from a pole-zero form
transfer matrix is minimal if the number of internal degrees
of freedom (e.g., the number of pairs of conjugate ladder
operators describing the system state) is equal to the highest
polynomial order in the frequency s among all of the transfer
functions in the transfer matrix. Generally such a procedure
will lead to system matrices (A′, B′,C′, D′) that do not satisfy
Eqs. (5) and (6) and therefore cannot be physically realized.

Here we show a method allowing us to transform a minimal
realization (A′, B′,C′, D′) to a physically realizable counter-
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part (A, B,C, D), given that the transfer matrix G(s) obeys a
condition that will be given in Eq. (11) and the state-space
realization satisfies the conditions given in Ref. [[32], Theo-
rem 3] (to be recalled below). The transformation is achieved
by looking for an invertible Hermitian matrix X ∈ C2n×2n that
obeys the constraints:

A′X + X (A′)† + B′Jm(B′)† = 0, (8)

X (C′)† + B′Jm(D′)† = 0. (9)

This matrix X can be written in the form of a similarity
transformation X = T JT † for some nonsingular matrix T .
Substituting this into Eqs. (5) and (6) we see that the con-
ditions are satisfied after making the transformations,

A = T −1A′T, B = T −1B′, C = C′T, D = D′, (10)

to find the physically realizable state space (A, B,C, D). The
existence of X , i.e., T , is guaranteed by the symplectic condi-
tion imposed on any physically realizable transfer matrix G(s)
and direct-feed matrix D [32] (where ∗ denotes the complex
conjugate of a complex number):

G†(s∗)JmG(−s) = Jm (11)

and fulfillment of the conditions of Ref. [[32], Theorem 3],
which says that λi(A) + λ j (A)∗ �= 0 for any pair of eigenval-
ues λi(A) and λ j (A) of A, and the feed-through matrix D is
unitary and satisfies (7).

Now that we have shown how to obtain the physically
realizable state-space model (A, B,C, D) from the transfer
matrix obeying Eq. (11) we can infer the physical realization.
We describe the realization chiefly using the generalized open
oscillator [24] formalism. This is a general formalism de-
scribing open quantum systems with arbitrary internal linear
dynamics and input-output couplings, providing a language
for describing and analyzing systems with internal degrees of
freedom coupled to external continuum fields, such as quan-
tum measurement devices and quantum filters. As shown in
Ref. [12] for an n degree-of-freedom system, when the direct-
feed matrix D is symplectic and unitary (i.e., it satisfies (7)
and D†D = DD† = I), there is a one-to-one correspondence
between the system matrices (A, B,C, D) and the generalized
open oscillator which is parameterized by a triplet (S, L̂, Ĥ )
[22–24]. Here the scattering matrix S ∈ Cm×m describes the
transformation of the input fields through a passive network,
i.e., any passive preprocessing of the system’s input fields. The
coupling operator L̂ = Kx where K ∈ Cm×2n describes the
coupling between the input and output fields and the internal
degrees of freedom, e.g., equivalent to the usual input-output
Langevin equations [7] when the input-output fields are cou-
pled to the internal fields by a mirror. The Hamiltonian Ĥ
describes the free evolution of the internal system dynamics
as if the system were closed. The relation between the system
matrices and the generalized open oscillator parameters is

given by

Skl = D2k−1,2l−1, L̂ = [I 0]P C x,

Ĥ = i

4
h̄ x†(JA − A†J )x, (12)

where I is the identity matrix and 0 is the null matrix, both
of dimension m, P is the permutation matrix that maps u =
(û1, û†

1; . . . ; ûm, û†
m)

T
to (û1, û2, . . . , ûm, û†

1, û†
2, . . . , û†

m)
T

,
and Ĥ is derived in Sec. A. The total Hamiltonian is then

Ĥtot = Ĥ + ih̄[L̂† − L̂T ]u, (13)

where the input fields u are preprocessed by a static pas-
sive network described by S. Now we have achieved the full
physical Hamiltonian describing the system starting from the
transfer matrix describing the frequency-domain input-output
behavior.

