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We revisit the interaction of a first-quantized atomic system (consisting of two charged quantum particles) with
the quantum electromagnetic field, pointing out the subtleties related to the gauge nature of electromagnetism and
the effect of multipole approximations. We connect the full minimal-coupling model with the typical effective
models used in quantum optics and relativistic quantum information such as the Unruh-DeWitt (UDW) model
and the dipole coupling approximation. We point out in what regimes different degrees of approximation are
reasonable and in what cases effective models need to be refined to capture the features of the light-matter
interaction. This is particularly important when considering the center of mass (COM) of the atom as a quantum
system that can be delocalized over multiple trajectories. For example, we show that the simplest UDW
approximation with a quantum COM fails to capture crucial Röntgen terms coupling COM and internal atomic
degrees of freedom with each other and the field. Finally we show how effective dipole interaction models can
be covariantly prescribed for relativistically moving atoms.
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I. INTRODUCTION

The interaction of matter with light presents two important
challenges when trying to find simple models to describe
it: the relativistic, covariant, vector nature of light, and the
fact that electromagnetism is a gauge theory. Regarding the
relativistic nature of the theory, in atomic physics and quan-
tum optics, matter is usually treated nonrelativistically (atoms
are, to a good approximation, systems of bound nuclei and
low-energy electrons), and thus for simplicity one combines
in the same model a relativistic field interacting with a nonrel-
ativistic atom.

The gauge dependence of the theory is trickier. It has been
a source of issues in simple models of light-matter interaction.
Directly using minimal coupling p̂ · Â between charged parti-
cles and the EM field together with gauge-independent atomic
wave functions leads to nonphysical, gauge-dependent atomic
transition probabilities [1–3]. These issues have been the sub-
ject of a great many studies and can be partially overcome by
recasting the interaction in terms of a multipolar Hamiltonian.
This is achieved through combinations of canonical and gauge
transformations in order to express the interaction in terms
of well-known textbook charge-in-a-Coulomb-potential terms
and the observable fields Ê and B̂ rather than Â. This can
be done for external classical fields with the Goeppert-Mayer
transformation [4], as well as for quantized electromagnetic
(radiation) fields [5–8]. In the quantum electromagnetic case,
the class of transformations employed to arrive at a multipo-
lar Hamiltonian is known as Power-Zienau-Woolley (PZW)
transformations. This is the origin of the ubiquitously used
“dipole approximation” d̂ · Ê. However, there are a number
of subtleties to deal with before arriving at this simple dipole

coupling Hamiltonian. These subtleties can be relevant in
quantum optics, and particularly so in the context of relativis-
tic quantum information (RQI) when we model the interaction
of a microscopic, moving atomic probe with the electromag-
netic field. In those cases, the multipolar Hamiltonian with
quantized fields, even in the dipole approximation, contains
the so-called Röntgen term,1 which couples the center-of-
mass (COM) degrees of freedom of the atom with its internal
degrees of freedom and the electromagnetic field, and which
is not commonly considered in RQI studies. However, if one
wants to model atomic physics, this kind of term can only be
neglected in a few select scenarios.

Indeed, in [7] it was argued that the Röntgen term is
required for energy-momentum conservation and gauge in-
variance of radiation-induced mechanical forces. This is a
consequence of the mechanical momentum not coinciding
with the canonical momentum of the COM position for ions.
It has been shown, further, that for classical [10] and quantum
[11] COM degrees of freedom, the Röntgen term is already
necessary to leading order in the velocity, v/c, so as to avoid
nonphysical atomic-velocity dependence in the angular dis-
tribution of spontaneously emitted photons. In [12] and [13]
it was then shown that the total spontaneous emission rate
(as given by Fermi’s golden rule) for a classical COM under
uniform motion requires the inclusion of the Röntgen term.
Features of this Röntgen term have also been explored in [14]

1The term is named after Wilhelm Conrad Röntgen who ex-
perimentally verified that an electrically neutral, moving dielectric
generates an electromagnetic force [9].
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for classical fields and classical COM degrees of freedom. The
contribution is usually smaller than radiation-pressure forces,
but is nonetheless required for correct physical results. In [15]
it was shown that for a quantum COM the time derivative of
the expectation value of the canonical momentum of the COM
is observer-dependent, at odds with the necessary covariance
of predictions. The resolution was found in the inclusion of
the atomic binding energy terms in the Hamiltonian. As [15]
noted, the coupling of COM degrees of freedom and a dynam-
ical mass-energy term is a feature missing from the multipolar
Hamiltonian. Sonnleitner and Barnett go on in [16] to include
a low-order relativistic correction for the multipolar Hamil-
tonian which remedies the absence of the missing dynamical
mass-energy.

In the regimes commonly analyzed in relativistic quantum
information finite-time couplings can excite the atom out of
its interaction with the vacuum (see, among many others,
[17–19]). This is important, because even though the dipole
approximation is a rather common one, it is usually obtained
claiming the existence of some characteristic wavelength that
dominates the process. The reasoning is then that if the atom
is small enough as compared to the dominant wavelength,
we can approximate it by a pointlike object and take only
the first term on a multipole expansion, something that is
not possible to justify when studying vacuum fluctuations. In
those contexts, it was argued in [3] that a multipole (and in
particular a dipole) approximation can indeed be justified if
the duration of the interaction is much larger than the light-
crossing time of the atom. In a few words, the frequencies that
take part in a vacuum excitation process are suppressed with
the tails of the Fourier transforms of the functions encoding
the time-dependence of the coupling, as well as the spatial
smearing of the atom. It was then shown in [3] that if the in-
teraction times are much longer than the characteristic length
of the atom’s wave function, the suppression of the shorter
frequencies is strong enough for a dipole expansion to be a
good approximation.

A number of subtleties in the multipole (including dipole)
approximation appear when carefully considering the role of
gauge transformations in the light-matter interaction, and the
fact that atoms can actually have a spatial extension since
they are not pointlike objects (even in the dipole approxima-
tion). Although there has been a plethora of previous work on
multipole approximations (above all considering classical EM
fields, e.g., [14], and/or semiclassical atoms, e.g., [10,12,13],
with only a few fully quantum setups, e.g., [15]), the consider-
ations of gauge issues, finite size of the atomic wave function
(even for dipoles), and possible quantum delocalization of the
center of mass are not commonly combined in any previous
work known to the authors.

The few works that consider a more complete approach
regarding gauge and the quantum nature of the interaction
(e.g., [15]) do particularize to eigenstates of the COM and also
consider the rotating-wave approximation, which is incompat-
ible with most RQI setups [20,21]. Furthermore, within the
context of RQI, gauge and COM dynamics considerations are
not usually present in most of the traditional light-matter in-
teraction models, making it useful to contextualize the particle
detector models used in RQI with a complete description of
the light-matter interaction.

In this work, we wish to analyze effective models that can
capture realistic dynamics of a first-quantized atom interact-
ing with the quantum EM field. This includes a quantized
COM, the quantum nature of the atomic multipole operator,
and not assuming either the single-mode or rotating-wave ap-
proximation, nor taking a discrete field-momentum spectrum
in free space. We will take into account recent results by
Stritzelberger and Kempf [22] (followed up on in [23]) where
they studied precisely the influence on the atomic dynamics
of the initial delocalization of the COM. We will extend those
studies to show the extra considerations that one needs in
order for the predictions of the model to be gauge-independent
and to include the effect of Röntgen terms. As a particular
example, we will illustrate the effect of the Röntgen term
in atomic transition rates in the presence of initial COM
delocalization. This is particularly relevant because, with the
exception of [24], the effects of Röntgen-like terms have not
been considered in the light-matter interaction in any previous
RQI studies known to the authors. However, even in [24] the
interaction Hamiltonian is prescribed from the single-particle
scenario in [25], which ignores the subtleties that appear in
the case in which atoms are modeled as multicharged objects
[16]. While this could in principle be a functional effective
model, it is potentially subject to the subtleties related to
the gauge nature of electromagnetism that we analyze in this
paper, above all when computing leading order relativistic
corrections.

In particular, we will show that there is only one scenario
where one can neglect the Röntgen term: when one considers
the atomic COM degrees of freedom to be classical, the atoms
are tightly localized, and there exists a common rest frame
for all the moving atoms in which the Röntgen term vanishes.
This is for example the case of entanglement harvesting for
comoving inertial atoms (see, e.g., [26]), or a single atom
when we work in the detector’s COM frame for not very rela-
tivistic trajectories. If the atomic COM is treated as quantum,
or when there is no common rest frame, this additional term
cannot be neglected. We will also discuss the higher order
terms that appear in the case of more relativistic trajectories
of the COM.

As we will see, the inclusion of the Röntgen term entan-
gles, generally, internal and external atomic (as well as field)
degrees of freedom. There has been a volume of literature that
studies the use of entanglement between internal and external
degrees of freedom for quantum information tasks; see for
instance [27–33]. In this light, studying the impact of the
Röntgen dynamics with respect to entanglement generation
could yield insights and protocols in RQI.

We compare these considerations to the usually employed
effective light-matter interaction models. Thus, we discuss
the limitations of the effective dipolar coupling er̂ · Ê(r̂) and
scalar-analog models such as the Unruh-DeWitt model. In the
case of scalar-analog models, we argue here that a coupling of
COM and radiation degrees of freedom has to be included in
most scenarios if one wants to capture the atomic dynamics.

Finally, we will show that considering only the effective
dipole term for a classical COM still yields relativistically
covariant predictions. We will provide arguments that, even
if we are failing to describe precise atomic physics with this
simplification, there is utility in using this interaction as a
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test bed to implement measurements on the electromagnetic
field whose qualitative behavior captures the features of the
light-matter interaction under some assumptions.

