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Inverse design of environment-induced coherence
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Atomic transitions with orthogonal dipole moments can be made to interfere with each other by the use
of an anisotropic environment. Here we describe, provide, and apply a computational toolbox capable of
algorithmically designing three-dimensional photonic environments that enhance the degree of coherence in
atomic � systems. Example optimization runs produce spiral-like structures that induce strongly localized
polarization conversion of the reflected wave at the atomic position, yielding approximately double the degree
of coherence found using simple planar geometries.
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The interplay of transitions to and from sets of degen-
erate energy levels is responsible for a wide variety of
well-established physical processes including lasing without
inversion [1], populating trapping [2], quantum beats [3], and
narrowing of spectral lines [4]. For two transitions to exhibit
mutual coherence in the absence of external influences, they
must have dipole moments that are nonorthogonal. This can
be engineered in some specific situations [5], but dipole mo-
ments for degenerate transitions within one quantum system
do not typically satisfy this criterion [6]. However, almost two
decades ago it was established that an anisotropic environment
can induce coherence between transitions whose orthogonal
dipole moments would otherwise forbid this [7]. Building on
the simple example of parallel plates discussed in Ref. [7], a
variety of works have sought to design environments that max-
imize this effect (see, for example, Refs. [8–12]) by manipu-
lating the polarization of the radiation emitted by the atom.

One approach whose potential for optimizing coherence
has not yet been explored is inverse design. This is a recent
direction in nanophotonics [13,14] where dielectric structures
are algorithmically designed in such a way that a given ob-
servable is extremized. The resulting structures have been
experimentally proven to offer much greater performance than
their by-hand counterparts [15]. Recently, a formulation of
inverse design particularly suited to dealing with light-matter
interactions was put forward [16]. Environment-induced co-
herence is, at its core, a light-matter interaction, meaning the
approach presented in Ref. [16] is immediately applicable.
Inverse design as a general strategy is particularly suited
for optimizing environment-induced coherence since it is a
process that relies on enhancing correlations between two
transitions while simultaneously suppressing their individual
spontaneous decay rates. These competing requirements mean
that it is not at all clear how best to design a structure to do
this for a given set of physical and engineering constraints.
Allowing it to be done algorithmically is therefore a natural
avenue to pursue.

This paper is structured as follows. In Sec. I, we briefly
summarize the basic expressions for coherence induced by an
anisotropic quantum vacuum and evaluate them for a simple
planar geometry. In Sec, II, we move on to inverse design,

beginning in Sec. II A with a derivation of the gradient of the
objective function we require. In Sec. II B, we provide details
of the computational implementation and present some ex-
ample results demonstrating that coherence is increased using
the designed structures via a localized polarization conversion
mechanism. The designed geometries are not without physical
meaning—for example, spiral-like structures are produced;
these are well-known to interact with the polarization direc-
tion of light with prominent examples being spiral wave plates
(see, e.g., Ref. [17]) or chiral metasurfaces [18–20]. In this
paper, the designed structures interact with the polarization
degree of freedom of the light emitted by the atom in just the
right way that the reflected polarization takes precisely the
required character at the position of the atom and nowhere
else. These results are followed by a discussion and compar-
ison with previous work in Sec. II C, with conclusions and
directions for future work being given in Sec. III.

I. COHERENCE AND THE ANISOTROPIC VACUUM

Consider a three-level quantum emitter with a � structure
as shown in Fig. 1. Two degenerate ground states |1〉 and
|2〉 are connected by transition dipole moments d and μ to
an upper state |0〉, with energy splitting h̄ω0. This type of
system is physically realized in, for example, hyperfine lev-
els of cold atoms. It is possible (though very awkward) to
include a detuning between the two lower-lying levels [21]
but the degenerate case is the one which is desirable from the
perspective of coherent control [22], so we proceed under this
assumption. The master equation for the time evolution of the
atom’s density matrix ρ(t ) can be written in the basis of its
energy eigenstates as [11]

ρ̇(t ) = −
[
iω0 + γ1

2
+ γ2

2

]
|0〉 〈0| ρ(t )

