
PHYSICAL REVIEW A 103, 013705 (2021)

Improved phase sensitivity in a quantum optical interferometer based on multiphoton catalytic
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The usage of non-Gaussian states to improve the phase sensitivity of interferometers has been studied before.
In this paper, we introduce the multiphoton catalysis two-mode squeezed vacuum (MC-TMSV) state as an
input of the Mach-Zehnder interferometer (MZI) and study its phase sensitivity with photon-number parity
measurement and the influence of photon losses. We also study the statistical properties of the MC-TMSV state
in terms of the average photon number, the Wigner function, and the Mandel-Q parameter. Our results show
that the MC-TMSV state can exhibit stronger nonclassical characteristics, thereby making the phase sensitivity
more precise with either the increase of the photon-catalyzed number or the decrease of the transmissivity.
Furthermore, we also consider the effects of photon losses involving external- and internal-loss processes of the
MZI, and we find that in both cases the sensitivity with the MC-TMSV state can be significantly better than
that with the TMSV state under the same parameters especially in the serious photon losses and small initial
squeezing regimes. We also find that the multiphoton catalysis is more sensitive to the external photon losses
compared with the internal ones. Our results here can find important applications in quantum metrology.
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I. INTRODUCTION

The Mach-Zehnder interferometer (MZI) is one of the
most important optical interferometers in the field of quantum
information, which is usually used to estimate tiny phase
changes in quantum metrology [1–10]. How to effectively
improve the sensitivity of phase estimation in the MZI has
aroused extensive interest in recent years [11–18]. The usual
MZI includes three parts (see Fig. 1): the preparation of the in-
put state, the dynamic evolution of interaction with parameters
to be measured, and the detection of the output state [19]. The
improvement in the precision of phase estimation can be real-
ized from the optimal design of these parts. Many theoretical
schemes have been proposed to surpass the standard quantum
limit (SQL) 1/

√
N or even reach the Heisenberg limit (HL)

1/N, in the measurement of a tiny phase shift where N is the
average photon number in the input state [20–23]. In addition,
the parity measurement of the photon number was proposed
in Ref. [15], which shows that the HL can be achieved by
maximizing entangled states in a lossless MZI. Caves [20]
pointed out that if the nonclassical quantum states, mixing the
coherent and squeezed vacuum states, were injected into the
MZI, the measurement precision of phase shift could reach
the SQL. In order to further increase the phase sensitivity
and even reach the HL, many efforts have been dedicated to
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significantly enhancing the nonclassicality of input quantum
states in the MZI systems [24–27]. Thus, how to prepare
higher nonclassical quantum states has become an important
task, especially for quantum metrology.

Fortunately, the use of non-Gaussian operations to the
preparation of input quantum states in the MZI systems has
attracted much attention, because it has been proved that
higher nonclassical quantum states can be generated by these
operations, which may find important applications in quantum
precision measurement and quantum information [28–40].
In particular, Anisimov et al. have theoretically studied that
the application of the two-mode squeezed vacuum (TMSV)
state as the input state of an MZI can improve the sensitiv-
ity and accuracy of phase measurement and even reach the
sub-Heisenberg limit by using the parity detection scheme
[40]. However, the maximum two-mode squeezing degree
achievable in practice is approximately r ≈ 1.15, i.e., λ =
tanh r ≈ 0.8 [41], which results in the limited improvement
of sensitivity and accuracy of phase measurement. In order
to overcome this drawback, Carranza and Gerry proposed
a feasible method by using the photon-subtracted TMSV
(PS-TMSV) state as input in the MZI systems [42] and
showed that the PS-TMSV state can achieve precision bet-
ter than that of the TMSV state. Based on previous works,
Ouyang et al. applied the photon-added TMSV (PA-TMSV)
state to improve the accuracy of phase shift measurement and
found that, for a given initial squeezed degree, the improved
precision for the PA-TMSV state is better than that for both
the TMSV state and the PS-TMSV state when measuring very
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small phase shifts [43]. Interestingly, except for the photon
subtraction and photon addition, quantum catalysis can also
be used to effectively improve the nonclassicality of quan-
tum states, while the nonclassical states offer a noticeable
improvement in interferometric precision [44–46].

In this paper, we perform a multiphoton catalysis two-
mode squeezed vacuum (MC-TMSV state) [47] on the MZI
input port and show that the accuracy of phase shift measure-
ment is greatly improved with both the decrease of transitivity
and the increase of the catalysis photon number, which is
related to the improvement of nonclassicality of the input
states. In practical applications, losses and imperfections are
avoidable [48–51]. Hence, we also consider the effects of
the photon losses placed in front of parity detection (denoted
as an external loss) and between the phase shifter and the
second beam splitter (BS) (denoted as an internal loss) on the
multiphoton catalysis operation. Our results show that in the
presence of photon losses the phase sensitivity with multipho-
ton catalysis can still be better than that with normal squeezed
vacuum under the same accessible parameters, particularly
in the small initial squeezing regime. We also find that the
multiphoton catalysis is more sensitive to the external photon
losses in contrast to the internal ones.