In the case where only one of the internal degrees of
freedom is coupled to the input-output fields, it could be
straightforward to construct the physical realization by in-
spection, as in the illustrative example of the unstable filter
discussed in the next section. However, having one internal
degree of freedom is not always the case. Systems consist-
ing of more than one internal degree-of-freedom can first
be subdivided into separate one degree-of-freedom systems
coupled via direct interaction Hamiltonians via the main syn-
thesis theorem proved in Ref. [24]. These systems can then
be systematically realized by connecting the individual one
degree-of-freedom systems in series, and overlapping them
accordingly, giving a systematic way to construct the physical
realization regardless of complexity [43]. The outline of such
a general approach to constructing the physical realization
given an n degree-of-freedom generalized open oscillator goes
as follows:

(1) First, the main synthesis theorem is used to split the
n degree-of-freedom oscillator into n one degree-of-freedom
oscillators which are connected in series, i.e., the output of
each oscillator is fed into the input of the next, for example,
via a beamsplitter which is known as the series product [19],
and also a direct interaction Hamiltonian is produced coupling
the oscillators. Often the series product connection is not
needed as only one of the internal modes is coupled to the
external continuum, i.e., the operator L̂ is only nonzero for one
of the internal modes. The task is then to realize each of these
one degree-of-freedom oscillators and the direct interaction
Hamiltonian.

(2) For each one degree-of-freedom oscillator we do the
following. First the scattering matrix can be realized as a
static passive linear network using only beamsplitters and
mirrors. Then, the general coupling operator of the form L̂ =
αâ + βâ† can be realized by indirectly coupling the mode
â to the external continuum fields û and ŷ via an auxiliary
mode b̂, which has sufficiently fast dynamics with coupling
rate γ such that it can be adiabatically eliminated from the
final input-output relation. This auxiliary mode is coupled to
the main mode via nonlinear crystal (two-mode squeezing
process) for the βâ† term, and via a beamsplitter for the αâ
term. These are related to the physical parameters via α =
−ε∗

2

√
2/γ where ε2 = 2�e−i	 where � is the beamsplitter

mixing angle and 	 is the relative phase detuning introduced

013707-3



BENTLEY, NURDIN, CHEN, AND MIAO PHYSICAL REVIEW A 103, 013707 (2021)

OPO pump

Physical realization

Transfer function State space Generalized
open oscillator

FIG. 2. Flowchart showing the steps in constructing the phys-
ical realization of a quantum filter; an active filter is used as an
illustration.

by the beamsplitter, and β = ε1
√

2/γ where ε1 is the effective
pump intensity, shown to be equal to cr/(2L) in Sec. B, where
r is the single-pass squeezing factor and L is the cavity length.
The resulting interaction Hamiltonian is Ĥab = h̄(ε1â†b̂† +
ε∗

1 âb̂) + h̄(ε2â†b̂ + ε∗
2 âb̂†). Finally, the Hamiltonian Ĥ can be

realized in the most general case as a detuned DPA (degen-
erate parametric amplifier), which can be implemented as a
detuned cavity with a χ (2) nonlinear crystal with a pump
frequency twice the laser carrier frequency ω0. Specifically to
realize the Hamiltonian Ĥ = h̄�â†â + h̄[ε(â†)

2 + ε∗â2] we
use a cavity with resonant frequency ωcav = ω0 + � where
ω0 is the laser carrier frequency and a nonlinear crystal with
effective pump intensity ε = cr/(2L) where again r is the
single-pass squeezing factor and L is the cavity length.

(3) To implement the interaction Hamiltonian between
each one degree-of-freedom oscillator we overlap the rele-
vant internal modes of each oscillator via a nonlinear crystal
and/or beamsplitter depending on the interaction. The interac-
tion Hamiltonian between modes âk and âl can be written in
the form Ĥkl = h̄(ε2â†

k âl + ε∗
2 âk â†

l + ε1â†
k â†

l + ε1âk âl ) where
in this case the effective pump intensity is −2iε1, and again
ε2 = 2�e−i	 where � is the mixing angle and 	 is the relative
phase difference between the two modes. In the unstable filter
example below we do not need to do this as we already only
have one internal degree of freedom.