+ ρ00(t )
[γ1

2
|1〉 〈1| + γ2

2
|2〉 〈2|

+ κ21

2
|2〉 〈1| + κ12

2
|1〉 〈2|

]
+ H.c., (1)

where ρ00(t ) is the population of the upper state, γ1 and γ2

are, respectively, the spontaneous decay rates from the upper
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FIG. 1. Level scheme of the � system considered here.

state to states 1 and 2,

γ1 = 2ω2
0

h̄ε0c2
d∗ · ImG(r, r, ω0) · d,

γ2 = 2ω2
0

h̄ε0c2
μ∗ · ImG(r, r, ω0) · μ, (2)

and κ12 is the coupling between the two degenerate transitions

κ12 = 2ω2
0

h̄ε0c2
d∗ · ImG(r, r, ω0) · μ. (3)

In these expressions, G(r, r′, ω) is the dyadic Green’s tensor
describing propagation of polaritons (or photons when in free
space) from position r′ to r at angular frequency ω. This
tensor depends on the geometry and materials of the environ-
ment, which, as we shall see, need to be different from vacuum
to induce coherence.

The steady-state values of the off-diagonal elements of the
density matrix whose time evolution is governed by Eq. (1)
are [7,11]

ρ12(t → ∞) = ρ∗
21(t → ∞) = κ12

γ1 + γ2
≡ ρ12, (4)

the absolute value of which we will seek to maximize. It is
helpful for later calculations to convert (4) into the following
form:

ρ12 = K 	 ImG(r, r, ω0)

N 	 ImG(r, r, ω0)
, (5)

where 	 denotes the Frobenius product (A 	 B ≡∑
i, j Ai jBi j), and

K ≡ d∗ ⊗ μ, N ≡ d∗ ⊗ d + μ∗ ⊗ μ. (6)

The trace of the matrix K is equal to the inner product of the
dipole moments,

TrK = d∗ · μ, (7)

so is simply a measure of the orthogonality of the pair of
transitions.

A. Vacuum

In vacuum, the imaginary part of the equal-point Green’s
tensor is proportional to a unit matrix [see Eq. (B2)] under
which conditions the coherence becomes

ρ12 = TrK
TrN

= 0, (8)

with the second equality holding via Eq. (7) if the dipole
moments are orthogonal. This is a demonstration of the well-
known fact that orthogonal dipole transitions are uncorrelated
in vacuum (see, for example, Ref. [7]).

B. Perfect reflector

The Green’s tensor is no longer proportional to an identity
matrix if an anisotropic environment is introduced, so Eq. (8)
no longer holds in this case. The simplest example of an
inhomogeneous environment is a perfectly reflecting plane
positioned in, say, the xy plane, for which the imaginary part
of the equal-point Green’s tensor (r = r′) on the z axis is (see
Appendix B)

ImG(r, r, ω) = ω

6πc
I3

+
(
1−4π2ζ 2

z

)
sin(2πζz )−2πζz cos(2πζz )

32π3ζ 2
z z

diag(1, 1, 0)

+ sin(2πζz ) − 2πζz cos(2πζz )

16π3ζ 2
z z

diag(0, 0, 1), (9)

where ζz = ωz/πc is a dimensionless parameter, the choice of
which will be motivated at the end of this section. The trans-
lational symmetry of this environment in the xy direction is
reflected in the Green’s tensor by (9) being diagonal in its up-
per left block, so choosing the dipole moments to rotate in the
xy plane results in vanishing coherence, just like in vacuum.
This behavior has a clear physical interpretation, since the
downward dipole transition μ emits light of (say) left-circular
polarization which is converted to right-circular polarization
upon reflection by the interface (as viewed along its own
optical axis), but remains left-circular from the perspective
of the atom. This means it cannot excite the right-circular
transition d.

For ρ12 to be nonzero, we therefore need d and μ to have
nonzero components in the z direction, as well as in either the
x or y direction. For this example, we choose the latter, taking
the orthogonal dipole moments as

d = d√
2
{0, 1, i}, μ = μ√

2
{0, 1,−i}, (10)

where d and μ are real constants. The matrices and K and N
then follow directly from their definitions (6), plugging these
together with the Green’s tensor (9) into Eq. (5) one finds for
the coherence induced by the perfect reflector:

ρ12 = 2dμ

|μ|2 + |d|2

× 6πζz cos(2πζz )−3
(
4π2ζ 2

z +1
)

sin(2πζz )

(4πζz )3−6
(
4π2ζ 2

z −3
)

sin(2πζz )−36πζz cos(2πζz )
.