The paper is organized as follows: In Sec. II we present
two of the common effective light-matter models, namely the
Unruh-DeWitt and the effective dipolar coupling models. We
discuss the assumptions of these models and their consequent
limitations. In Sec. III we will rederive the multipolar Hamil-
tonian at the level of the Schrödinger equation. In this section
we will always work with the quantum electromagnetic field,
giving a position representation of the multipolar Hamiltonian
in its dipole approximation in terms of the internal hydrogenic
wave functions and external COM eigenstates. Further, we are
going to show the impact of COM dynamics and Röntgen
term at the example of transition rates. We will then discuss
in Sec. IV the impact of leading order relativistic corrections.
In Sec. V, we revisit the effective dipole model to show its
qualitative merits in relativistic scenarios and its covariance
under Lorentz transformations. In Sec. VI we are propos-
ing modifications for the Unruh-DeWitt model under the
considerations of the previous sections to account for COM
dynamics.

II. EFFECTIVE LIGHT-MATTER MODELS

A. The Unruh-DeWitt model

In the context of RQI, or generally if the objective is to
obtain information in a QFT setting, the notion of a particle
detector that can extract these information locally from a
quantum field is crucial. A particle detector is an internally
non-relativistic quantum system that couples in a covariant
way to a second-quantized field. It circumvents the problems
of projective measurements in quantum field theory (QFT)
[34,35], and may give rise to a phenomenological interpre-
tation for the elusive notion of particles in QFT [36]. Particle
detectors have been crucially used in a plethora of scenarios in
QFT in flat and curved spacetimes (e.g., the Unruh and Hawk-
ing effects [37,38], cosmological particle creation [39], and
entanglement harvesting [26,40]). The most common model
of a particle detector is the Unruh-DeWitt (UDW) model, e.g.,
[37,41]. This model typically considers a two-level nonrela-
tivistic quantum system rigidly localized in space and time
that covariantly couples to a quantum scalar field amplitude
φ̂(t, x) along its (possibly relativistic) trajectory. The UDW
interaction-picture interaction Hamiltonian in the most gen-
eral case is given by [42]

ĤUDW = λχ (τ )μ̂(τ ) ⊗
∫

�τ

d3ξ
√−gF (ξ)φ̂(t (τ, ξ), x(τ, ξ)),

(1)

where [t, x] is the field quantization frame, [τ, ξ] is the
Fermi-Walker frame comoving with the center of mass of
the detector, �τ are the spatial sections associated with the
coordinates [τ, ξ], g is the determinant of the metric, μ̂(τ )
is the monopole moment representing the internal degree of
freedom of the detector, χ (τ ) encodes the time dependence of
the coupling in the detector’s COM frame, F (ξ) is the spatial
profile of the detector, and, finally, λ is the coupling strength.

In flat spacetime, and for a detector comoving with the
field quantization frame, this Hamiltonian simply becomes,
by identifying τ = t and ξ = x,

ĤUDW = λ χ (t )μ̂(t ) ⊗
∫
R3

d3x F (x) φ̂(t, x). (2)

Although simple, this Hamiltonian already captures a large
amount of the phenomenology of the light-matter interaction.
Indeed, the popular Dicke [43] and Jaynes-Cummings model
[2] are but further simplifications of the Unruh-DeWitt model
(typically assuming pointlike detectors, single-mode approxi-
mation, and some form of rotating-wave approximation).

The power of the Unruh-DeWitt model lies in its com-
putational applicability: while it certainly gives a reasonable
effective model to carry out measurements on quantum fields,
computable results can be obtained even in complicated
curved spacetime scenarios or involved relativistic detector
trajectories.

There are, however, shortcomings of the model when it
comes to describing the light-matter interaction. First, the
scalar nature of the coupling makes it impossible for the
model to capture phenomenology associated with the ex-
change of angular momentum between the detector and the
field. Also, the spatial smearing has to be prescribed “by
hand” since we do not have a first-principle-inspired reason to
choose the exact shape of the detector’s localization. Finally,
this model considers that the center of mass of the detector is
a classical degree of freedom whose dynamics is decoupled
from the detector’s internal levels. This does not mean that
the model is not useful, but rather that refinements are needed
if we want to go beyond rough order-of-magnitude estimates
in realistic atomic systems, or in regimes where the neglected
aspects of the interaction play a key role.

B. The dipole coupling

One step forward in adding complications to the effective
light-matter interaction models is obtained by assuming that
the atom is modeled by a classical infinite mass proton (as
compared to the electron) that generates a classical Coulomb
potential in the atomic COM frame (which generates the in-
ternal energy levels for the atomic system). Then, the atom
couples dipolarly to a time-dependent second-quantized elec-
tric field as seen from the COM frame of the detector:

Ĥeff = Ĥ0 + ĤI , (3)

Ĥ0 = p̂2
e

2me
− 1

4πε0

e2

|r̂e| , (4)

ĤI = er̂e · Ê(t, r̂e), (5)

where, for simplicity, we assumed that the atom is comoving
with the field quantization frame (something that we will relax
in Sec. V). To effectively compare this model with the Unruh-
DeWitt model, let us introduce a position representation in
terms of the hydrogenic wave functions that are solutions
of the Schrödinger equation for Ĥ0. That is, 	a(re) = 〈re|a〉,

013703-3



LOPP AND MARTÍN-MARTÍNEZ PHYSICAL REVIEW A 103, 013703 (2021)

where {|a〉 = |(n, l, m)〉} such that [44,45]

ĤI = e
∑
a,b

∫
R3

d3re〈a|re〉〈re|b〉re · Ê (t, re)|a〉〈b|

= e
∑
a,b

∫
R3

d3re 	a(re)∗	b(re)re · Ê (t, re)|a〉〈b|

=:
∑
a>b

∫
R3

d3re d̂ab(re) · Ê (t, re), (6)

where in the last step we defined the dipole operator d̂ab(re),
and the ordering a > b is first with respect to n, then l , and
lastly m—so as to follow the energy hierarchy approximately
(although in this approximate model only the quantum num-
ber n gives the internal energy of the atom). Notice that the
diagonal terms of the dipole operator can be directly removed
since there is a change of parity selection rule for electric
dipole transitions [46].

If we express the internal atomic degrees of freedom in the
interaction picture with respect to time t as well, the dipole
operator between two levels |a〉 and |b〉 is of the form

d̂ab(t, re) = eFab(re)ei
abt |a〉〈b| + H.c. (7)

The spatial smearing vector is given by the hydrogen wave
functions of the two levels connected by each matrix element:
Fab(re) = re	

∗
a (re)	b(re), and h̄
ab is the energy difference

between the states |a〉 and |b〉.
In contrast to the UDW model where the spatial localiza-

tion of the coupling was introduced by hand, from (7) we see
that the localization of the dipolar interaction is governed by
the electronic wave functions. In this light, when we add a
switching function modeling the beginning and the end of a
finite-time process, a comparison of Eqs. (6) and (2) shows
in what sense this model is a refinement of the UDW model
for the light-matter interaction: we could think of the Unruh-
DeWitt coupling as the scalar version of this effective dipole
coupling, and we have a way to prescribe the localization of
the coupling out of the physical assumptions of the dipolar
model without having to introduce it ad hoc.

The advantage of the effective dipole coupling is that it is
still a simple model, as the only quantum degree of freedom of
the atom is the position of the electron. Furthermore, it still al-
lows for arbitrary relativistic trajectories for the COM frame,
whose position is treated classically (as we will see in Sec. V).
Additionally it does allow for the exchange of orbital angular
momentum between the detector internal degrees of freedom
and the electromagnetic field. Also, the dipole coupling is (a)
gauge-unambiguous, and (b) it is inspired by typical light-
matter interaction assumptions where higher multipoles are
neglected.

However, this is still an effective model. We emphasize
again that the assumptions that went into the derivation of
(5) neglect the dynamics of any atomic degrees of freedom
other than the ones associated with the electron. In that sense,
the dipole term is introduced somewhat ad hoc, instead of
rigorously obtained from the two-particle minimal-coupling
light-matter interaction after careful gauge and multipole con-
siderations are taken into account. As with the UDW model,
this does not mean that the model is not useful. In fact, as

we will discuss in Sec. V this model can also be made fully
covariant the same as was shown for the Unruh-Dewitt model
in [42,47]. Rather, we argue that one has to refine this model
if one wants to go beyond qualitative results and rough order
of magnitude estimations, and instead one wants to predict
outcomes of experiments in more involved regimes where the
assumptions of the model are not fulfilled.

III. THE MULTIPOLAR COUPLING HAMILTONIAN

Our objective in this section is to explicitly derive the mul-
tipolar coupling Hamiltonian from the two-particle minimal
coupling. We will do so for a fully quantized model—
including the quantization of both the field and center of mass
of the atom. More concretely, we combine the quantization
of the field, the COM of the atom, and the relative motion
(internal) degree of freedom to derive the dipole coupling
Hamiltonian in the (approximated) gauge in which the rel-
ative degree of freedom wave functions correspond exactly
to the textbook problem of a charge trapped in a Coulomb
potential (hydrogenoid atom). It is important to recall that that
the atomic wave functions are not gauge-invariant [2,3], and
only under very strict considerations the internal atomic wave
functions are the textbook hydrogen-like ones.

Although we are (to a large extent) revisiting old known
problems, the particular approach to deriving these results
from the Hamiltonian formalism with a fully quantum frame-
work that we take is (to the authors’ knowledge) not available
in previous literature. Operating directly from the Hamil-
tonian formalism we avoid introducing an ad hoc change
of the canonical commutation relations of the field opera-
tors, something common in past derivations of the multipolar
Hamiltonian (e.g., [5–7]), which allows for a pedagogically
easier treatment. We will also analyze all the terms that
are typically neglected in simplified particle detector models
employed in RQI, such as the orbital magnetic dipole and
Röntgen terms [6,7,10], paying special attention to the dis-
cussion about gauge and localization.