In summary, from the input-output transfer matrix we have
developed the physical parameters describing the system. The
procedure is summarized in Fig. 2.

III. ILLUSTRATIVE EXAMPLE: AN UNSTABLE FILTER

To demonstrate the power of this approach, we will go
beyond passive optical cavities by considering a nontrivial
active filter for beating the universal gain-bandwidth product
limit in resonant detection schemes [6,44–57], specifically, the
so-called unstable filter [50] which has a broadband anoma-
lous (negative) dispersion. The gain-bandwidth product, also
known as the Mizuno limit [58], states that the integral of
the squared frequency-domain signal transfer function for a
resonant detector is bounded purely by the energy stored in the
detector. Therefore, when considering the quantum shot noise
due to the input quantum vacuum, the detection bandwidth
and peak sensitivity are inversely proportional which cannot
be surpassed by changing any physical parameter other than

the power in the detector. One way this can be surpassed is by
using the broadband anomalous dispersion of the aforemen-
tioned unstable filter to partially negate the positive dispersion
of the detector’s signal cavity as first discussed in Ref. [50].
The filter also is unusual because it seemingly violates the
Kramers-Kronig relations which imply that a stable anoma-
lous dispersion filter without absorption (i.e., with unity gain
over the range of the anomalous dispersion) violates causality,
however since this system is dynamically unstable this restric-
tion does not apply [59–62]. As discussed in the procedure
above we start with the frequency-domain transfer function of
the unstable filter,

G(s) = s − s0

s + s0
, (14)

where s ≡ iω and s0 = γneg is a characteristic frequency quan-
tifying the anomalous (negative) dispersion. An an example
will now infer a physical realization for this device using the
above procedure.

First we note that since the transfer function is first order
in frequency s, only one internal degree of freedom will be
required for the minimal state-space realization. Therefore the
system state vector x̂ will have two elements: x1 = â, x2 = â†

describing a single cavity mode, and similarly for the vectors
u and y describing the input and output modes respectively.
As a transfer-function matrix, Eq. (14) can be written as

G(s) = s − s0

s + s0

[
1 0
0 1

]
, (15)

which can be verified to satisfy the constraint (11) and there-
fore a corresponding physical realization can be found. To
simplify the notation, we define a dimensionless s (and the
corresponding time) which is normalized with respect to
s0/2 = γneg/2 (a factor of 2 for convenience), namely s →
(s0/2)s where s is now dimensionless. A corresponding min-
imal but not physically realizable state-space model is given
by [

˙̂a
˙̂a†

]
=

[
2 0
0 2

][
â
â†

]
+

[
û
û†

]
, (16)[

ŷ
ŷ†

]
=

[
4 0
0 4

][
â
â†

]
+

[
û
û†

]
. (17)

The matrix X that solves Eqs. (8) and (9) is given by X =
−J/4, which can be written in the form X = T JT † with the
matrix T which transforms the above state-space model to the
physically realizable one is given by

T = 1

2

[
0 −1
1 0

]
. (18)

The resulting dimensionless state-space model can be found
by applying the similarity transformation as shown in
Eq. (10),

Ã =
[

2 0
0 2

]
, B̃=

[
0 2

−2 0

]
, C̃ =

[
0 −2
2 0

]
, D̃ = I,

(19)
which obeys Eqs. (5) and (6) by construction and therefore
is a physically realizable state-space model. Reversing the
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FIG. 3. Diagram showing where the filter realization (high-
lighted by the shaded box) would be integrated into a standard
Michelson inteferometer, using a scheme similar to that proposed
in Ref. [50], which improves the signal response at high frequencies
via the negative dispersion compensating the positive dispersion of
the arm cavities as discussed above.