(11)

The absolute value of this for the case d = μ is plotted in
Fig. 2, where it is in general different from zero. This again
has a clear physical interpretation—the light emitted towards
a mirror by a dipole rotating perpendicularly to it is linearly
polarized. Thus, provided it has an appropriate phase after
reflection, it can be absorbed by a dipole rotating in the
opposite direction. This phase requirement is demonstrated
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FIG. 2. Absolute value of the atomic coherence at a distance
ζz = ωz/πc from a perfectly reflecting surface. For in-plane rotation
(purple), the coherence vanishes, while for perpendicular rotation
the coherence displays characteristic oscillations. The position of the
first antinode (aside from the one at the surface itself) indicated by
the orange dot is at ζz ≈ 0.7627. This is the point at which all the
fixed-ζz simulations in the rest of this paper are undertaken.

in Fig. 2 by the fact that the coherence oscillates with a pe-
riod determined by ζz = ωz/πc = 2z/λ. This dimensionless
quantity represents the round-trip distance to the surface in
units of the wavelength λ—when the emitter is at any position
satisfying ζz = n/2 for an integer n, the coherence vanishes as
should be expected from destructive interference. The exact
positions of the peaks in the coherence ζn are given by the
solution of a transcendental equation but obey ζn ≈ 1

2 (n + 1
2 )

to an accuracy of around 2% (e.g., ζ1 = 0.7627 . . .). The use
of the dimensionless variable ζz emphasizes that the results
presented here and in subsequent sections do not depend on
particular choices of frequency and distance scale, rather one
implies the other for a given value of ζz. For example, taking
the caesium D2 frequency of ω = 2π × 352 THz, then ζz = 1
represents z = c/(704THz) ≈ 426 nm.

II. INVERSE DESIGN

The perfect reflector in the previous section was chosen as
it is the simplest example of an inhomogeneous environment
capable of inducing coherence. However, there is of course no
reason that it should be in any sense optimal or even good.
For example, Fig. 2 demonstrates that the coherence falls
away quite rapidly after the initial at-surface maximum. The
task is then to systematically determine a choice of input to
the model (e.g., a particular geometry) that gives a (locally)
optimal output, which is known in general as inverse design.

A brute force search of the vast parameter space of pos-
sible environments is computationally infeasible; to avoid
this, we use iterative adjoint optimization [23], which ex-
ploits the source-observer symmetry of Maxwell’s equations
to massively reduce numerical overhead. As schematically
illustrated in Fig. 3, we will use the following additive al-
gorithm to build up optimized dielectric structures. First, a
source and observation position are defined (which need not
coincide with each other but do in this application), and the
region of space around them is discretized into a grid. Then:

FIG. 3. Schematic illustration of the difference between brute
force and adjoint optimization techniques and the overall iterative
approach taken here. In this illustration, the goal is to add a new
block to an existing geometry (shown in grey) at the unique point that
maximally increases a given observable that depends on source and
observer. In the brute force method on the left-hand side, a block is
simply placed at each possible position and simulation rerun for each,
which would be N2 = 100 times for the two-dimensional example
here. The program would then pick the placement with the highest
increase in the observable. By contrast, on the right-hand side the
adjoint method is used, in which only two simulations are required
(the third step is essentially processing data from simulations 1 and
2) to find the optimal position of the new block.

(1) Any existing dielectric structures (either placed by
hand or from previous optimization steps) in the computa-
tional domain are divided into cubes.

(2) The Green’s function for propagation of electromag-
netic radiation from the source is calculated at all points
in the computational domain, as is the Green’s function for
propagation from the observation position (the latter being
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analogous to the adjoint electric field in other versions of
adjoint optimization [14,23]).

(3) These two Green’s functions are combined with each
other and with the observable [see Eq. (12) below] in such a
way that the resulting quantity, defined over all points in the
domain, has a maximal value at the position at which a new
cube should be placed to maximally increase the observable.