We consider a hydrogen atom interacting with the elec-
tromagnetic field. We will treat the electromagnetic field as
a second-quantized system and the internal structure of the
atom as a first-quantized system. The electromagnetic field is
described by the gauge-dependent potential operators (Û , Â).
The atom consists of a proton with mass mp and associated
position operator r̂p and similarly an electron with mass me

and position operator r̂e. Both constituents will be treated as
spinless.

A relativistic-friendly approach would start from the
general classical Lagrangian with the minimal coupling pre-
scription

L = −
∑
i=e,p

mic
2
√

1 − ṙ2
i /c2

+ ε0

2

∫
R3

d3x[(∂t Atot + ∇U )2 − c2(∇ × Atot )
2]

+
∫
R3

d3x( j · Atot − ρU ), (8)

where Atot includes the vector potential generated by the
charges, and ρ, j are the charge and current densities,
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respectively. Solving the dynamics for this Lagrangian is in-
volved so that generally one is reduced to an expansion about
the particle velocities ṙi in some inertial frame. Changing
to the Hamiltonian picture and after quantization we get the
minimal coupling Hamiltonian at leading order in velocities.
Besides the standard free-field Hamiltonian, this reads [48]

Ĥ =
∑
i=e,p

[
[ p̂i + eiÂ(t, r̂i )]2

2mi
− eiÛ (t, r̂i )

]
− e2

4πε0|r̂| , (9)

where the last term corresponds to the electrostatic Coulomb
energy with r̂ = r̂e − r̂p, and we are considering the field in
the interaction picture with explicit time dependence. The sub-
leading relativistic correction, called the Darwin Hamiltonian
[16], is of the form

ĤD = π̂4
e

8m3
ec2

+ π̂4
p

8m3
pc2

+ e2

16πε0c2memp

×
[
π̂e · 1

|r̂| π̂p + (π̂e · r̂)
1

|r̂|3 (r̂ · π̂p) + (e ↔ p)

]
,

(10)

where π̂i := p̂i + eiÂ(r̂i ). In Sec. VI, once we have derived
the dipolar Hamiltonian, we will come back and discuss the
phenomenological implications of ĤDarwin.

For simplicity, in this section we shall be concerned with
general scenarios where the atomic COM describes nonrel-
ativistic motion. This means that here we will neglect the
Darwin term and any other higher order corrections associ-
ated with the relativistic motion of the charges. While this
is not covering all interesting regimes in RQI, it does cover
several relevant regimes directly, such as most entanglement
harvesting scenarios [26,40,49]. We will leave the discussion
of regimes with relativistic atomic motion for Sec. IV.

We can therefore start from the standard leading order min-
imal coupling Hamiltonian in Eq. (9). For convenience, we
choose the Coulomb gauge where there is no scalar potential
and [ p̂i, Â(t, r̂i )] = 0 [2,50].

When working with the minimal coupling Hamiltonian we
have to be careful with the gauge freedom of the field. In
particular, we need to make a consistent choice of atomic
wave functions when we choose a particular gauge in order
to have gauge-independent predictions. For example, in the
Coulomb gauge, the atomic wave functions of a hydrogen
atom are very different from the textbook hydrogen orbitals
(see, e.g., [1–3]).

Additional complications appear as we are working with
a two-particle system. We cannot simply assume that there
is a gauge where the internal atomic wave functions are the
textbook atomic orbitals and then transform them to whatever
gauge we are considering. As we will see, there is no such
gauge. Moreover, in general one cannot directly neglect the
Â

2
terms. This is only possible in a few certain regimes, most

of them outside the scope of RQI setups (see, e.g., [51]).
It would be convenient to express the Hamiltonian solely

in terms of gauge-invariant field observables, and also
choose canonical coordinates so that we have the hydro-
genic orbitals when we take the position representation for
the relative motion degree of freedom for the atom. The
canonical transformation that achieves these two goals is a

Power-Woolley-Zienau (PZW) transformation [7]. This trans-
formation applied to the Coulomb-gauge Hamiltonian yields
the so-called multipolar coupling Hamiltonian.

Concretely, let us define the atomic center-of-mass and
relative motion position operators:

R̂ = mer̂e + mpr̂p

M
, r̂ = r̂e − r̂p, (11)

where M = me + mp. Similarly, the total momentum of the
center of mass and the momentum of the relative motion asso-
ciated with the reduced mass μ = memp/M read, respectively,

P̂ = p̂e + p̂p, p̂ = mp

M
p̂e − me

M
p̂p. (12)

These two new sets of operators satisfy the canonical
commutation relations: [R̂, P̂] = ih̄1 = [r̂, p̂]. The Hamilto-
nian (9) reexpressed in terms of center-of-mass and relative
coordinates yields

Ĥ = P̂
2

2M
+ p̂2

2μ
− 1

4πε0

e2

|r̂|

− e

μ

{
μ

me
Â
(

t, R̂ + mp

M
r̂
)

+ μ

mp
Â
(

t, R̂ − me

M
r̂
)}

· p̂

− e

M

{
Â
(

t, R̂ + mp

M
r̂
)

− Â
(

t, R̂ − me

M
r̂
)}

· P̂

+ e2

2me
Â

2
(

t, R̂ + mp

M
r̂
)

+ e2

2mp
Â

2
(

t, R̂ − me

M
r̂
)
. (13)

The nonrelativistic quantum treatment of the atom requires the
center-of-mass and relative momenta to be bounded. Since the
motion of an electron “around” a proton is typically nonrela-
tivistic, considering the relative motion to be nonrelativistic
is generally a very reasonable assumption. However, for the
state of the COM of the atom to be in a nonrelativistic regime,
the state should not have any non-negligible overlap with gen-
eralized eigenstates of momentum beyond some scale, where
relativistic corrections would be necessary.

In order to arrive at the multipolar Hamiltonian, we insert
resolutions of identity in the COM and relative position bases
(taking a position representation for R and r), and expand the
vector field around the center-of-mass coordinate R. For our
purposes, we will only consider the dipolar contributions:

Â(t, R + δr) ≈ Â(t, R) + (δr · ∇R)Â(t, R). (14)

When applied to Eq. (13) we will have that either δr = mp

M r or
δr = −me

M r depending on the term. As we will discuss more
in depth later on, the spatial support in the relative coordinate
r for atomic scales is given approximately by the scale of
Bohr radius a0 associated with the reduced mass μ. Hence, the
second-order term is suppressed with respect to the leading
order by a factor ∼a0|kUV|, with |kUV| being the maximum
wave vector of the vector field. It may be determined by the
atomic smearing and the time-dependent coupling between
atom and field, or by a dominant atomic transition process
[3]. Ultimately, the Compton wavelength will yield the upper
bound in order to stay in the nonrelativistic quantum descrip-
tion of the atom. Note that since we consider a quantum
COM, or also in the case of motion of a classical COM, the
second-order term is required even at the dipole level.
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In the dipole regime where Eq. (14) applies, Ĥ approxi-
mates to

Ĥ (1) =
∫
R3

d3R
∫
R3

d3r
{

1

2M

[
P̂ − e(r · ∇R)Â(t, R)

]2

+ 1

2μ

[
p̂ − eÂ(t, R) − e

�m

M
(r · ∇R)Â(t, R)

]2

− e2

4πε0|r|
}
|R〉〈R| ⊗ |r〉〈r|, (15)

where �m = mp − me. The Hamiltonian (15) is the generator
of time translations to the joint atom-field state |	〉 governed
by the Schrödinger equation

ih̄
∂|	〉
∂t

= Ĥ (1)|	〉, (16)

with the field being in the interaction picture. We will now
write the interaction Hamiltonian in terms of gauge-invariant
field operators, and such that the internal atomic Hamiltonian
admits the usual hydrogen wave function solutions. To ac-
complish this, we perform a local canonical transformation
generated by the self-adjoint operator [48]

�̂(1)(t, R̂, r̂) =
∫
R3

d3R |R〉〈R|{r̂ · Â(t, R)

+ �m

2M
(r̂ · ∇R)[r̂ · Â(t, R)]}. (17)

This transformation is, in general, not a gauge transformation.
We will see later in Sec. V that for the effective dipole model
one can indeed use a gauge transformation to go from one-
particle minimal coupling to the multipolar Hamiltonian, but
not in the current two-particle case. Note that the procedure of
first performing the dipole approximation (14) and then per-
forming the canonical transformation Û�̂(1) := exp[− i

h̄ e�̂(1)]
is equivalent to first performing a transformation with the
Dirac-Heisenberg line function

�̂(t, R̂, r̂) = r̂ ·
∫ 1

0
dλ Â

(
t, R̂ −

(me

M
− λ

)
r̂
)
, (18)

and then performing a Taylor expansion in the electromag-
netic vector potential [48]. Furthermore (18) is identical (order
by order) to the standard PZW transformation [7] (as we show
in Appendix A):

�̂PZW =
∑
i=e,p

ei

|e| (r̂i − R̂) ·
∫ 1

0
dλ Â(t, R̂ + λ(r̂i − R̂)).

(19)

Using (17) we define the canonically transformed state ˜|	〉
through

|	〉 = exp
[ i

h̄
e�̂(1)(t, R̂, r̂)

]
˜|	〉. (20)

This means that the left-hand side of (16) can be written as

ih̄
∂|	〉
∂t

= −e
∂�̂(1)

∂t
e

i
h̄ e�̂(1) ˜|	〉 + e

i
h̄ e�̂(1)

ih̄
∂ ˜|	〉
∂t

, (21)

while the right-hand side of (16) can be written as

Ĥ (1)|	〉 = Ĥ (1) exp
( i

h̄
e�̂(1)

)
˜|	〉. (22)

Regrouping all the extra terms in the left-hand side into the
right-hand side allows us to see the form of the canonically
transformed Hamiltonian

ˆ̃H (1) = exp
(
− i

h̄
e�̂(1)

)[
Ĥ (1) + e

∂�̂(1)

∂t

]
exp

( i

h̄
e�̂(1)

)
.