This paper is arranged as follows. In Sec. II, we first
propose the scheme for generating the MC-TMSV state and
then discuss the statistical properties of the generated states in
detail. In Sec. III, we mainly focus on the study of the output
states of the MZI, which is the evolution of the MC-TMSV
state after the MZI, and detect parity signals of one output
mode. In Sec. IV, we study quantum Fisher information (QFI)
and interference measurement based on parity measurement.
In Sec. V, we mainly pay attention to the effects of photon
losses in front of the parity detection and between the phase
shifter and the second BS on the phase sensitivity. The main
results are summarized in Sec. VI.

II. THE STATISTICAL PROPERTIES OF THE
MC-TMSV STATE

As shown in Fig. 1(a), we consider the MC-TMSV state as
the input of an MZI and mainly study the phase sensitivity
of this setup by using the MC-TMSV state (i.e., assuming
that the MC-TMSV state has been successfully generated).
In principle, the MC-TMSV state can be generated by the
schematic setup shown in Fig. 1(b) where an m-photon Fock
state |m〉 is injected into one port of the BS with transmissivity
η and simultaneously an ideal photon number resolving de-
tector only registers the same Fock state |n〉 [47]. This process
can be described by an MC operator given by

Ôm = c〈m|B(η)|m〉c

= Gη(b†b)(
√

η)b†b+m
, (1)

where B(η) = exp[(b†c − bc†) arccos
√

η] is the BS oper-
ator and

Gη(b†b) = ∂m

m!∂τm

{
1

1 − τ

(
1 − τ/η

1 − τ

)b†b
}

τ=0

, (2)

where ∂m

∂τm {•}τ=0 is a differential operator used to define G.
Thus, for our scheme shown in Fig. 1, the proposed MC-

FIG. 1. (a) Schematic diagram of the Mach-Zehnder interfer-
ometer for the detection of the phase shift when the multiphoton
catalysis two-mode squeezed vacuums are injected into the first beam
splitter. (b) Schematic setup for preparing the MC-TMSV state.

TMSV state as the input state of the MZI can be theoretically
generated by performing an MC operation on the TMSV, i.e.,

|in〉 = Ôm√
Pm

S2(λ)|00〉

= W0√
Pm

∂m

∂τm

{
exp(a†b†W )

1 − τ

}
τ=0

|00〉, (3)

where S2(λ) = exp {(a†b† − ab)arctanhλ} is a two-mode
squeezing operator and Pm represents a normalized
coefficient, i.e.,

Pm = ∂m

∂τm∂τm
1

εW0(1 − W1W )τ=τ1=0, (4)

with the notations defined as

W = λ(η − τ )√
η(1 − τ )

,

W0 =
√

ηm(1 − λ2)

m!
,

W1 = λ(η − τ1)√
η(1 − τ1)

,

ε = 1

(1 − τ )(1 − τ1)
, (5)

where τ and τ1 are two variables introduced to define W and
W1. It is easily seen from Eq. (3) that the proposed MC-TMSV
state |in〉 is a non-Gaussian state. Here, we should mention
that the preparation of the MC-TMSV state is probabilistic
and it is an important factor that need to be considered in prac-
tical applications [52]. However, here we mainly focus on the
phase sensitivity by using the MC-TMSV state and the effect
of success probability will be considered in future research.
Actually, the success probability to generate the MC-TMSV
states can be very high (the maximum success probability
can even approach the unit in the limit of transmissivity
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FIG. 2. Average photon number as a function of the squeezing
parameter λ for (a) η = 0.2 and m = 1, 2, and 3 and for (b) m = 3
and η = 0.1, 0.2, and 0.3. Solid lines correspond to the TMSV state.

η → 1) [47]. However, we should note that, when η = 1,
it returns to the case of usual TMSV states. For the usual
MC-TMSV states, the success probability is less than a unit.
Interestingly, this quantum state has been used for improv-
ing the performances of the entanglement and quantum key
distribution [53,54].

In order to better understand the improvement of phase
estimation precision, in the following we first discuss the sta-
tistical properties of the proposed MC-TMSV state by means
of the average photon number, the Wigner function (WF), and
the Mandel-Q parameter.

A. Average photon number

Gerry and Mimih have emphasized that the sub-Poissonian
statistics is significant for the optical interferometry and the
average photon number is an important parameter for eval-
uating the statistical properties of the light field [15]. For
simplicity, according to Eq. (3), here we mainly pay attention
to the average photon number of one mode via the relation

Na = 〈in|a†a|in〉 = D̂
ε

(1 − WW1)2 − 1, (6)

with

D̂ = W 2
0

Pm

∂2m

∂τm∂τm
1

{•}τ=τ1=0. (7)

It should be noted that the total average photon number of
two modes is 2Na. Figure 2 shows the average photon number
2Na for the proposed state as a function of the squeezing
parameter λ for different catalysis photon numbers m = 1,
2, and 3 and transmissivity η = 0.1, 0.2, and 0.3. As a com-

parison, the black solid line is the average photon number of
the TMSV, which is smaller than that of the proposed state
in the initial low squeezing λ. In addition, under the same
parameters, both the decrease of the transmissivity and the
increase of the catalysis photon number for our scheme can
increase the average photon number, compared to the TMSV.
To be more specific, we can see from Fig. 2(a) that, in the case
of low transmissivity η = 0.2, when given a photon-catalyzed
number m, the average photon number for the proposed state
is larger than that of the TMSV below a certain threshold λ,
e.g., m = 1 for 0 < λ < 0.68, and m = 3 for 0 < λ < 0.86.
Similarly, from Fig. 2(b), at a fixed m = 3, we can see that, as
the transmissivity decreases, the average photon number can
be further increased below a certain threshold λ, e.g., η = 0.1
for 0 < λ < 0.86, and η = 0.3 for 0 < λ < 0.81.