(4) The process iterates, building up a structure.
The main advantage of this method over brute force opti-

mization is that it requires (at most) two calculations of G to
find the position that a piece of material should be placed to
maximally increase a given observable f , rather than having
to simply repeat the calculation for placement at every possi-
ble point in the simulation volume and select the best result.
The key quantity that tells us the optimal placement position
r′′ for an observable depending on the Green’s tensor at two
positions r and r′ is the merit function gradient δF , given by
[16]

δF = Re

{
∂ f

∂G
(r, r′, ω) 	 [GT(r′′, r, ω) · G(r′′, r′, ω)]

}
,

(12)

where G and its conjugate are treated as independent vari-
ables. Positions r and r′ are fixed, so Eq. (12) can be fully
determined by calculating G for all observation positions
given a source placed at r and again for a source placed at
r′. This is the origin of the reduction to two simulations from
N2 (or N3 in 3D) required in a brute force approach. Here and
throughout we ignore all real, positive prefactors appearing
in the merit function gradient δF without further comment,
as these make no difference to the spatial positions of its
zeros or of its maximum, which are the only quantities we
are interested in.

The technique of adjoint optimization brings the problem
well within computational reach, so is the approach taken
here. In the particular example of environment-induced coher-
ence, the source and observation point happen to be the same,
so in this case we need only do one simulation per iteration.

A. Optimizing coherence

To tackle our particular problem of optimizing |ρ12| given
by Eq. (5), we simple choose f = |ρ12| in Eq. (12). Ex-
pression of δF in terms of G then entails calculation of the
following functional derivative:

∂

∂G
|ρ12| = 1

|ρ12|Re

(
ρ∗

12
∂ρ12

∂G

)
, (13)

where we use a well-known formula for the derivative of the
absolute value of a complex number. After some algebra (see
Appendix A), one finds

∂ρ12

∂G
= 1

2i

K(N 	 ImG(r, r, ω)) − N(K 	 ImG(r, r, ω))

[N 	 ImG(r, r, ω)]2

(14)

which can then be used in Eq. (13), giving

δF = Re

{
1

2i

∣∣∣∣ N 	 ImG(r, r, ω)

K 	 ImG(r, r, ω)

∣∣∣∣
[

K 	 ImG(r, r, ω)

N 	 ImG(r, r, ω)

]∗

× K[N 	 ImG(r, r, ω)] − N[K 	 ImG(r, r, ω)]

[N 	 ImG(r, r, ω)]2

	 GT(r′′, r, ω) · G(r′′, r, ω)

}
. (15)

This expression simplifies considerably when the vacuum
Green’s tensor (B1) is used, becoming

∂ρ12

∂G
= 1

12iπc

KTrN − NTrK
(TrN)2

= 1

12iπc

K
TrN

, (16)

where on the right-hand side we used that TrK = 0 for orthog-
onal dipole moments [see Eq. (7)]. Consequently, the merit
function change in vacuum is

δFvac = Re

[
K

iTrN
	 GT(r′′, r, ω) · G(r′′, r, ω)

]
, (17)

where we have also used that TrN is necessarily real and
positive, see Eqs. (6).

Equation (17) gives us our first insight into how we may
go beyond planar surfaces in optimizing coherence. To see
this, we place the atom at the origin and assume without loss
of generality that the dipole moments are given by (10). The
merit function gradient in this case becomes

δFvac = 2[(χ4 + χ2 − 3) cos(2χ )

− 2χ (χ2 + 3) sin(2χ )]ζ ′′
y ζ ′′

z

+ [2χ (χ2 + 3) cos(2χ )

+ (χ4 + χ2 − 3) sin(2χ )]
(
ζ ′′2

z − ζ ′′2
y

)
, (18)

where we have introduced

χ = π

√
ζ ′′2

x + ζ ′′2
y + ζ ′′2

z , (19){
ζ ′′

x , ζ ′′
y , ζ ′′

z

} = ω

πc
{x′′, y′′, z′′}. (20)

A plot of δF as a function of ζ ′′
x , ζ ′′

y and ζ ′′
z is shown in Fig. 4,

from which we can draw several qualitative conclusions about
the optimizations to be carried out. First, structures in the
plane of rotation have a spiral character, familiar from a class
of chiral metasurfaces [18–20]. Second, optimization in the
plane perpendicular to the plane of rotation is expected to
be more effective than that parallel to it since the relative
magnitude of δF is much larger there.