normalization process gives

A =
[

s0 0
0 s0

]
, B =

[
0

√
2s0

−√
2s0 0

]
,

C =
[

0 −√
2s0√

2s0 0

]
, D = D̃. (20)

Equation (12) can now be used to calculate the scattering
matrix, input-output coupling, and internal Hamiltonian for
the unstable filter. We have

S = I, L̂ = −
√

2s0â†, Ĥ = 0. (21)

This implies that there is no input scattering with S = I , and
L̂ = −2â†, and there is no detuning or internal squeezing of
the cavity mode as Ĥ = 0.

Since Ĥ and S are trivial to implement we now implement
the coupling operator L̂ = −√

2s0â† as discussed above. In
this case we have α = 0, and so just have the auxiliary mode
coupled to the main cavity mode via a nonlinear crystal. This
auxiliary mode will later be adiabatically eliminated, however
it makes the physical realization more feasible as coupling two
cavity modes via a parametric oscillator is more experimen-
tally durable. Therefore we construct the physical realization
shown in Fig. 2, which can be integrated into an interferometer
as shown in Fig. 3.

The realization simply consists of two tuned cavities (the
main mode â and the auxiliary mode b̂) coupled via a χ (2)

nonlinear crystal, labeled OPO (optical parametric oscillator),
pumped by a classical pump field, labeled pump. One of the
cavities is coupled to the external fields. Specifically, we have

Ĥab = −h̄
√

s0 γ (â†b̂† + âb̂), (22)

Ĥext = −ih̄
√

γ (b̂ ĉ†
ext − b̂†ĉext ). (23)

The interaction Hamiltonian Ĥab describes the coupling of
both cavity modes â and b̂ via the OPO. As shown in Sec. B,
the coupling rate

√
s0 γ is equal to rc/(2Lb), where r is the

single-pass squeezing factor of the crystal and Lb is the length
of the auxiliary cavity. As an order of magnitude estimate
for implementation in a laser interferometer with arm length

of Larm = 4 km (where s0 ≡ γneg = c/Larm [50]), the required
squeezing factor is

r = 7.7 × 10−5

√
Tb

100 ppm

√
Lb

24 cm

√
4 km

Larm
. (24)

The Hamiltonian Ĥext describes the coupling between the aux-
iliary mode b̂ and the external continuum field ĉext, which is
related to the input and output operators via û ≡ ĉext (t = 0−)
and ŷ ≡ ĉext (t = 0+) [7,63]. The coupling rate γ is defined
as Tbc/(4Lb) where Tb is the input mirror transmissivity. The
negative dispersion transfer function shown in Eq. (14) can
then be recovered by solving the resulting Heisenberg equa-
tions of motion in the frequency domain, and then applying
the approximation γ � ω, the so-called “resolved-sideband
regime,” which effectively adiabatically eliminates b̂ [24].

In Sec. C we include the effect of optical loss for the
realistic implementation. We found that the noise contribution
from the auxiliary cavity loss is insignificant compared to the
contribution from the â cavity loss. The resulting input-output
relation including the optical loss is given by

ŷ(s) ≈ ω + i
(
γ ε

a + s0
)

ω + i
(
γ ε

a − s0
) û(s) + 2

√
s0 γ ε

a

ω + i
(
γ ε

a − s0
) n̂†

a(s), (25)

where γ ε
a = εac/(4La) with εa being the total optical loss in

the â cavity and La being the cavity length, and n̂a is the
corresponding vacuum noise process. The distortion of the
transfer function due to γ ε