B. The Wigner function

The nonclassicality of optical fields can be characterized
by the WF in phase space, which provides a good signa-
ture for the nonclassicality and the (non-)Gaussianity. In this
subsection, let us consider the WF of the input MC-TMSV
state in the MZI. The negative volume of the WF represents
the existence of the nonclassical characteristics of quantum
states [55–57]. According to the definition of the WF, for an
arbitrary two-mode state ρ, the corresponding WF in coherent
representation is given by

W (z, γ ) = e2(|z|2+|γ |2 )
∫

d2αd2β

π4
〈−α,−β|ρ|α, β〉

× exp[2(zα∗ − z∗α) + 2(γ β∗ − γ ∗β )], (8)

where |α, β〉 = |α〉 ⊗ |β〉 is the two-mode coherent state.
From Eq. (8), evidently, as long as the state ρ is known,
one can obtain the analytical expression of the WF. Thus,
according to Eq. (3), for our scheme, the input state ρin can
be rewritten as

ρin = D̂ε exp(a†b†W )|00〉〈00| exp(abW1). (9)

By substituting Eq. (9) into Eq. (8), the WF of the MC-TMSV
state can be derived as

W (z, γ ) = D̂επ−2

1 − WW1
e

4γ zW1−2(W1W +1)(|z|2+|γ |2 )+4γ ∗z∗W
1−WW1 . (10)

It is obvious that Eq. (10) is a real function and also reveals
the non-Gaussian form in phase space. In particular, for the
TMSV(η = 1), Eq. (10) reduces to

W0(z, γ ) = 1

π2
exp

{
−(|z|2 + |γ |2)

2(1 + λ2)

1 − λ2

+ (zγ + z∗γ ∗)
4λ

1 − λ2

}
. (11)

For the sake of discussion, here we set the squeezing
parameter λ = 0.7, and z and γ are taken as real numbers.
Figure 3 shows the WF distribution of the input state ρin in
(z, γ ) phase space with different parameters of m and η. Re-
markably, for m = 1, the negative volume of the WF decreases
with the increase of transmissivity η = 0.2 and 0.4, as shown
in Figs. 3(a) and 3(b), respectively. In addition, as can be
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FIG. 3. The Wigner function W of the MC-TMSV state with fixed squeezed parameter λ = 0.7. (a) m = 1 and η = 0.2, (b) m = 1 and
η = 0.4, and (c) m = 2 and η = 0.4.

seen from Figs. 3(b) and 3(c), at fixed η = 0.4, the negative
volume of the WF increases as the catalysis photon numbers
m = 1 and 2 increase, which means the existence of the higher
nonclassicality by increasing m. These results indicate that
the nonclassicality of the MC-TMSV state can always appear
by modulating the transmissivity and the catalysis photon
number.

Furthermore, in order to clearly see the impact of the
squeezed parameter on the nonclassicality, we can quantita-
tively describe nonclassicality of the MC-TMSV state by the
value of the negative volume of the WF, which is given by

V (z, γ ) = 1

2

{ ∫
dx1dy1dx2dy2

×[|W (z, γ )| − W (z, γ )]

}
. (12)

Here, z = (x1 + iy1)/
√

2 and γ = (x2 + iy2)/
√

2. According
to Eq. (12), we calculate the negative volume value of the
WF for the MC-TMSV state, as shown in Table I. It is worth
noting that the maximum two-mode squeezing degree achiev-
able experimentally is about λ ≈ 0.8 [41]. From this practical
viewpoint, for simplicity, we only take the squeezed parameter
λ � 0.7. The negative volume of the WF as a function of the
squeezing parameter λ for different m values is shown in Ta-
ble I. Obviously, in the experimentally achievable squeezing
range, the negative volume value of the WF increases with the

TABLE I. Negative volume of the WF.

λ m = 1 m = 2 m = 3

0 0 0 0
0.1 0.000 439 346 0.004 915 66 0.014 007
0.2 0.009 759 89 0.033 464 3 0.054 410 3
0.3 0.032 176 8 0.064 596 6 0.083 132 1
0.4 0.061 607 3 0.087 958 0.101 32
0.5 0.091 378 0.104 596 0.114 951
0.6 0.116 571 0.115 781 0.127 34
0.7 0.134 41 0.120 984 0.140 167

increase of the squeezed parameter λ for fixed transmissivity
η = 0.2 and m ∈ {1, 2, 3}.