(23)
As we will see later, ˆ̃H (1) will be the Hamiltonian we are
seeking: a function of the electric and magnetic field opera-
tors, and for which the internal atomic dynamics admits as
solution the textbook hydrogen wave functions. Notice that
the canonically transformed (PZW-transformed) Hamiltonian
is not unitarily equivalent to the minimal coupling Hamilto-
nian (after the dipole approximation). As we will discuss later
the extra term (associated with the time dependence of �̂) is
related with self-energy and will be responsible for a shift on
the energy levels (such as the Lamb shift).

To implement this canonical transformation, we need the
commutation relations between the vector potential and its
different derivatives. In terms of the usual plane-wave expan-
sion, the vector potential in the interaction picture takes the
form

Â(t, x) =
2∑

s=1

∫
R3

d3k

(2π )
3
2

√
h̄

2ε0c|k| (âk,sεk,se
ik·x + H.c.),

(24)
where k and x are respectively the four-wave-vector and four-
position four-vectors, and we work with the metric signature
(−,+,+,+). We denoted as {εk,s}, s ∈ 1, 2 an arbitrary set
of two orthonormal transverse polarization vectors that to-
gether with the normalized wave vector ek = k/|k| form an
orthonormal basis in R3. Therefore we find that the equal-
time commutator between two components of the vector
potential is

[Âi(t, x), Â j (t, x′)]

=
∫
R3

d3k
(2π )3

h̄

2ε0c|k|
(
δi j − ei

ke j
k

) · (eik·(x−x′ ) − e−ik·(x−x′ ) ),

(25)

by use of the completeness relations [50]

2∑
s=1

εi
k,sε

j
k,s = δi j − ei

ke j
k. (26)

By differentiation, we find the remaining commutators re-
quired for the dipole approximation (we can stop at the first
spatial derivatives). The details of the calculations can be
found in Appendix B. We use the transverse delta function
[52]

δi j,(tr)(x) = 1

(2π )3

∫
R3

d3k
(
δi j − e j

ke j
k

)
eik·x. (27)
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The only commutators that are nonzero in the coincidence
limit are then

[Âi(t, x), ∂t Â
j (t, x′)] = ih̄

ε0
δi j,(tr)(x − x′), (28)

[∂l Â
i(t, x), ∂t∂mÂ j (t, x′)] = ih̄

ε0

∂2δi j,(tr)(x − x′)
∂xl∂x′m . (29)

Equations (28) and (29) contribute to the commutator of the
generator �̂(1) with its time derivative. Moreover, they yield
divergent contributions in the coincidence limit which will
give rise to the self-energy of the atom. They appear only in
the quantum case and its divergences can be renormalized and
regularized through smeared spatial profiles.

To find the new Hamiltonian (23), we commute the
old Hamiltonian with the canonical transformation opera-
tor. There will be two kinds of contributions: those that
come from commuting with Ĥ (1) and those that come from
commuting with ∂t�̂. Since the calculation can get cum-
bersome, let us compute the two nontrivial terms in Ĥ (1)

as well as the contributions from the commutator with ∂t�̂

separately.
First, the commutation of the canonical transformation

with the first summand of Ĥ (1) in Eq. (15). To that end, let
us consider initially the simpler commutation (without the
square) given by

∫
R3

d3R|R〉〈R|[P̂ − e(r̂ · ∇R)Â(t, R)]Û †
�̂(1)

˜|	〉

=
∫
R3

d3R|R〉〈R|U †
�̂(1)

× [P̂ + e∇R�̂(1) − e(r̂ · ∇R)Â(t, R)] ˜|	〉, (30)

with ∇R�̂(1)(t, R, r) = ∇R[r · Â(t, R)] to leading order
[48]. This term arises from position representation, i.e.,
〈R|P̂Ô|	〉 = −ih̄∇R〈R|Ô|	〉. Using

B̂ = ∇ × Â, (31)

r̂ × B̂ = ∇(r̂ · Â) − (r̂ · ∇)Â, (32)

and recovering the square, we arrive at

∫
R3

d3R|R〉〈R|[P̂ − e(r̂ · ∇R)Â(t, R)]2U †
�̂(1)

˜|	〉

= U †
�̂(1) [P̂ + er̂ × B̂(t, R̂)]2 ˜|	〉. (33)

Similarly, for the next summand of Ĥ (1), we need∫
R3

d3R
∫
R3

d3r|R〉〈R| ⊗ |r〉〈r|

×
[

p̂ − eÂ(t, R) − e
�m

M
(r · ∇R)Â(t, R)

]
U †

�̂(1)
˜|	〉

=
∫
R3

d3R
∫
R3

d3r|R〉〈R| ⊗ |r〉〈r|U †
�̂(1)

[
p̂ − eÂ(t, R)

− e
�m

M
(r · ∇R)Â(t, R) + e∇r�̂

(1)

]
˜|	〉, (34)

where, using Eq. (17), we get

∇r�̂
(1)(t, R, r)

= Â(t, R) + �m

2M
{∇R[r · Â(t, R)] + (r · ∇R)Â(t, R)}.

(35)

Thus, recovering the square, and using (31) and (32), we have∫
R3

d3R
∫
R3

d3r|R〉〈R| ⊗ |r〉〈r|

×
[

p̂ − eÂ(t, R) − e
�m

M
(r · ∇R)Â(t, R)

]2

U †
�̂(1)

˜|	〉

= U †
�̂(1)

[
p̂ + e

2

�m

M
[r̂ × B̂(t, R̂)]

]2
˜|	〉. (36)

This concludes the calculations regarding Ĥ (1) as the
Coulomb potential stays trivially the same. In the last step to
find the new Hamiltonian, we have to evaluate U�̂(1) (∂t�̂). By
using the following identity [53],

∂

∂t
e−β�̂ = −

∫ β

0
e−(β−u)�̂ ∂�̂

∂t
e−u�̂du, (37)

and a Baker-Campbell-Hausdorff (BCH) formula, we find

e− i
h̄ e�̂(1) ∂�̂(1)

∂t
e

i
h̄ e�̂(1) = ∂�̂(1)

∂t
− ie

2h̄

[
�̂(1),

∂�̂(1)

∂t

]
. (38)

Note that the second term on the right-hand side is a multiple
of the identity for the field Hilbert space, and since it only
depends on the position operators (and not the momenta) the
higher order BCH terms in (38) cancel exactly. Using Ê =
−∂t Â, we have

∂�̂(1)

∂t
= −

∫
R3

d3R |R〉〈R|{r̂ · Ê(t, R)

+ �m

2M
(r̂ · ∇R)[r̂ · Ê(t, R)]}. (39)

There are only two nonvanishing contributions to the commu-
tator of Eq. (38) coming from (28) and (29):

2ih̄�̂ :=
[
�̂(1),

∂�̂(1)

∂t

]
=
∫
R3

d3R
∫
R3

d3r|R〉〈R| ⊗ |r〉〈r|rir j

{
[Âi(t, R), ∂t Â

j (t, R)]+
(

�m

2M

)2

rl rm[∂l Â
i(t, R), ∂t∂mÂ j (t, R)]

}

= ih̄

3π2ε0

∫ |kUV|

0
d|k| |k|2

∫
R3

d3r |r〉〈r|
[
|r|2 + 1

5

(
�m

2M

)2

|r|4
]
, (40)
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where, again, we have a UV cutoff |kUV| as in the initial dipole
expansion of the field that removes the δtr(0) divergences.
Equation (40) corresponds to Coulombic self-energies which
have to be regularized by a cutoff since we initially assumed

point charges constituting the atom. They are relevant for
Lamb-like energy shifts [54].

Combining Eqs. (33), (36), and (38), we have now an
expression for the transformed Hamiltonian Eq. (23):

ˆ̃H (1) =
∫
R3

d3R
∫
R3

d3r|R〉〈R| ⊗ |r〉〈r|
(

[P̂ + er × B̂(t, R)]2

2M
+
[
p̂ + e

2
�m
M r × B̂(t, R)

]2

2μ
− e2

4πε0|r|

+ e2�̂ − er · Ê(t, R) − e

2

�m

M
(r · ∇R)[r · Ê(t, R)]

)
. (41)

As we will be working in the weak-coupling limit, let us discuss and order the terms of Eq. (42) according to the two physically
relevant small parameters: (1) the coupling strength e, and (2) the length scale of internal-state atomic localization in terms of
the Bohr radius a0. The latter appears (as we will show later for the leading order terms) through the vanishing of the atomic
wave functions for distances from the COM much longer than the Bohr radius.

Expanding the squares, we can then write Eq. (41) as a sum of terms with different powers of the small parameters of the
problem:

ˆ̃H (1) = P̂
2

2M
+ p̂2

2μ
− e2

4πε0|r̂|︸ ︷︷ ︸
hydrogen Hamiltonian

− er̂ · Ê(t, R̂)︸ ︷︷ ︸
electric dipole

O(ea0)

+ e

{
P̂

2M
, r̂ × B̂(t, R̂)

}
+︸ ︷︷ ︸

COM Röntgen term
O(ea0)

+ e

{
p̂

2μ
, r̂ × B̂(t, R̂)

}
+︸ ︷︷ ︸

relative Röntgen term (orbital magnetic dipole)
O(ea2

0)

− e�m

2M

∫
R3

d3R|R〉〈R|(r̂ · ∇R)[r̂ · Ê(t, R)]︸ ︷︷ ︸
electric quadrupole

O(ea2
0)

+ e2

8μ
[r̂ × B̂(t, R̂)]2

︸ ︷︷ ︸
diamagnetic term

O(e2a2
0)

+ e2�̂︸︷︷︸
self-energy

O(e2a2
0)

=: Ĥ0 + ĤI + ĤM1 + ĤE2 + Ĥdia + Ĥself. (42)

Let us analyze the different terms one by one. First, we have
the unperturbed free atomic Hamiltonian Ĥ0 [where the solu-
tions of the relative degrees of freedom are the hydrogenic
wave functions ψnlm(r) with an effective mass μ, i.e., the
reduced mass] in the form