Placing a small block of dielectric material at the point of
maximum δF would increase |ρ12|, but only very modestly.
To find significant improvements, one has to take the environ-
ment as including this first block and determine the optimal
placement of the next block and so on—the process becomes
iterative. It is important to note that as soon as a piece of
material is placed anywhere in the environment, it is of course
no longer vacuum so a new Green’s tensor must be calculated.
This, in general, must be done numerically since the Green’s
function is only expressible analytically for planes, cylinders,
and spheres (as well as layered versions thereof, see, for
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FIG. 4. Spatial merit function for environment-induced coher-
ence for an atom at the origin with dipole moment rotating in the yz
plane, as indicated. Red regions indicate those where a piece of ma-
terial would increase coherence, while blue regions are those which
would suppress it. The value of the merit function is normalised to
the largest (positive) value found across all of the three cross sections
shown. The structure in the plane of rotation is strongly reminiscent
of the spiral and gammadion structures found to exhibit highly chiral
response [18–20].

example, Ref. [24]). Therefore the result (18) represents the
first and only analytic step in a procedure that must continue
numerically.

To carry out the numerics, we use the free finite differ-
ence time domain (FDTD) package MEEP [25] to calculate
the Green’s tensors using the method discussed in Ref. [16].
Briefly, to calculate G(r, r′, ω), a point current source j is
introduced at r′ and the resulting electric field at the observa-
tion point r is calculated. Dividing the resulting vector by the
source current componentwise and Fourier transforming, one
is furnished with one row of the Green’s tensor (corresponding
to whichever direction the source current was chosen to be
aligned). Carrying out the same process for the remaining two
rows then gives all nine components of the FDTD Green’s ten-
sor for a particular r, then the whole process can be repeated
for each point in the grid of observation points required for
evaluation of (15). We emphasize here that there is only one
source point r, so the Green’s tensor only has to be calculated
once in a given geometry to find optimal placement of the
next block, in contrast to brute force optimization where each
position would have to be tried. The numerical nature of
this method means discretization errors and possible artifacts
needs to be accounted for and controlled; our methods for
doing this are discussed in Appendix C.

B. Implementation

To make the predicted structures more realistically manu-
facturable, we include an optional background geometry of a
perfectly reflecting plane (referred to as the backplate), upon
which the algorithm is allowed to place a layer of material.
When no backplate is present, the algorithm is subject to the
same constraints, so it builds a freestanding planar structure.
Four physical situations were then considered—with/without
the backplate and parallel/perpendicular rotation of the dipole

moments, relative to the plane of optimization. For parallel
rotation, the dipole moments are

d = d√
2
{1, i, 0}, μ = μ√

2
{1,−i, 0}, (21)

while for perpendicular rotation the dipole moments are given
by Eqs. (10). In all cases d = μ was assumed for simplicity,
the coherence for d = μ can be obtained from the values
presented here by inserting a factor with 2dμ/(|μ|2 + |d|2)
[see Eq. (11)].

The physical parameters were chosen as follows. The ma-
terial being placed by the algorithm at each step is a cube
of side length λ/6 with permittivity ε = 3 (referred to as a
block from here on)—roughly corresponding to materials like
glass or sapphire. The perfectly reflecting backplate has the
same dimensions as the optimization region and is half a
wavelength deep (although this is immaterial since by defi-
nition its thickness does not matter). In the simulations with
the backplate, the atom was at the first antinode ζ1 measured
relative to the vacuum-backplate interface (see Fig. 2), and
in the freestanding simulations it is the same distance but
measured from the center of the structure in the ζz direction.

The computational parameters chosen were a resolution
12 pixels per wavelength, as this was found to result in a good
tradeoff between accuracy and speed (see Appendix C). In
each case, the atom was placed on the ζz axis, the optimiza-
tion region was three wavelengths square in the ζx − ζy plane
and one block deep in ζz, centered at the origin. The overall
simulation box size is four wavelengths, and beyond this a set
of perfectly matched layers ensure near-perfect absorption of
any outgoing radiation. The computational parameters were
confirmed as being sufficient by comparing with the analytic
perfect reflector result (11), see Appendix C.