a is on the order of γ ε
a /s0, while

the noise term is on the order of
√

γ ε
a /s0 and is therefore more

significant.
The above input-output relation takes the same form as

the optomechanical case [50] if we view n̂a as the thermal
noise of the mechanical oscillator. In contrast, in this case
the loss na is sourced by the quantum vacuum and so it only
has vacuum fluctuations, equivalent to a mechanical oscillator
at environmental temperature Tenv = 0. Therefore the strict
thermal requirements of the optomechanical unstable filter are
avoided. Instead vacuum fluctuations are injected due to losses
in the mirrors and the nonlinear crystal. The required loss to
achieve low noise as a function of â cavity length is shown in
Fig. 4. As we can see, given an interferometer arm length of
Larm = 4km, a loss per unit length of εa/La = 2.5 ppm m−1 is
required to achieve a 1/10 noise contribution, which is already
achievable with state-of-the-art optics for the free space part
of the cavity [17,64]. The loss of a 1 cm crystal is between
around 15–40 ppm [65], so taking a middle value of around
25 ppm then to achieve a loss per unit length of 2.5 ppm m−1

the cavity length must be at least 10 m. Further assuming
losses of 10 ppm for each side of the antireflective coating
of the crystal drives the minimum cavity length up to 18 m.

IV. DISCUSSION

In general the physical realization produced may have
unstable internal dynamics, as is the case for the unstable
filter above. Since the single-mode approximation is used, the
stabilizing controller previously derived in Ref. [50] can be
used for each unstable degree of freedom.

In addition to realizing quantum filters with a known trans-
fer function, this approach can also be used to design the
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noise power contribution at ω = 0 due to n̂a is a tenth of that of the
signal power (blue line) and a hundred (orange line).

optimal high-precision measurement devices, where the opti-
mality is based upon the quantum Cramér-Rao bound [66–71].
We can view the entire measurement device as a N degree-of-
freedom quantum filter, and then tune the filter parameters so
as to minimize the quantum Cramér-Rao bound. Therefore,
we can construct the most sensitive possible n degree-of-
freedom measurement device. This opens up a method of
designing and optimizing measurement devices and is worthy
of being further explored.
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APPENDIX A: HAMILTONIAN MATRIX IN COMPLEX
OPERATOR NOTATION

In this section the expression for the internal Hamiltonian
Ĥ in terms of the system matrices will be transformed from
the real-quadrature form in Ref. [12] to the complex ladder
operator form in Eq. (12).

The Hamiltonian in the real-quadrature form is given by

Ĥ = x†
r 
rxr, (A1)

where xr = (q̂1, p̂1, . . . , q̂n, p̂n)
T

are the real quadrature op-
erators. The relation between 
r and the dynamical matrix Ar

in the state-space model is given uniquely by


r = 1
4 (−�Ar + A†

r �), (A2)

where

� = diag(�1, . . . , �1︸ ︷︷ ︸
n times

) ∈ R2n×2n, (A3)

and

�1 =
[

0 1
−1 0

]
. (A4)

The complex ladder operators are related to the real
quadrature operators by x = (â1, â†

1; . . . ; ân, â†
n)

T = Uxr ,
where

U = diag(U1, . . . ,U1︸ ︷︷ ︸
n times

) ∈ C2n×2n, (A5)

where

U1 = 1√
2

[
1 i
1 −i

]
(A6)

is the unitary transformation that converts from the real
quadrature operators (q̂, p̂) to the complex ladder operators
(â, â†).

Note that we can write � = −iU †JU , and that the relation
between the dynamical matrix in the real quadrature picture
and the complex ladder operators is given by A = U †ArU ,
and recall that U is unitary. Substituting these facts into the
expression for Ĥ we get Ĥ = x†
x where


 = i

4
(JA − A†J ), (A7)

where J = diag(1,−1, . . . , 1,−1) ∈ R2n×2n.