Ĥ0 = P̂
2

2M
+ p̂2

2μ
− 1

4πε0

e2

|r̂| . (43)

To leading order O(ea0) we then find the electric dipole inter-
action and the Röntgen term associated with the COM motion:

ĤI = −er̂ · Ê(t, R̂) + e

{
P̂

2M
, r̂ × B̂(t, R̂)

}
+
. (44)

The terms of order O(ea2
0) are (1) the electric quadrupole

interaction and (2) a Röntgen term associated with the cur-
rents induced by the internal atomic motion, which results in
a magnetic dipole coupling with orbital angular momentum
degrees of freedom:

ĤM1 = e

{
p̂

2μ
, r̂ × B̂(t, R̂)

}
+
, (45)

ĤE2 = −e�m

2M

∫
R3

d3R|R〉〈R|(r̂ · ∇R)[r̂ · Ê(t, R)]. (46)

The highest order terms in (42) with respect to the small
parameters are of order O(e2a2

0). These are commonly called
the diamagnetic and self-energy contributions, respectively:

Ĥdia = e2

8μ
[r̂ × B̂(t, R̂)]2, (47)

Ĥself =e2�̂. (48)

The combined Hamiltonian at leading order in the small
parameters is thus

ˆ̃H (1) = Ĥ0 + ĤI + O(e2). (49)

This is the Hamiltonian that we will be studying from here
onward. We will now express the interaction Hamiltonian ĤI

in terms of the hydrogen wave functions and COM momen-
tum eigenstates and in the interaction picture generated by Ĥ0.
Equation (44) can be rewritten as

ĤI = −er̂ ·
[

Ê(t, R̂) + P̂ × B̂(t, R̂) − B̂(t, R̂) × P̂
2M

]
. (50)

Equation (50) has a very similar structure to Eq. (5). Thus
we can (equivalently to the derivation of Sec. II B) take the
position representation on the relative coordinate by inserting
the identity in terms of r̂ generalized eigenstates, and write the
atomic dipole operator in the interaction picture of the relative
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degrees of freedom as

d̂ := er̂ =
∑
a�b

d̂ab(t, r), (51)

where the partial dipole between two hydrogenic internal lev-
els |	a〉 and |	b〉 of quantum numbers a and b is

d̂ab(t, r) = eFab(r)ei
abτ |a〉〈b| + H.c. (52)

The spatial smearing vector is given by Fab(r) =
r	∗

a (r)	b(r), and h̄
ab = Ea − Eb is the energy difference
between the states |a〉 and |b〉. In contrast to the effective
model in Sec. II B, the wave functions are associated with the
reduced mass μ instead of the electron mass.

Notice that while the electric dipole in (52) is smeared
with the internal hydrogenic orbitals, the localization of the
interaction is not given by these wave functions, unlike in
the effective model in Eq. (6). Indeed, if we were to evaluate
expectations of ĤI on a given state of the system, it is the COM
localization (the initial state of the COM as an distribution of
R̂ generalized eigenstates) what gives the spatial localization
of the interaction with the field. Of course, the spread of this
localization will be bounded from below by the atomic orbital
wave function’s support, but we find that it is the center-of-
mass localization what gives the spatial extension to the atom
in the dipole approximation.

It is convenient to take a momentum representation for the
COM degrees of freedom in (50). We note that for all COM
states |	COM〉

〈P|e±ik·R̂|	COM〉 = 〈P ∓ k|	COM〉, (53)

and we can identify thus

〈P|e±ik·R̂ = 〈P ∓ k|. (54)

Also, we make use of

Ê(t, x) =
2∑

s=1

∫
R3

d3k

(2π )
3
2

√
h̄c|k|
2ε0

(iâk,sεk,se
ik·x + H.c.), (55)

B̂(t, x) =
2∑

s=1

∫
R3

d3k

(2π )
3
2

√
h̄|k|
2cε0

[iâk,s(ek × εk,s)eik·x + H.c.],

(56)

where we recall ek = k/|k| is the normalized wave vector.
Then, the interaction Hamiltonian (50) in the full Hilbert
space interaction picture is given by

ĤI = −
∫
R3

d3r d̂(t, r) ·
2∑

s=1

∫
R3

d3k
(2π )3/2

√
h̄c|k|
2ε0

∫
d3P

× [iâk,se
−ic|k|tαk,s,P|P(t )〉〈(P − k)(t )| + H.c.],

(57)

where we define through the free COM time evolution

|P(t )〉 = exp

(
i

h̄
t

P2

2M

)
|P〉, (58)

and

αk,s,P := εk,s − (ek × εk,s) × (P − h̄k/2)

Mc

= εk,s

[
1 − P · ek − h̄|k|/2

Mc

]
+ ek

P · εk,s

Mc
. (59)

From this, one can see that there is an effective change of
the center-of-mass momentum P by h̄k/2 per every plane-
wave “component” of the field expansion, as was also noted
in [15].

Equation (57) is the final result of our derivation of the in-
teraction Hamiltonian in the interaction picture. It shows that
considering a fully quantized atom, the interaction couples
all the degrees of freedom: the (hydrogenic) relative motion
degrees of freedom, the center of mass, and the electromag-
netic field. This in turn means that even if the initial state of
internal, external, and field degrees of freedom is separable,
the interaction will in general create a nonseparable state of
these three subsystems.

For a quantum COM, the wave function disperses, so one
cannot generally find a frame where the momentum of the
COM is exactly zero since momentum eigenstates are unphys-
ical. The best one can do is cancel its expectation value, but
the center of mass of any localized atom will still disperse.
Thus it is not possible to neglect the Röntgen contribution in
those cases where the center of mass is a quantum degree of
freedom. This is not a problem if the COM degree of freedom
is considered classical, where the Röntgen contribution van-
ishes in the COM comoving frame. Of course, the terms will
emerge even in this case if we describe the system in frames
where the atom is in motion.

Phenomenological example: Transition rates

In the following, we will treat the dipolar and Röntgen
interaction terms as a perturbation of the hydrogenic Hamilto-
nian, so that we can work with the unperturbed internal atomic
wave functions as a basis to apply perturbation theory.

Computing transition rates is something well known and
addressed many times before in the literature (see, e.g., [14]).
We include this result mainly for illustration and completeness
but we also generalize it considering initial states that are not
necessarily COM momentum eigenstates (which we argued
are unnormalizable and unphsyically delocalized). To our
knowledge, this assumption has not commonly been relaxed
in previous literature.

Consider initially (at time t = 0) a state of the whole
system |i, ϕ, 0〉 := |i〉 ⊗ |ϕ〉 ⊗ |0〉, where |i〉 is an energy
eigenstate of the internal atomic dynamics, |0〉 is the EM
vacuum, and we allow for the COM to have an arbitrary
momentum distribution: |ϕ〉 = ∫

d3P ϕ(P)|P〉. We wish then
to compute the transition probability to a different atomic
energy level, that is, to a final state | f 〉 at time t f , where | f 〉 is
an energy eigenstate of the internal atomic dynamics. For that
we will need to sum over all possible final states for the field
and COM degrees of freedom.

To that end we expand in a Dyson series the time evolution
operator to first order:

Û = 1 + Û (1) + O(e2), (60)

013703-9



LOPP AND MARTÍN-MARTÍNEZ PHYSICAL REVIEW A 103, 013703 (2021)

where Û (1) = − i
h̄

∫ t f

0 dt ĤI (t ). The probability P for that process to happen at leading order is then

Ptot =
∫
R3

d3P f

2∑
s=1

∫
R3

d3k

∣∣∣∣
∫
R3

d3P ϕ(P)〈 f , P f , 1k,s| ˆU (1)|i, P, 0〉
∣∣∣∣2 + O(e4). (61)

We make use of the following resolution of the identity in the COM and field Hilbert space, respectively,

1COM =
∫
R3

d3P|P〉〈P|, (62)

1 f = |0〉〈0| +
∞∑

n=1

2∑
s=1

∫
R3

d3k|nk,s〉〈nk,s| + · · · . (63)

The total probability thus reads

Ptot =
∫
R3

d3P ϕ(P)
∫
R3

d3P′ ϕ∗(P′)〈i, P′, 0|Û (1)†| f 〉〈 f |Û (1)|i, P, 0〉 + O(e4)

= e2

h̄2

∫
R3

d3P
∫
R3

d3P′ ϕ(P)ϕ∗(P′)
∫ t f

0
dt
∫ t f

0
dt ′ei(
 f it+
i f t ′ )

∫
R3

d3r
∫
R3

d3r′
∫
R3

d3Q
∫
R3

d3Q′
∫
R3

d3k
(2π )3

h̄c|k|
2ε0

eic|k|(t−t ′ )

× 〈P′|Q′(t )〉〈(Q′ − k)(t ′)|(Q − k)(t )〉〈Q(t )|P〉
2∑

s=1

3∑
a,b=1

F a
f i(r)F b

i f (r′)αa
k,s,Qαb

k,s,Q′ + O(e4). (64)

The inner products in Eq. (65) can be thought of as enforcing momentum conservation deltas that yield, upon integration,
P = P′ = Q = Q′. Assume now that we are considering a spontaneous decay, i.e., 
 := 
i f = −
 f i > 0. Hence, substituting
Eq. (58), Eq. (65) becomes

Ptot = e2

h̄2

h̄c

2ε0

∫ t f

0
dt
∫ t f

0
dt ′e−i
(t−t ′ )

3∑
a,b=1

∫
R3

d3r F a
f i(r)

∫
R3

d3r′ F b
i f (r′)

∫
R3

d3P |ϕ(P)|2

×
∫
R3

d3k
(2π )3

|k|ei(t−t ′ )
[

h̄k2−2P·k
2M +c|k|

] 2∑
s=1

αa
k,s,Pαb

k,s,P + O(e4), (65)

where the summands h̄2k2/2M − h̄P · k/M correspond to a recoil and Doppler shift, respectively. As is commonplace in the
literature, we can take the limit t f → ∞ if we use (Dirac’s) Fermi’s golden rule for the transition rate � := limt f →∞ dP

dt f
:

� = e2

8π2h̄ε0

3∑
a,b=1

∫
R3

d3r F a
f i(r)

∫
R3

d3r′ F b
i f (r′)

∫
R3

d3P |ϕ(P)|2
∫
R3

d3k |k|
2∑

s=1

αa
k,s,Pαb

k,s,P

× δ

(
h̄k2 − 2P · k

2M
+ c|k| − 


)
+ O(e4). (66)

From now on, we will assume that ϕ(P) = ϕ(|P|) such that we can reach closed forms for the integrals. We further define
P := |P|, k := |k|, and z := eP · ek. With the help of (59) and (26), we then recast the sum over polarizations in terms of powers
of k and P:

2∑
s=1

αa
k,s,Pαb

k,s,P =
(

h̄k

2Mc

)2(
δab − ea

keb
k

)+ h̄k

2Mc

[
2
(
δab − ea

keb
k

)− P

Mc

(
2δabz − ea

Peb
k − eb

Pea
k

)]

+ (
δab − ea

keb
k

)− P

Mc

(
2δabz − ea

Peb
k − eb

Pea
k

)+
( P

Mc

)2[
z
(
δabz − ea

Peb
k − eb

Pea
k

)+ ea
keb

k

]
. (67)
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Then in spherical coordinates for k and P, with �k and �P being the respective solid angles, we reexpress the integral over k
and the angular part of the integral over P in (66) as∫

S2
d�P

∫
S2

d�k

∫ ∞

0
dk k3δ

(
h̄k2 − 2Pkz

2M
+ ck − 


) 2∑
s=1

αa
k,s,Pαb

k,s,P

= 8π

3
δab

(
h̄2π
5

M2c8

[
1 + 7

( P

Mc

)2]
+ 4h̄π
4

Mc6

[
1 − 3

h̄


Mc2
+
( P

Mc

)2(
5 − 28

h̄


Mc2

)]
+ π
3

c4

{
4 − 10

h̄


Mc2
+ 21

(
h̄


Mc2

)2

+ 2

3

( P

Mc

)2[
20 − 21 × 5

h̄


Mc2
+ 18 × 21

(
h̄


Mc2

)2]})
− δab 16π2
3

9c4

( P

Mc

)2[
12 − 50

h̄


Mc2
+ 147

(
h̄


Mc2

)2]

+ O

((
h̄


Mc2

)6

,
( P

Mc

)4)
=:

32π2M

3h̄3 δabg(P), (68)

where we have implicitly defined the function g(P) in the last
step. To solve the integral over k in (68), upon substitution of
(67), we used that, for general ai,∫ ∞

0
dk k3δ

(
h̄k2 − 2Pkz

2M
+ ck − 


)
(a2k2 + a1k + a0)

= θ (Pz − Mc(1 − κ ))
2∑

i=0

aiκ
3+i

h̄3+i , (69)

where κ :=
√

(1 − Pz
Mc )

2 + 2h̄

Mc2 , and we also used that P �

Mc. Finally, we expanded in powers of P � Mc as well as
h̄
/Mc2 before performing the angular integrals but after the
integral over k. To perform the angular integrals we made use
of ∫

S2
d�k

(
δab − ea

keb
k

) = 8π

3
δab. (70)

The expansion in powers of P � Mc is justified since we are
working in the nonrelativistic regime. However, it is important
to note that relativistic corrections of powers higher or equal to
P/Mc are not consistent with the approximation made at the
level of Eq. (49), since we already neglected the subleading
order terms there. Indeed, these relativistic corrections have
to be accompanied by the corresponding corrections to the
Hamiltonian in order to be consistent (as we will discuss in
more detail in Sec. IV). We will nevertheless keep the sublead-
ing corrections in these expressions to analyze qualitatively
the dynamics that they generate, but we need to keep in mind
that extra corrections from the Darwin terms [Eq. (10)] would
need to be included as well if we want to get numerically
accurate predictions. The expansion in powers of h̄
/Mc2 is
justified for hydrogenic atoms since the energy of the transi-
tions is much smaller than the rest mass of the atom.

Note that in the case of vacuum excitation processes, i.e.,

 → −
, Eq. (68) vanishes since the argument of the delta
is always positive, as we require P � Mc to be consistent
with the nonrelativistic approximation made. However, the
fact that the delta argument could be negative outside nonrel-
ativistic approximation hints that when we properly include
the Darwin correction it may be possible to get “Cherenkov”
excitations even in the infinite time limit, as pointed out in
[22].

Concentrating on the subleading order in transition fre-
quencies then yields

g(P) = P2
0

[
1 − 3

2

h̄


Mc2
+ 2

3

( P

Mc

)2]

+ O

((
h̄


Mc2

)5

,
( P

Mc

)4)
, (71)

where we defined

P2
0 =

(
h̄


Mc2

)3

M2c2. (72)

Let us analyze what kind of phenomenology the subleading
corrections generate when we do not consider eigenstates of
the COM momentum as initial states and instead consider
a COM with a momentum wave function ϕ(P). With these
definitions, the transition rate yields to leading order

� = e2
3

3π h̄ε0c3
|〈i|r̂| f 〉|2

× 4π

∫ ∞

0
dP |ϕ(P)|2

[
1 − 3

2

h̄


Mc2
+ 2

3

( P

Mc

)2]
,

(73)

where we used that in terms of the internal atomic
degrees of freedom

∑3
a,b=1 F a

f i(r)F b
i f (r′)αa

k,s,Pαb
k,s,P →∑3

a=1 F a
f i(r)F a

i f (r′).
Let us specialize now to the case of |i〉 = |1s〉,

i.e., (n, l, m) = (1, 0, 0), and | f 〉 = |2pz〉, i.e., (n, l, m) =
(2, 1, 0). Hence h̄
/(Mc2) ≈ 10−8, and P0 ≈ 10−30 kg m/s,
such that P0/Mc ≈ 10−12. Therefore, one can check that the
expansion (71) is valid for P � 1011P0 such that P/Mc � 0.1.
The internal hydrogenic matrix element yields

|〈1s|r̂|2pz〉|2 =
3∑

a=1

∣∣∣∣
∫
R3

d3rF a
2pz,1s(r)

∣∣∣∣2 = 215

310
a2

0. (74)

Let us consider, additionally, an initial momentum distribution
for the COM ϕ(P) = (2πσ 2

P )3/4 exp(−P2/4σ 2
P ) such that |ϕ〉

is L2-normalized to 1, σP being the uncertainty in momentum.
To leading order then in the expansion of coupling strength,
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momentum, and transition frequency, we arrive at

� = e2a2
0


3

3πε0 h̄c3

215

310

[
1 − 3

2

h̄


Mc2
+ 2

3

( σP

Mc

)2
]

=: �0

[
1 − 3

2

h̄


Mc2
+ 2

3

( σP

Mc

)2
]
, (75)

where �0 ≈ 6.27 × 108/s is the well-known hydrogen tran-
sition rate expression with no extra corrections [55]. It is
straightforward to see that in the limit of an initial eigenstate
in the COM momentum, i.e., σP → 0, �0 is still shifted due to
the finite transition frequency that originated due to the Rönt-
gen term. The transition rate in this limit coincides with the
results of [15]. The expansion is valid for σp � Mc = h/λ,
λ being the Compton wavelength of the atom. Of course we
recall that the corrections proportional to (σP/Mc)2 will be
accompanied by Darwin corrections at the same order. Note
that averaging over all 2p states, i.e., m ∈ {−1, 0, 1}, would
yield the same rate as given by (75).

IV. LEADING ORDER RELATIVISTIC CORRECTIONS

As discussed at the beginning of Sec. III, if we are inter-
ested in the leading order correction for relativistic atomic
trajectories, we need to include the Darwin Hamiltonian (10).
We include in this section a brief summary of the discussion
in [16] about how the leading order relativistic corrections
would modify the dynamics. Following the same procedure of
quantization and PZW transformation as in Sec. III, from the
minimal coupling Hamiltonian (9) with the Darwin correction
(10) one would arrive at the Hamiltonian [16]

Ĥ = P̂
2

2M

[
1− P̂

2

4M2c2
− 1

Mc2

(
p̂

2μ
− e2

4πε0|r̂|
)]

−
(
P̂ · p̂

)2

2M2μc2

+ e2

4πε0|r̂|
(P̂ · r̂/|r̂|)2

2M2c2
− �m

2μM2c2

{
(P̂ · p̂)

p̂2

μ

− e2

8πε0|r̂|
[

P̂ · p̂+ 1

|r̂|2 (P̂ · r̂)(r̂ · p̂)+ H.c.

]}
+ ĤA+ ĤI ,

(76)

where �m = mp − me, and the free internal atomic Hamilto-
nian

ĤA(r̂, p̂) = p̂2

2μ

(
1 − m3

e + m3
p

M3

p̂2

4μ2c2

)

− e2

4πε0

[
1

r
+ 1

2μMc2

(
p̂ · 1

|r̂| p̂+ p̂ · r̂
1

|r̂|3 r̂ · p̂
)]

(77)

no longer assumes the analytically tractable hydrogenic wave
functions as solutions but a more complicated form. ĤI is
given by (50), i.e., the dipolar and Röntgen interaction to
leading order. Significantly, the cross-coupling between COM
and internal degrees of freedom of the atom takes a compli-
cated form. For instance, what was the free COM Hamiltonian
in the nonrelativistic approximation is replaced by the rather
nontrivial terms in Eq. (76) that now have corrections coming

from P̂
2

and couple the center of mass to the momentum and
position operators of the relative motion.

It is possible in this case to apply a canonical transfor-
mation {R̂, r̂, p̂} → {Q̂, q̂, ρ̂} that simplifies the form of the
corrected Hamiltonian:

R̂ = Q̂ − �m

2M2c2

[(
ρ̂2

2μ
q̂ + H.c.