As a test of the necessity of the computationally heavy
process of iterative inverse design, we also investigated the
coherence for what we term single pass design. This pro-
ceeds by beginning from vacuum, taking the analytic merit
function as shown in Fig. 4 and simply placing material at
any position where δF > 0. The coherence ρ12 can then be
evaluated with a single simulation. The results of the four
iterative optimization runs described in this section (as well as
two single-pass results) are shown in Fig. 5. The code under-
pinning the simulations can be found at Ref. [26], alongside
detailed documentation.

C. Discussion

The highest absolute coherence is found, perhaps unsur-
prisingly, by using the iterative optimization technique for
the case of perpendicular rotation with the backplate. This
is because the starting structure already induces coherence
in a similar way to the infinitely extended perfectly reflect-
ing plane as shown in Fig. 2. The inverse design algorithm
patterns the surface in such a way to make this reasonably
realistic compact structure constructed from a dielectric mate-
rial induce approximately twice the degree of coherence as its
infinitely extended (unphysical) highly reflecting metasurface
counterpart [11]. This conclusion holds at points other than
the first antinode ζ1 chosen in Fig. 5—in Fig. 6 we summarize
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FIG. 5. Main plot: Absolute value of the atomic coherence at the first antinode from Fig. 2 (ζ1 ≈ 0.7627) at each step of the iterative
process, for four different physical situations (with/without backplate, parallel/perpendicular rotations), with parameters detailed in the main
text. Shown above and below the main plot are the structures at selected stages in two of the four optimization runs (corresponding coherence
marked by circles on the main plot), as well as the single pass structure found for each (marked by squares). The iterations at which the
coherence peaked for those two runs are marked by stars, with the final structures shown in the upper and lower right. Each step in the
optimization took approximately ten minutes per core on the University of Glasgow High Performance Computing facility.

the results of repeating the two simulations highlighted in
Fig. 5 for the remaining antinodes.

The single-pass approach does not work as well as the
iterative approach. This is because it is inconsistent with the
assumptions under which the merit function gradient (12)
was derived (addition of pieces of dielectric of with small
optical volume), so there is no compelling reason the resulting
structure should improve coherence (and could even reduce
it). Nevertheless, it is significantly computationally cheaper,
with only one numerical simulation required as opposed to
hundreds. Its greatest success is found in freestanding opti-
mization for a dipole rotating in the parallel direction, since
essentially any new material in the optimization plane will
break the translational symmetry that leads to vanishing co-
herence. By contrast, for a dipole rotating in the perpendicular
direction with a backplate already present, the symmetry is

already broken, so further optimization is more delicate. In
both cases, the iterative method outperforms single pass opti-
mization, though much less dramatically in simulations with
the backplate.

We now briefly compare the results of this paper to those
of other enhancement techniques. In Ref. [11], a 1D resonant
metasurface was designed and the coherence was reported as
reaching approximately 0.1 at a distance 20ζz—far in excess
of the results for coherence presented here. However, the
authors of Ref. [11] caution that they “do not take into account
all the details of the metasurface,” instead taking it as optically
equivalent to an idealized spherical mirror modified by some
transmissivity values for a single polarization. The authors
also assume the part of the decay rate that stems from the
component of the dipole moment perpendicular to their meta-
surface’s periodicity is unchanged. These assumptions may
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FIG. 6. Coherence induced by a perfect reflector (solid line) and
by vacuum (dashed) and the results of iterative optimization at the
five antinodes. For the case of optimization without the backplate
(i.e., beginning in vacuum), parallel rotation is meant as with respect
to the plane in which the algorithm is allowed to place material.

artificially enhance the coherence, whereas the full numerical
treatment presented here is expected to be more realistic. The
authors of Ref. [8] considered the situation of perpendicular
rotation in a multilayer dielectric medium. For the case of an
atom placed in vacuum between two dielectric slabs, they find
values for the absolute coherence up to approximately 0.05
for atom-surface distances exceeding ζz ≈ 2. This is similar
to the perfect reflector results presented here due to approx-
imate cancellation of two competing effects (enhancement
due to modes trapped between the slabs, suppression due to
a lower reflectivity surface), and is thereby outperformed by
the iterative techniques used here. Consideration of multilayer
geometries like those in Ref. [8] will form the basis of future
work.