C. Mandel-Q parameter

The sub-Poisson statistical distribution of the light field is
often used as a criterion of the nonclassicality [58,59]. From
the distribution of the Mandel-Q parameter, three types of
distributions, which correspond to the sub-Poisson, the super-
Poisson, and the Poisson, can be identified. Therefore, in this
subsection, we mainly analyze the photon statistical distri-
bution of the MC-TMSV state via the Mandel-Q parameter,
which is defined as

Q = Qa = Qb = 〈a†2a2〉 − 〈a†a〉2

〈a†a〉

= 〈a†2a2〉 − N
2
a

Na
, (13)

where Na has been given in Eq. (6) and the average value
〈a†2a2〉 can be directly calculated as

Tr[a†2a2ρin] = D̂
2ε

(1 − W1W )3
− 3Na + 1. (14)

In principle, Q < 0 indicates the sub-Poisson distribution,
which means the existence of the nonclassicality. In the fol-
lowing, we mainly focus on the condition of Q < 0 of the
generated state. In Figs. 4(a) and 4(b), we exhibit the Mandel-
Q parameter as a function of the squeezing parameter λ and
the transmissivity η for several different values of m. As
a comparison, the black solid line shows the result of the
TMSV. It is easy to see that the light field for the TMSV
always presents a super-Poisson distribution (Q > 1). For our
scheme, at a given transmissivity η = 0.2, the corresponding
Mandel-Q parameter can remain negative in a certain range
of λ. In addition, the existing region of the nonclassicality
increases with the increase of m [see Fig. 4(a)]. When λ takes
a certain value, e.g., λ = 0.6, the Mandel-Q parameter has
a negative value in the small transmissivity range, and this
transmissivity range increases as m increases [see Fig. 4(b)],
which indicates that the multiphoton catalysis operation is
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FIG. 4. Plot of the Mandel Q-parameter of the MC-TMSV state.
(a) For a given transmissivity η = 0.2, Mandel Q-parameter as a
function of the squeezed parameter λ for different values of m = 1, 2,
and 3. (b) Mandel-Q parameter as function of transmissivity η with
a fixed λ = 0.6 for different values of m = 1, 2, and 3. Solid lines
correspond to the TMSV state.

able to effectively prepare nonclassical quantum states. All
these results show that the negative value of the Mandel-Q
parameter can be obtained by changing the catalysis pho-
ton number m, the squeezed parameter λ, and the transmiss-
ivity η.

III. PHASE ESTIMATION WITH THE MC-TMSV STATE AS
INPUTS OF THE MZI VIA PARITY DETECTION

To approach the HL limit, using the twin Fock states as
the inputs of the MZI has been proposed by Holland and
Burnett [22], and the parity detection on one output mode
proposed by Gerry has been proven to be a viable scheme
[28]. In this section, we investigate the phase estimation with
the MC-TMSV state injected into a balanced MZI which is
composed of two 50:50 BSs and a phase shifter, as depicted
in Fig. 1. The behavior of a BS can be characterized as a
rotation by applying the renowned Schwinger representation
of SU(2) algebra [Ji, Jj] = iεi jkJk (i, j, k = 1, 2, 3), with Ji

(i = 1, 2, 3) being an angular momentum operator that can be
expressed by two sets of Bose operators [60],

J1 = 1
2 (a†b + ab†), J2 = 1

2i (a
†b − ab†),

J3 = 1
2 (a†a − b†b), J0 = 1

2 (a†a + b†b), (15)

where J0 represents the Casimir operator that satisfies the
commutative relation [J0, Ji] = 0, and both a(a†) and b(b†)
represent annihilation (creation) operators of two input modes
a and b, respectively. Based on the previous work [60], the
first BS, the second BS, and the phase shifter can be described

by B1(π/2) = ei π
2 J1 , B2(−π/2) = e−i π

2 J1 , and U (ϕ) = eiϕJ3 ,
respectively. Thus, the unitary transformation associated with
such a balanced MZI turns out to be

UMZ = e−i π
2 J1 eiϕJ3 ei π

2 J1 = e−iϕJ2 . (16)

In our scheme, according to Eq. (16), the output state of the
balanced MZI with the MC-TMSV state input state is given
by

|out〉 = exp(−iϕJ2)|in〉MZI

= D̂′e[2Wa†b† cos ϕ+W sin ϕ(b†2−a†2 )]/2|00〉, (17)

with the notation D̂′ defined as

D̂′ = W0√
Pm

∂m

∂τm

1

1 − τ
{•}|τ=0 . (18)

Now, let us consider the parity detection placed at one of
the output modes in the MZI, as shown in Fig. 1. Gener-
ally, the photon-number parity operator in mode b is given
by [15,61]

�b = (−1)b†b = eiπb†b, (19)

and its average value is expressed as

〈�b〉=Tr[ρout�b], (20)

where ρout = |out〉〈out| can be calculated by Eq. (17). Finally,
the average value of the photon-number parity operator can be
directly derived as

〈�b〉 = D̂
ε
√

W2√
W 2

3 − W4

, (21)

with

W2 = 1 − WW1 sin2 ϕ,

W3 = 1 + WW1 cos 2ϕ,

W4 = WW1[(WW1 − 1) sin ϕ]2, (22)

where ϕ = φ + π/2. In particular, when η = 1, Eq. (21)
reduces to

〈�0〉 = 1 − λ2√
1 − 2λ2 cos 2φ + λ4

, (23)

which is the TMSV case, as expected [40].
At a fixed squeezing parameter λ = 0.7, Fig. 5 shows the

expectation values of the parity operator 〈�b〉 as a function
of the phase shift φ with different values of η and m. For the
TMSV state (black solid line), Anisimov et al. [40] noticed
that the central peak becomes narrower with the increase of
λ, which is interpreted as a form of super-resolution [62].
Obviously, for the case with m > 0 and 0 < η < 1, when
given a low transmissivity η, the central peak of 〈�b〉 at
φ = 0 becomes narrower with the increase of m = 1, 2, and
3 [see Fig. 5(a)]. In addition, for fixed m, we see that the
width of the central peak at φ = 0 decreases significantly with
the increase of η ]see Fig. 5(b)]. Thus, these results indicate
that for the same squeezing parameters λ, the super-resolution
enhancement of the MC-TMSV state can be achieved by ad-
justing the transmissivity η of the BS and the catalysis photon
number m.
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FIG. 5. The expectation value 〈�b〉 of the parity operator versus
the phase shift φ for a given squeezing parameter λ = 0.7 input state
of the MZI. (a) η = 0.3 and m = 1, 2, and 3. (b) m = 3 and η = 0.1,
0.2, and 0.3. Solid lines correspond to the TMSV state.