)
− e2

4πε0|q̂| q̂
]

− 1

4M2c2
[(q̂ · P̂)ρ̂ + (P̂ · ρ̂)q̂ + H.c.], (78)

r̂ = q̂ − �m

2μM2c2
[(q̂ · P̂)ρ̂ + H.c.] − q̂ · P̂

2M2c2
P̂, (79)

p̂ = ρ̂ + �m

2M2c2

[
ρ̂2

μ
P̂ − e2

4πε0|q̂|
(

P̂ − (P̂ · q̂)q̂
|q̂|2

)]

+ ρ̂ · P̂
2M2c2

P̂. (80)

However, the new variables {Q̂, q̂, ρ̂} mix relative motion
and COM degrees of freedom. Whereas the COM momentum
is still associated with P̂, the remaining new variables lose
their original physical meaning of separating internal and ex-
ternal degrees of freedom. After neglecting terms suppressed
by 1/M4c4, the form of the Hamiltonian becomes [16,56]

ˆ̃H = P̂
2

2M

(
1 − ĤA(q̂, p̂)

Mc2

)
+ ĤA(q̂, ρ̂) + ĤI , (81)

ĤI = −eq̂ · Ê(t, Q̂) + e

{
P̂

2M
, q̂ × B̂(t, Q̂)

}
+
, (82)

where the interaction is carried over now in terms of the
new canonical variables and the coupling between COM and
internal atomic degrees of freedom is more tractable. Addi-
tionally, the COM contribution is no longer quartic in the
COM momentum.

V. APPROXIMATE DIPOLE MODEL WITH CLASSICAL
CENTER-OF-MASS MOTION

After having studied the nuances related to taking into
account the COM dynamics, one realizes quickly that it
would be truly challenging to consider scenarios where the
COM trajectories undergo arbitrarily accelerated relativistic
motion since the coupling of internal and external degrees of
freedom becomes increasingly complicated. This poses the
question whether we can use effective models that (a) allow
for the COM motion to be relativistic, (b) are computationally
tractable, and (c) are reasonable approximations that at least
capture the main phenomenology of an interaction between
matter and light.

With this in mind, let us come back to the effective dipole
model from Sec. II B. Now it becomes clear that we are
neglecting the quantum nature of the COM and along with
it the dynamics in the form of the Röntgen term of the
COM. However, in contrast to the multipolar Hamiltonian,
we can consider relativistic, and externally prescribed trajec-
tories of the atom. Furthermore, if this model holds any value
for the probing of the electromagnetic field, the predictions
should be generally covariant for different observers. This is in
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distinction to the multipolar Hamiltonian that can only guar-
antee Galilei covariance. One would expect that although this
model may not give the accurate numbers associated with a
particular atomic physics experiment, it may still hold some
of the core phenomenology of the light-matter interaction and
provide a simple yet covariant model to measure the elec-
tromagnetic field. Neglecting the Röntgen term for the COM
would be akin to considering that (a) the COM is a classical
degree of freedom and (b) the mass of the nucleus is much
larger than that of the electron.

Similar to the PZW transformation (18) being applied to
the two-particle minimal coupling Hamiltonian (9) to find the
multipolar Hamiltonian, one can consider the transformation

Û1 = exp
( i

h̄
e�̂1

)
, (83)

generated by

�̂1(t, r̂e) = r̂e ·
∫ 1

0
du Â(t, ur̂e) (84)

applied to the one-particle minimal coupling Hamiltonian

Ĥeff = 1

2me
[ p̂e + eÂ(t, r̂e)]2 − eÛ (t, r̂e) − e2

4πε0|r̂e| (85)

to arrive at the effective dipole model (5). In contrast to the
case where there is COM dynamics, (87) is a gauge transfor-
mation where the transformed potentials can be expressed in
terms of the electric and magnetic field [57]:

Û1Â(t, r̂e)Û†
1 + 1

e
Û1 p̂eÛ1 = −r̂e ×

∫ 1

0
du uB̂(t, ur̂e),

Û1Û (t, r̂e)Û†
1 + ih̄

e
Û1∂t Û1 = −r̂e ·

∫ 1

0
du Ê(t, ur̂e) + δ̂,

(86)

where δ̂ is a self-energy that needs to be regularized—which
introduces corrections of O(e). In the dipole approximation,
to leading order in coupling e and Bohr radius a0, the Hamil-
tonian then yields

Ĥeff = p̂2
e

2me
− 1

4πε0

e2

|r̂e| + er̂e · Ê (t, r̂e), (87)

which is precisely the effective model of Sec. II B.
We recall that this effective model is prescribed in the

center-of-mass frame of the atom, where the atom does not
move, and hence there are no COM Röntgen terms. We denote
τ the proper time of the atom’s COM rest frame (τ, ξ). As
common in particle detector models, we take the atom to
be Fermi-Walker transported as the interatomic forces pre-
serve its spatial coherence [42]. It is convenient to quantize
the field in an inertial frame that we will call the “labo-
ratory” frame of coordinates (t, x). For general spacetimes
characterized by the metric g the interaction Hamiltonian
that generates translations with respect to the COM proper

time (in the interaction picture) reads

Ĥ τ
I,eff = χ (τ )

∑
a>b

∫
�τ

d3ξ
√−g d̂ab(τ, ξ) · Ê(t (τ, ξ), x(τ, ξ))

=
∫

�τ

d3ξ ĥI,eff(τ, ξ), (88)

where the time dependence of the coupling is prescribed in the
COM rest frame and encoded in χ , and where we defined the
Hamiltonian density ĥI,eff(τ, ξ).

A. Covariance of predictions

If the model holds any value as a relativistic probe of
the electromagnetic field, its predictions in flat spacetime
should be Lorentz-covariant. To show explicitly that they are,
we take (88) and analyze how the Hamiltonian transforms
under changes of reference frame. For Minkowski space-
time in any coordinates associated with internal frames we
have that

√−g = 1. Assuming that the atom is undergoing
inertial motion, we can compute the Hamiltonian that gener-
ates translations with respect to the laboratory frame using the
transformation properties under general Lorentz transforma-
tions. The covariance of the model demands that

Û = T exp

[−i

h̄

∫
R3×R

d3ξ dτ ĥI,eff(τ, ξ)

]

= T exp

[−i

h̄

∫
R3×R

d3 x dt ĥI,eff(τ (t, x), ξ(t, x))
]
.

(89)

In the Hamiltonian (88), the electric field is as seen from the
COM frame. However, it is quantized in the laboratory frame.
To write the Hamiltonian that generates translations with re-
spect to the laboratory frame’s time t we need to transform the
electric field. Let us assume then that the atomic COM moves
on a trajectory x(t ) = vt and velocity v with respect to the
laboratory frame. The electric field is a spatial vector under
Lorentz transformations:

Ê(t (τ, ξ), x(τ, ξ)) → γ [Ê(t, x) + v × B̂(t, x)]

+ (1 − γ )[Ê(t, x) · ev]ev,

(90)

where ev = v/|v|. The Lorentz-transformed Hamiltonian gen-
erating translations with respect to time t is thus

Ĥt
I,eff =

∑
a>b

∫
R3

d3x χ (τ (t, x)) d̂
′
ab(τ (t, x), ξ(t, x))

× {γ [Ê(t, x) + v × B̂(t, x)]

+ (1 − γ )[Ê(t, x) · ev]ev}. (91)

Naturally, a Röntgen term arises for the classical COM
through the Lorentz transformation. The transformed dipole
moment reads

d̂
′
ab(τ (t, x), ξ(t, x)) = eFab(ξ (t, x))ei
abτ (t,x)|a〉〈b| + H.c.

(92)

Although it is not necessary to prove that this is covariant
because it was made covariant by construction, there is some
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value in explicitly showing its covariance and how to deal
with changes of reference frame in the context of this effective
light-matter interaction. With this in mind let us compute the
transition probability of the atom in the COM frame and the
laboratory frame explicitly showing how they coincide.

B. Example: Vacuum excitation probability

We will showcase a simple example to demonstrate that the
previous considerations yield Lorentz-invariant predictions.
Let us consider an atom whose COM is comoving with the
laboratory frame. Let us compute the transition probability
from a |1s〉 state to the excited state |2pz〉. Let us do this
calculation using two different coordinate systems—one co-
moving with the atomic COM and the laboratory frame and
another one moving at a constant speed with respect to the
laboratory frame—showing how both results coincide. This
will also allow us to compute very useful quantities along the
way such as the Wightman tensor for the electric and magnetic
fields.