In the works listed above, the essential goal was to mimic
a highly reflecting spherical mirror as closely as possible, as
this is known to strongly affect spontaneous decay and cross
coupling [27]. This corresponds to a simple focusing effect,
whereby the radiation emitted from the atom is efficiently
reflected back to its position. The structures built by the al-
gorithm here work on a different physical principle, namely
localized polarization conversion. To see this, a simulation
was done by taking an example structure, irradiating it with
a circularly polarized plane wave and inspecting the reflected
light. Subtracting out the initial field and finding the third
Stokes parameter of the remainder, one finds the data shown
in Fig. 7. This clearly shows that while the intensity is only
mildly affected by the structure, the polarization of the wave
is completely reversed at the position of the atom. This type
of fine-tuned behavior—specific to inducing coherence and
nothing else—is qualitatively and methodologically distinct
from previous approaches based on spherical mirrors.

The toolbox presented here has also shown that use of a
spiral dielectric structure is a worthwhile strategy for inducing
coherence between orthogonal dipole transitions. As alluded
to in Fig. 4 the spirals found by the algorithm are qualitatively
similar to structures already used to exhibit a strongly chiral
response [18–20] or to produce light with angular momentum
[17].

FIG. 7. Normalized intensity (upper) and third Stokes parameter
S3 (lower) of a left-circularly polarized wave traveling in the z di-
rection. The structure chosen is the one that maximizes coherence at
ζz = −1.75 (i.e., the central pair of data points in Fig. 6) and the grey
areas represent a slice through the structure at ζy = 0. The intensity
is normalized to that of the initial plane wave and the wavelength is
that of the atomic transition considered in the other simulations.

III. CONCLUSIONS

In this paper, we have presented and applied a toolbox for
using inverse design to optimize environment-induced coher-
ence. We derived a very general merit function in terms of
dyadic Green’s tensors and applied this to the case of vacuum
to provide insight into what types of structures should induce
coherence. We then used iterative inverse design to show that
this method can enhance existing coherence by a factor of
approximately two via simple surface patterning, as well as
induce appreciable coherence in situations where there was
none initially present. While the values found for the coher-
ence do not exceed some previous claims for metasurfaces,
the approach presented here is much more flexible than those
preceding it. For example, the resulting structures are compact
and localized, rather than requiring a metasurface with a large
number of repeating cells. This presents advantages in terms
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of being able to accurately simulate the structures, as well as
opening up new possibilities in manufacturing. In addition
to this, neither the starting geometry nor the optimization
region are limited to being planar, either could be of any
three-dimensional shape (e.g., spheres, gratings, parabolas).
These, as well as the effects of detuning, will form directions
for future work using the numerical tools developed here,
available in Ref. [26].
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APPENDIX A: DERIVATION OF THE MERIT
FUNCTION CHANGE

To evaluate Eq. (13), we need to find an expression for
∂ρ12/∂G, with ρ12 given by Eq. (5). In component notation,
the latter is

ρ12 = u

v
, (A1)

with

u = KpqImGpq,
(A2)

v = Nkl ImGkl ,

where we have employed the Einstein summation convention
and dropped the position and frequency dependence of the
Green’s tensor since they play no role here. We require the
components of ∂ρ12/∂G [28], given by(

∂ρ12

∂G

)
i j

= ∂ρ12

∂Gi j
. (A3)

We are taking the functional derivative of a quotient, so we can
use the analog of the quotient rule from elementary calculus,
given here by

(u

v

)′
= u′v − v′u

v2
, (A4)

with prime denoting functional derivative with respect to Gi j .
Treating the G and its conjugate as independent quantities (as
is standard practice in field theory) [16], we find

u′ = 1

2i
Ki j, v′ = 1

2i
Ni j .

We put this back into the quotient rule,

∂ρ12

∂Gi j
= 1

2i

Ki jNkl ImGkl − Ni jKpqImGpq

(Nst ImGst )2
, (A5)

where the sums in the numerator and denominator are under-
stood to be taken separately. Switching back out of component
notation, and restoring the position and frequency dependence
of the Green’s tensor, this is Eq. (14).