IV. QFI AND PHASE UNCERTAINTY

The QFI associated with the well-known quantum Carmer-
Rao bound (QCRB) has been widely used to show the phase
sensitivity in quantum metrology [63,64]. In addition, accord-
ing to the QCRB, the lower bound of phase sensitivity is
expressed as �φmin = 1/

√
FQ with the QFI FQ, which implies

that, to achieve the highest sensitivity, the value of FQ should
be maximized. Generally, for an arbitrary pure state injected
into the MZI, the FQ can be calculated as

FQ = 4[〈ψ ′|ψ ′〉 − |〈ψ ′|ψ〉|2], (24)

where |ψ〉 = eiϕJ3 eiπJ1/2|in〉 is the state vector after passing
through the first BS and the phase shifter of the MZI, and
|ψ ′〉 = ∂|ψ〉/∂ϕ. Using |in〉, Eq. (24) becomes

FQ = 4[〈in|J2
2 |in〉 − |〈in|J2|in〉|2]

= −〈in|a†2b2|in〉 − 〈in|a2b†2|in〉
+2NaNb + Na + Nb, (25)

where Na is given in Eq. (6), and it should be noted that
Nb = Na in our scheme. Additionally, for our scheme shown
in Fig. 1, we can also calculate the expectation value of the
general product of operators albka†hb†g when the MC-TMSV
state is injected into the MZI, i.e.,

Cl,k,h,g = Tr[albka†hb†gρin]

= D̂′′ε
1 − WW1

e
W1tt1+W s1s+s1t1+st

1−WW1 , (26)

F
Q

F
Q

FIG. 6. The quantum Fisher information FQ as the function of
the squeezing parameter λ and the transmissivity η, respectively, for
some different catalytic photons m. (a) η = 0.2. (b) λ = 0.5. Solid
lines correspond to the TMSV state.

with

D̂′′ = ∂ l+k+h+g

∂sl∂sk
1∂t h∂t g

1

{•}|s=s1=t=t1=0. (27)

Thus, by combining Eq. (25) with Eq. (26), the explicit
form of FQ for our scheme can be theoretically obtained.
To clearly see the behavior of the QFI, in Fig. 6 we show
that FQ as the function of the initial squeezing parameter λ

and the transmissivity η. Clearly, we can see from Fig. 6(a)
that the QFI becomes larger with the increase of the catal-
ysis photon number (m = 1, 2, and 3) in a small range of
squeezing parameters when given a transmissivity of η = 0.2.
Dramatically, with the increase of m, the performance of the
QFI can be further improved below a certain threshold (e.g.,
m = 1 for 0 < λ < 0.60, m = 2 for 0 < λ < 0.74, and m = 3
for 0 < λ < 0.80). In addition, from Fig. 6(b), it is clear
that, for a given squeezing parameter λ = 0.5, the QFI of the
MC-TMSV state is larger than that of the TMSV when the
transmissivity is small, and the width of this region η becomes
wider as m increases (e.g., m = 1 for 0 < η < 0.47, m = 2
for 0 < η < 0.58, and m = 3 for 0 < η < 0.66). All these
results show that one can obtain a larger QFI by changing the
catalysis photon number m and the squeezing parameter λ as
well as the transmissivity η. According to the QCRB, these
results can be exploited to improve the sensitivity of phase
estimation, as expected.

In the above, we have discussed the nonclassicality of
MC-TMSV state and the QFI, respectively. Here we study the
relation between the nonclassicality of MC-TMSV states and
the QFI. In Figs. 7(a) and 7(b), we show the QFI as a function
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η

F
Q

FIG. 7. The QFI as the function of (a) the negative volume of the
WF and (b) the Mandel-Q parameter for a given η = 0.2 and m = 1
(green dot-dashed line), m = 2 (blue dotted line), and m = 3 (red
dashed line).

of the negative volume of the WF and the Mandel-Q parameter
for the input state of the MZI, respectively. Obviously, from
Fig. 7(a), we can see that the QFI increases with the increase
of the negative volume of the WF for a given η = 0.2 and
m ∈ {1, 2, 3}. Furthermore, for a fixed negative volume of the
WF, the increase of the catalysis photon number can also lead
to the increase of the QFI. From Fig. 7(b), it is seen that the
QFI increases when the Mandel-Q parameter becomes smaller
when m = 1. However, the QFI does not linearly increase
with the decrease of the Mandel-Q parameter when m = 2
and m = 3. This may be due to the fact that the negativity
of the Mandel-Q parameter only indicates the existence of
nonclassicality but not the magnitude of the nonclassicality.