APPENDIX B: RELATING THE COUPLING RATE
TO THE SINGLE-PASS SQUEEZING FACTOR

To compare the coupling rate
√

s0γ to the single-pass
amplification factor r, we look at the degenerate case of the
interaction Hamiltonian given Eq. (22),

Ĥdeg = −h̄
√

s0γ [(â†)2 + â2]. (B1)
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Solving the equation of motion in the frequency domain, the
resulting input-output relation for the amplitude quadrature â1

in the two-photon formalism [72,73] is

âout
1 (ω) = γ + √

s0γ + iω

γ − √
s0γ − iω

âin
1 (ω). (B2)

We can derive the same input-output relation by propagat-
ing the continuum field through the cavity with a nonlinear
crystal, and obtain

âout
1 (ω) = −√

R + e2re2iωL/c

1 − √
R e2re2iωL/c

âin
1 (ω). (B3)

Assuming T ≡ 1 − R, r, ωL/c 
 1, we can make the Taylor
expansion of the above equation to the leading order of these
small dimensionless quantities:

âout
1 (ω) ≈ T/2 + 2r + 2iωL/c

T/2 − 2r − 2iωL/c
âin

1 (ω). (B4)

Equation (B2) and Eq. (B4) become identical when

γ ≡ T c

4L
, r = 2

√
s0γ

L

c
, (B5)

which is the mapping used following Eq. (23).

APPENDIX C: INCLUDING LOSSES INTO THE ANALYSIS

In this section, we show how the effect of optical loss is
included in the analysis for the realistic implementation. The
optical losses in the mirrors of both cavities will introduce
quantum white noise vacuum processes [1,3,24], n̂a, n̂b, which
are coupled to modes â and b̂ respectively via transmissivities
Ta, Tb. This results in extra terms added to the Heisenberg
equations of motion for the two modes,

˙̂b = −γ ε
b b̂ + √

2γ ε
b n̂b + i

h̄
[Ĥtot, b̂], (C1)

˙̂a = −γ ε
a â + √

2γ ε
a n̂a + i

h̄
[Ĥtot, â], (C2)

where Htot is the total Hamiltonian given in Eqs. (22) and (23).
The noise coupling constants for the â cavity and b̂ cavity

respectively are given by

γ ε
a = εac/(4La), γ ε

b = εbc/(4Lb), (C3)

where εa and εb are the optical losses described by cav-
ity, respectively. The loss from the nonlinear crystal couples
identically to the mirror loss into both cavities, and so can be
included in εa, εb.

Solving the Heisenberg equations of motion in the fre-
quency domain, we found that the noise contribution from the
auxiliary cavity loss n̂b is much smaller than the contribution
from the â cavity loss n̂a by a factor

ω2γ ε
b

γnegγ γ ε
a


 1, (C4)

assuming γ ε
a ≈ γ ε

b , and ω 
 γneg, ω 
 γ , a result also found
in the optomechanical case explored in Ref. [50], in which
the filter cavity takes the role of the auxiliary cavity mode b̂
and the mechanical oscillator takes the role of the main cavity
mode â. However, in our case the main cavity loss is due to
vacuum and is not thermally driven, and so is effectively at
zero temperature. The phase noise due to the thermal fluc-
tuation of the nonlinear crystal [74] is negligible as there is
almost no carrier power in either cavity.

APPENDIX D: ALTERNATIVE TOPOLOGY

In Fig. 5 we show an alternative topology for the realization
shown in Fig. 2. The system consists of a linear coupled
cavity. We call the cavity with the nonlinear crystal in it the
active cavity and the other the passive cavity. The length of the
passive cavity L1 differs from the length L2 of the active cavity
so that they have different mode spacings. The two modes
â and b̂ in this case belong to the same longitudinal modes
of the active cavity but separated by one free spectral range.
The passive cavity acts as a compound mirror with frequency-
dependent effective phase φeff(ω) and transmissivity Teff(ω),
the former shifting the resonances of the active cavity by
ωa and ωb for the â and b̂, and the latter imparting different
bandwidths for the two modes, denoted γa = Teff(ωa)c/(4L2)
and γb = Teff(ωb)c/(4L2) respectively. The nonlinear crystal
pump frequency is set to ωp where ωp/2 is between the two
modes â and b̂. To make b̂ satisfy the adiabatic condition, we
require γb � ω, while to ensure good performance we require
γa 
 γneg. Both bandwidths can be independently controlled
by changing the relative lengths of the two cavities.
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