APPENDIX B: GREEN’S TENSORS

The Green’s tensor G(0)(r, r′, ω) for free space is (see, for
example, Ref. [29])

G(0)(r, r′, ω) =− 1

3k2
I3δ

(3)(R)

− eikR

4πk2R3
{[1 − ikR − (kR)2]I3

− [3 − 3ikR − (kR)2]R̂ ⊗ R̂}, (B1)

where k = ω/c, R = r − r′ and R = |R|. The delta function
in the first term causes this to be ill-defined at R = 0, but its
imaginary part remains finite and is given by

ImG(0)(r, r′, ω) = ω

6πc
I3. (B2)

The Green’s tensor for a planar surface of permittivity
ε and unit permeability in the plane z = 0 is given for
z, z′ > 0 by

G(r, r′, ω) = G(0)(r, r′, ω) + G(1)(r, r′, ω), (B3)

where

G(1)(r, r′, ω) = i

8π2

∑
σ=s,p

∫
d2k‖

1

kz
eik‖·(r−r′ )

× eikz (z+z′ )rσ eσ+ ⊗ eσ−, (B4)

where

es± = k̂‖ × ẑ, ep± = 1

k
(k‖ẑ ∓ k̂‖), (B5)

with k‖ = {kx, ky, 0}, k‖ = |k‖| and, rs and rp being the Fres-
nel reflection coefficients for s and p polarizations. In general,
these coefficients depend on wave vector k, but for a per-
fect reflector they are simply given by rs = −1 and rp = 1.
Substituting these values into (B4) and taking equal position
arguments r = r′ allows the frequency integrals to be carried
out. All off-diagonal elements vanish and the diagonal ele-
ments are given by

G(1)
xx = G(1)

yy = e2iπζ (1 − 2iπζ − 4π2ζ 2)

32π3ζ 2z
, (B6)

G(1)
zz = e2iπζ (1 − 2iπζ )

16π3ζ 2z
, (B7)

where we have again used the dimensionless parameter ζz =
ωz/πc introduced in the main text. Taking the imaginary part
of the diagonal matrix defined by (B6) and (B7), then adding
the result to Eq. (B2) results in Eq. (9) in the main text.

APPENDIX C: CONVERGENCE AND VALIDATION

The accuracy of the FDTD simulations was estimated by
using them to calculate the absolute value of the coherence
ρ12 in vacuum, which is known to be identically zero (see
Sec. I A and Ref. [7]). The deviation from zero can then be
used to estimate the errors introduced by the numerical nature
of the method. A data set was generated by randomly sam-
pling points from within the simulation box and calculating
|ρ12| at each. As shown in Fig. 8, these displayed a system-
atic resolution-dependent displacement from zero, as well as
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FIG. 8. Combined systematic and random errors for various res-
olutions (ppw denotes pixels per wavelength) after variable numbers
of test runs.

random fluctuations around that value. The mean value was
therefore used as a systematic error, while the standard devi-
ation was taken as a random error, which were subsequently
combined in quadrature to give an overall error. Enough sim-
ulations were run so the total error reached a steady value, as
demonstrated in Fig. 8. To test the validity of these error
bounds, we simulated the case of the perfect reflector and
compared with the analytic result in Eq. (11). This is shown
in Fig. 9, where the sizes of the error bars correspond to each

0.0

0.2

0.4

|ρ 1
2
|

4ppw 8ppw

0 2 4
ζz

0.0

0.2

0.4

|ρ 1
2
|

12ppw

0 2 4
ζz

16ppw

Exact FDTD

FIG. 9. Exact results for the coherence induced by a perfectly
reflecting half-space for perpendicular rotation [Eq. (11)] and the
same calculated at various resolutions using FDTD. Resolutions are
quoted on each subplot in units of pixels per wavelength (ppw).

resolution shown on Fig. 8. From this, it was determined that
the resolution giving the best tradeoff between computational
overhead and accuracy was 12 pixels per wavelength. This
was used for the simulations in the main text, in which all
errors are less than or similar to the thickness of the lines on
the plots.
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