On the other hand, the phase uncertainty �φ, as an another
key signature of optical interferometries, can be determined
from the error propagation formula as

�φ = ��b

|∂�b/∂φ| , (28)

where ��b =
√

1 − 〈�b〉2. From Eq. (5), in particu-
lar, when η = 1, Eq. (28) can be simplified to be
�φ0 = (1 − 2λ2 cos 2φ + λ4)/[2λ(1 − λ2) cos φ], which cor-
responds to the phase uncertainty �φ0 of the TMSV as
inputs [40]. Moreover, the QCRB �φmin = 1/

√
FQ can be

FIG. 8. The phase uncertainty �φ versus the phase shift φ for
a given squeezing parameter λ = 0.7. (a) η = 0.2 and m = 1 and 2.
(b) m = 3 and η = 0.2, 0.4, and 0.6. Solid lines correspond to the
TMSV state.

achieved when φ → 0, which means that the QCRB can be
achieved using the parity measurement. To further understand
the effects of input state parameters on the phase sensitiv-
ity, the phase uncertainty �φ versus the phase φ and the
initial squeezing parameter λ are shown in Figs. 8 and 9,
respectively.

In Fig. 8(a), we fix the parameters λ = 0.7 and η = 0.2
and then plot the �φ obtained from Eq. (28) as a function of
φ for m = 1, 2, and 3. In all cases, we find that �φ decreases
with the increase of m and even exceeds the TMSV case when
m � 2. This means that the multiphoton catalysis operations
are beneficial to improving the phase sensitivity. On the other
hand, to observe the effect of η on the phase sensitivity, in
Fig. 8(b), we illustrate the phase uncertainty as a function of
φ by setting λ = 0.7 and m = 3 for different transmissivity
values of η = 0.2, 0.4, and 0.6. We can clearly see that the
phase uncertainty is reduced with the decrease of the transmis-
sivity, and it can be smaller than that of the TMSV case when
η � 0.2. In addition, the squeezing parameter λ is another
factor that affects the phase sensitivity. Thus, in Fig. 9(a), we
plot �φ as a function of λ for m = 1, 2, and 3 for a given η =
0.2 and φ = 0.5. Obviously, in the range of lower squeezing
parameters, �φ decreases with the increase of m and is lower
than that of the TMSV, while for fixed m = 3 and φ = 0.5, in
Fig. 9(b), it is easy to find that, in the larger region of squeez-
ing parameters, with the increase of η (0.1, 0.2, and 0.3), �φ

decreases and is smaller than that of the TMSV case. In short,
we can find a reduction in noise as a result of photon catalytic
via adjusting the catalysis photon number m and the squeezing
parameter λ as well as the transmissivity η, as expected.
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FIG. 9. The phase uncertainty �φ as a function of the squeezing
parameter λ for a given φ = 0.5. (a) η = 0.2 and m = 1, 2, and 3.
(b) m = 3 and η = 0.1, 0.2, and 0.3. Solid lines correspond to the
TMSV state.

V. EFFECTS OF PHOTON LOSSES ON
PHASE SENSITIVITY

In realistic systems, the quantum states are susceptible to
the environment, which inevitably affects the phase sensitivity
of the MZI. From this point, in this section, we consider
the performance of phase sensitivity for our scheme in the
presence of photon losses. For the sake of discussion, we
assume that the dissipation occurs either in front of the parity
detection or between the phase shifter and the second BS,
which are shown in Fig. 9.

A. Effects of photon losses in front of parity detection

In this subsection, we first investigate the effects of photon
losses in front of the parity detection on the phase sensitivity.
As illustrated in Fig. 10(a), the photon-losses process can be
simulated by the BS (denoted as Bκ1 ) with a dissipation factor,

50:50

b
Parity Detection

50:50

b

Parity Detection

(a) (b)

FIG. 10. Schematic diagram of the photon losses is introduced
(a) in front of the parity detection and (b) between the phase shifter
and the second BS.

κ1, whose transform relation is

B†
κ1

(
b
b f

)
Bκ1 =

( √
κ1

√
1 − κ1

−√
1 − κ1

√
κ1

)(
b
b f

)
, (29)

where b f 1(b†
f 1) are the photon-subtracted (-added) operators

of the auxiliary mode f . It should be noted that the smaller
the values of κ1 are, the more serious the photon losses are.
In particular, the condition of κ1 = 1 corresponds to the ideal
case. Since the parity operator �b shown in Eq. (19) is inap-
plicable in the presence of photon losses, we have to derive
the parity operator for the photon-losses process (denoted as
�loss

b ). To this end, we rewrite the parity operator in the Weyl
ordering representation as [65]

�b = π

2
:
:δ(b)δ(b†)

:
:, (30)

where
:
: • :

: is the symbol of the Weyl ordering and δ(•) is

the delta function [66,67]. By using Eq. (29) and the Weyl
ordering invariance under similarity transformations [68,69],
the parity operator with the photon-losses process can be
expressed as

�loss
b = π

2
Tr[|0〉 f 〈0|:

:δ(
√

κ1b +
√

1 − κ1b f )

×δ(
√

κ1b† +
√

1 − κ1b†
f )

:
:], (31)

where |0〉 f denotes the vacuum noise input on the auxil-
iary mode f . To obtain �loss

b , we need to derive the normal
ordering form of Eq. (31). While the classical correspon-
dence of any two-mode operator under the Weyl-ordered

form
:
:F (b, b†, b f , b†

f )
:
: can be obtained by b(b†) being re-

placed with β(β∗) and b f (b†
f ) being replaced with γ (γ ∗), i.e.,

F (b, b†, b f , b†
f ) becomes F (β, β∗, γ , γ ∗). Thus, according to

the classical correspondence relation of the operator [69]

:
:F (b, b†, b f , b†

f )
:
:

= 4
∫

d2βd2γ F (β, β∗, γ , γ ∗)�(β, β∗)�(γ , γ ∗), (32)

where �(β, β∗) =: exp [−2(b† − β∗)(b − β )]: and
�(γ , γ ∗) =: exp[−2(b†

f − γ ∗)(b f − γ )]: are Wigner
operators [70,71] and : • : is the symbol of the normal
ordering. By substituting Eq. (32) into Eq. (31), for the
photon-losses process, the parity operator �loss

b can be
calculated as

�loss
b = 2π

∫
d2αd2β

π2
δ(

√
κ1β +

√
1 − κ1γ )δ(

√
κ1β

∗

+
√

1 − κ1γ
∗)Tr[|0〉 f 〈0|�(β, β∗)�(γ , γ ∗)]

= : exp{−2κ1b†b} := (1 − 2κ1)b†b. (33)

Finally, based on Eq. (17), the average value of �loss
b for the

output state can be calculated as〈
�loss

b

〉 = Tr[ρout�
loss
b ]=D̂

ε
√

v1√
v2

2 − v3

, (34)
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L

L

FIG. 11. In the presence of photon losses, the phase uncertainty
as a function of the initial squeezed parameters λ at φ = 0.05.
(a) Comparison of the ideal case and the loss case for the TMSV and
the single-photon catalysis operation. (b) Comparison of the phase
uncertainty of the MC-TMSV state with m = 1, 2, and 3, and the
normal TMSV (black solid line) for 10% photon loss (κ2 = 0.9) and
η = 0.2.

with

v1 = 1 − WW1 sin2 ϕ,

v2 = W1W
(
1 − 2κ1 cos2 ϕ

) − 1,

v3 = (1 − 2κ1)2W1W (1 − WW1)2 sin2 ϕ. (35)

Similar to deriving Eq. (28), the phase uncertainty in the
presence of photon losses (denoted as �φL) is given by

�φL = ��loss
b∣∣∂�loss

b /∂φ
∣∣ . (36)

To clearly see the effects of the different parameters η,
m, and λ on the phase uncertainty in the presence of photon
losses, we illustrate the phase uncertainty �φL as a function
of λ at some fixed parameters, κ1 = 0.9 and φ = 0.05, as
shown in Fig. 11, from which the photon-losses process has
a significant impact on the performance of phase sensitiv-
ity. Fortunately, for some given parameters (η = 0.2, m = 1)
shown in Fig. 11(a), the phase uncertainty with quantum
catalysis, even in the presence of photon losses, still has a
better performance in contrast to the TMSV case, particularly

L
L

FIG. 12. In the presence of photon losses, the phase uncertainty
as a function of the transmissivity of the fictitious beam splitter κ1 at
φ = 0.05 (a) for η = 0.2, λ = 0.7, and m = 1, 2, and 3 and (b) for
m = 1, λ = 0.7, and η = 0.1, 0.2, and 0.3. Solid lines correspond to
the TMSV state.

in the small-squeezing regime (about λ < 0.6). Noticeably,
compared to the TMSV, the phase uncertainty with multipho-
ton catalysis under the same dissipation value (κ1 = 0.9) can
be further improved, but the latter would be worse than the
former when λ is greater than a certain threshold value that
increases with the increase of m.

On the other hand, to further understand the effects of pho-
ton losses on the sensitivity of phase estimation, we also show
the phase uncertainty �φL changing with κ1 at some fixed
parameters, λ = 0.7 and φ = 0.05, as presented in Fig. 12,
from which we can find that the phase uncertainty decreases
with the decrease of κ1. For a fixed m = 1, it is evident
that, in contrast to the TMSV, the phase uncertainty with
quantum catalysis can be enhanced in the regime of small
κ1 and low η, which can be seen in Fig. 12(a) (blue dotted
and green dot-dashed lines). Based on this point, when given
a low transmissivity of η = 0.2, we can easily find that the
phase uncertainty with multiphoton catalysis is superior to
that with the TMSV, especially in the small-κ1 regime. This
implies that multiphoton catalysis operations help to resist the
photon-losses process in front of parity detection.

B. Effects of photon losses between the phase
shifter and the second BS

Next, let us begin with investigating alternative effects of
photon losses between the phase shifter and the second BS on
the sensitivity of phase estimations, as shown in Fig. 10(b).
Likewise, we adopt the BS (denoted as Bκ2 ) with a dissipation
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factor κ2 to stimulate the photon-losses process. Using the
same way described above and after a series of long but direct
calculations, the equivalent operator (denoted as �̃loss

b ) of the
MZI with photon losses when taking parity detection into
account can be given by

�̃loss
b = f 〈0|B†

1U †(ϕ)B†
f B†

2eiπb†bB2B f U (ϕ)B1|0〉 f

= : eX1a†a−X2b†a−X ∗
2 a†b+X3b†b :, (37)

where

X1 = 2
√

κ2 cos ϕ − 1 − κ2

2
,

X2 = (κ2 + 1)2 − 4κ2 cos2 ϕ

4(iκ2 − i + 2
√

κ2 sin ϕ)
,

X3 = −κ2 + 1 + 2
√

κ2 cos ϕ

2
, (38)

and we haved used the following transformation relation-
ships [60]:

B†
1

(
a
b

)
B1 =

√
2

2

(
1 i
i 1

)(
a
b

)
,

B†
2

(
a
b

)
B2 =

√
2

2

(
1 −i
−i 1

)(
a
b

)
. (39)

Therefore, based on Eq. (37), for a given arbitrary input
state ρin, one can easily derive the expectation value of
the photon-number parity operator in the presence of pho-
ton losses between the phase shifter and the second BS as
〈�̃loss

b 〉 = Tr[ρin�̃
loss
b ]. Thus, for our scheme, when inputting

the MC-TMSV state shown in Eq. (3), it is straightforward to
obtain 〈

�̃loss
b

〉 = Re[(1 − A1)2 − A2]−
1
2 , (40)

with

A1 = W1W (X1X3 − κ2 + |X2|2),

A2 = 4|X2|2W 2
1 W 2(X1X3 − κ2). (41)

Combining with Eqs. (37) and (40), the phase uncertainty
�φL with photon losses in the interior of the MZI can easily
be obtained in principle. Similarly, in Fig. 13, we also present
the phase uncertainty �φL changing with λ at fixed κ2 = 0.9
and φ = 0.05. It is found that the behaviors of these curves are
almost consistent with the previous results shown in Fig. 11,
which means that, under the same parameters κ2 = 0.9 and
φ = 0.05, the effects of the above two dissipation models
on the accuracy of quantum metrology are almost the same.
Further, to show the effects of photon losses inside the MZI on
the sensitivity of phase estimation, Fig. 14 illustrates the phase
uncertainty �φL as a function of κ2 at some fixed parameters,
λ = 0.7 and φ = 0.05, from which we can find that, for a
given small κ2, the values of �φL decrease rapidly with the
decrease of η and become small with the increase of m. These
phenomena are analogous to the case of photon losses in front
of parity detection (see Fig. 12).

In order to compare the influence of two kinds of dissi-
pation models on the phase sensitivity, in Fig. 15, at fixed

L
L

FIG. 13. For photon losses in the interior of the MZI, the phase
uncertainty as a function of the initial squeezing parameters λ at φ =
0.05. (a) Comparison of the ideal case and the loss case for the TMSV
and the single-photon catalysis operation. (b) Comparison of the
phase uncertainty of the MC-TMSV state with m = 1, 2, and 3 and
the normal TMSV (black solid line) for 10% photon loss (κ2 = 0.9)
and η = 0.2.

η = 0.2, λ = 0.7, and φ = 0.05, we give the phase uncer-
tainty �φL as a function of κ1(κ2) for several different values
of m = 1, 2, and 3. It is obvious that the effects of the photon
losses in front of parity detection (denoted as external losses)
on phase uncertainty are more serious than the case of photon
losses in the interior of the MZI (denoted as internal losses)
particularly in the small-κ1(κ2) regime. To have a better phase
sensitivity in practice, the external photon losses should be
suppressed.

VI. CONCLUSION

In summary, we have studied the phase estimation of the
MZI with the MC-TMSV state as an input state. In terms of
the WF function and the Mandel-Q parameter, the nonclas-
sicality of the MC-TMSV state is presented and it becomes
stronger with the decrease of η or the increase of m. The en-
hancement of the nonclassicality for our state can be exploited
to improve the phase sensitivity of the MZI.

To further understand the aforementioned point, by using
the parity measurement, we consider the sensitivity of phase
estimation when the MC-TMSV state is injected as an input
state of the MZI. Our analysis shows that, at a fixed parameter
λ, the central peak in the expectation value of the parity
operator becomes narrower with the increase of the catalysis
photon number m and the decrease of the transmissivity η.
Attractively, when the squeezing parameter λ is small, the
multiphoton catalysis at low transmissivity can have higher
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L
L

FIG. 14. For photon losses in the interior of the MZI, the phase
uncertainty as a function of transmissivity of fictitious beam splitter
κ2 at φ = 0.05 (a) for η = 0.2, λ = 0.7 and m = 1, 2, and 3, (b) for
m = 1, λ = 0.7 and η = 0.1, 0.2, and 0.3. The black solid lines
correspond to the TMSV state.

QFI than that of the TMSV and therefore it can give a more ac-
curate phase sensitivity. Moreover, the QCRB can be reached
via the parity measurement with the MC-TMSV state as in-
puts.

For practical applications, we also study the sensitivity of
phase estimation with parity detection in the presence of pho-

Δφ

η λ

κ κ2

FIG. 15. Comparing the influence of two dissipation ways on the
phase sensitivity for m = 1 (green), m = 2 (blue), m = 3 (red) and
photon losses in front of the parity detection (solid), in the interior of
the MZI (dot-dash).

ton losses. Our results show that, under the same parameters,
the sensitivity with the MC-TMSV state in the presence of
serious photon losses can be better than that with the normal
TMSV, especially in the regimes of the small initial squeezing
and low transmissivity. We also find that the external ones
have a greater impact on phase sensitivity compared with
the internal photon losses, which indicates that multipho-
ton catalytic states are more robust against the photon loss.
Our results here can find important applications in quantum
metrology and quantum information.
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