1. Wightman functions

We will give first the electromagnetic Wightman functions
which will be used to compute the subsequent transition prob-
abilities (the derivations can be found in Appendix C): We
begin with the electric field two-point function which is of the
form

W i j
E [t, t ′; x, x′] = 〈0|Ê i(t, x)Ê j (t ′, x′)|0〉

= h̄c

2ε0

∫
R3

d3k
(2π )3

|k|e−ic|k|(t−t ′ )eik·(x−x′ )(δi j − ei
ke j

k

)
,

(93)

and can be put in relation to the magnetic field Wightman
tensor

W i j
B [t, t ′; x, x′] = 〈0|B̂i(t, x)B̂ j (t ′, x′)|0〉

= 1

c2
W i j

E [t, t ′; x, x′]. (94)

The two cross-field Wightman functions can be similarly re-
lated:

W i j
BE [t, t ′; x, x′] = 〈0|B̂i(t, x)Ê j (t ′, x′)|0〉

= − h̄

2ε0

∫
R3

d3k
(2π )3

|k|e−ic|k|(t−t ′ )eik·(x−x′ )εi jk (ek)k

= W ji
EB[t, t ′; x, x′], (95)

while all the details can be seen in Appendix C. We addi-
tionally give an explicit form for the different electromagnetic
Wightman functions after performing the integral over k. The
following expansion in terms of spherical harmonics Ylm and
spherical Bessel functions of the first kind jl [58] will be of
use:

k =
√

2π

3
|k|(Y11(ek) − Y1−1(ek), i[Y11(ek)

− Y1−1(ek)],
√

2Y10(ek)), (96)

eik·x =
∞∑

l=0

l∑
m=−l

4π il jl (|k||x|)Ylm(ek)Y ∗
lm(ex)

=
∞∑

l=0

l∑
m=−l

4π il jl (|k||x|)Y ∗
lm(ek)Ylm(ex). (97)

Then, the two independent Wightman functions WE and WBE

(with implicit pole prescription, and where we denote deriva-
tives of Dirac’s delta by δ̇, δ̈) are

W i j
E [t, t ′; x, x′]

= h̄c

2(2π )2ε0

{
8[r̃2(2X i j + δi j ) − c2(t ′ − t )2δi j]

[r̃2 − c2(t ′ − t )2]3

+ iπ

[
δ̈(r̃ − c(t ′ − t )) − δ̈(r̃ + c(t ′ − t ))

r̃
X i j

+ (3X i j + 2δi j )

(
δ(r̃ − c(t ′ − t )) − δ(r̃ + c(t ′ − t ))

r̃3

− δ̇(r̃ − c(t ′ − t )) − δ̇(r̃ + c(t ′ − t ))
r̃2

)]}
, (98)

W i j
BE [t, t ′; x, x′] = − h̄

2(2π )2ε0
βεi jk (ex − ex′ )k, (99)

where we defined |x − x′| = r̃, ex = x/|x|, and

X i j = (ex − ex′ )i(ex − ex′ ) j − δi j, (100)

β = 16c(t ′ − t )r̃

[r̃2 − c2(t ′ − t )2]3

+ iπ

[
δ̈(r̃ − c(t ′ − t )) + δ̈(r̃ + c(t ′ − t ))

r̃2

− δ̇(r̃ − c(t ′ − t )) + δ̇(r̃ + c(t ′ − t ))
r̃3

]
. (101)

These results can be confirmed for the real part in chapter
9 of [59] and for the imaginary part in [50] (by noting that
that the imaginary part of the Wightman corresponds to the
commutators of the respective fields).

2. Calculation in the COM or laboratory frame

Let us first calculate the transition probability assuming
that the atom is at rest in the laboratory frame. Without loss
of generality we can assume that rest and laboratory frame are
identical (t, x) = (τ, ξ). We can then perform a perturbative
analysis. We compute the Dyson series of the time evolution
operator to first order:

Û = 1 + Û (1) + O(e2), (102)
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where Û (1) = − i
h̄

∫∞
−∞ dtĤI,eff(t ). The vacuum excitation

probability for the initial joint ground state reads

P =
∑∫

out

|〈2pz, out|Û |1s, 0〉|2

=
∑∫

out

〈1s, 0|Û (1)†|2pz, out〉〈2pz, out|Û (1)|1s, 0〉+ O(e4)

= e2

h̄2

∫
R

dt
∫
R

dt ′ χ (t )χ (t ′)ei
2pz1s (t ′−t )

×
∫
R3

d3x
∫
R3

d3x′ F2pz1s,i(x)W i j
E [t, t ′; x, x′]F2pz1s, j (x′)

+ O(e4), (103)

where we used the resolution of identity in terms of the field
states |out〉. Using Eq. (93), we can write

P = e2c

2(2π )3ε0h̄

∫
R3

d3k |k|
∣∣∣∣
∫
R

dt χ (t )e−i(
2pz1s+c|k|)t
∣∣∣∣2

×
[∣∣∣∣
∫
R3

d3x eik·xF2pz1s(x)

∣∣∣∣2

−
∣∣∣∣
∫
R3

d3x eik·xF2pz1s(x) · ek

∣∣∣∣2
]

+ O(e4). (104)

For simplicity and also comparison with previous works,
we can further assume that the time-dependent coupling is
of Gaussian adiabatic nature, i.e., χ (t ) = exp[−(t/T )2] with
T being the timescale of interaction (a discussion on the
physicality of such a switching function for the light-matter
interaction can be found in, e.g., [60]). After a lengthy but
simple calculation that parallels the calculation in Appendix A
of [60], using Eq. (96) and (97) and the fact that for flm ∈ C
it is satisfied that

∫
S2

d�k

∣∣∣∣∣
∞∑

l=0

l∑
m=−l

flmYlm(ek)

∣∣∣∣∣
2

=
∞∑

l=0

l∑
m=−l

| flm|2, (105)

0.002 0.004 0.006 0.008 0.010

0.5

1.0

1.5

2.0

105 P

FIG. 1. Vacuum excitation probability to the first excited state
2pz for a stationary hydrogen atom and stationary observer as a
function of the timescale of the interaction T (e ≈ 137−1/2, a0 ≈
2.68 × 10−4 eV−1, m ≈ 5.1 × 105 eV, and 
 ≈ 3.73 eV).

the probability can then be evaluated to

P = 49 152
(ea0T )2c

π h̄ε0

∫ ∞

0
d|k| |k|3e− 1

2 T 2(c|k|+
2pz1s )2(
4a2

0|k|2 + 9
)6 + O(e4).

(106)

Using natural units for a hydrogen atom (the generalization
to a hydrogenoid atom is straightforward) with c = h̄ = ε0 =
1, e ≈ 137−1/2, a0 ≈ 2.68 × 10−4 eV−1, m ≈ 5.1 × 105 eV,
and 
 ≈ 3.73 eV, we plot the vacuum excitation probability
in Fig. 1 which will be our reference point for the calculations
of the next section.

3. Calculation for a boosted observer

Now let us compare the previous result with the transition
probability as computed by an observer that moves in the z di-
rection as seen from the laboratory frame with velocity v. This
corresponds to a Lorentz boost in the z direction, i.e., {cτ =
cosh η ct − sinh η x3, ξ3 = cosh η x3 − sinh η ct} with rapid-
ity η. As the electric field transforms via (91), the electric
field Wightman tensor in the probability expression of (103)
transforms as

W i j
E [t, t ′; x, x′] → γ 2

(
W i j

E [t, t ′; x, x′] + εabiεcd jv
avcW bd

B [t, t ′; x, x′] + εabivaW
b j

BE [t, t ′; x, x′] + εcd jv
cW id

EB[t, t ′; x, x′]
)

+ (1 − γ )2(ev )a(ev )bW
ab

E [t, t ′; x, x′](ev )i(ev ) j + γ (1 − γ )
{
W ia

E [t, t ′; x, x′](ev )a(ev ) j + W a j
E [t, t ′; x, x′](ev )a(ev )i

+ εabiv
aW bc

BE [t, t ′; x, x′] + εcd jv
cW ad

EB[t, t ′; x, x′](ev )a(ev )i
}
. (107)

We can then use va = vδa3, and the relations (93), (94), and (95), to arrive at

WE [t, t ′; x, x′] → h̄c

2ε0

∫
R3

d3k
(2π )3

|k|e−ic|k|(t−t ′ )eik·(x−x′ )M, (108)

where

M =

⎛
⎜⎜⎝

γ 2
(
1 − e3

k
v
c

)2 − e1
ke1

k −e1
ke2

k γ e1
k

(
v
c − e3

k

)
−e1

ke2
k γ 2

(
1 − e3

k
v
c

)2 − e2
ke2

k γ e2
k

(
v
c − e3

k

)
γ e1

k

(
v
c − e3

k

)
γ e2

k

(
v
c − e3

k

)
1 − e3

ke3
k

⎞
⎟⎟⎠. (109)
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The excitation probability therefore becomes

P = e2

h̄2

h̄c

2ε0

∫
R3

d3k
(2π )3

|k|
∫∫

R2
dtdt ′e−ic|k|(t−t ′ )

×
∫∫

R6
d3xd3x′eik·(x−x′ )

× χ (τ (t, x))χ (τ (t ′, x′))ei
2pz1s (τ (t ′,x′ )−τ (t,x))

× F2pz1s(ξ(t, x)) · M · F2pz1s(ξ(t ′, x′)) + O(e4). (110)

With the change of variables (applied twice) {ct =
cosh η cτ + sinh η ξ3, x3 = cosh η ξ3 + sinh η cτ }, which is
equivalent to the inverse Lorentz transformation (and thus
nonsingular), we get exactly the same result as in the proper
frame of the atom for the transition probability in Eq. (106).
Similarly one can check numerically that Eq. (110) reproduces
Fig. 1. It is clear then that since the model is covariant, choos-
ing a convenient frame, the atomic rest frame in this example,
significantly simplifies the calculations.

VI. IMPLICATIONS FOR THE UNRUH-DEWITT MODEL

One of the most common scalar approximations to the
light-matter interaction is the use of the UDW model pre-
sented in Sec. II A. This model can certainly approximate
the light-matter interaction under the effective dipole approx-
imation when we consider a “heavy” atom with a classical
center of mass even when the atomic motion is relativistic as
discussed in a number of previous papers [44,45,47].

For the effective dipole model, we can always describe the
interaction in the comoving frame of the atom where there
would be no Röntgen term, and the corresponding Röntgen
terms in other frames emerge out of the reference frame trans-
formations as described in Sec. V. However, after the analysis
of the dynamics of the atomic center of mass and the internal
degrees of freedom of the atom, one may wonder whether
the usual scalar approximations to the light-matter interaction
(such as the Unruh-DeWitt model) can be “upgraded” to phe-
nomenologically capture (still with a simple scalar model) the
effect of the missing Röntgen terms outside of the “infinitely
heavy” proton approximation of the effective dipole model.
This is particularly relevant when one has a quantum center
of mass which is necessarily delocalized in momentum since
momentum eigenstates are nonphysical.

Based on the interaction Hamiltonian (44) we propose the
following scalar analog of the dipole interaction:

ĤScalar = ĤMono + ĤRö, (111)

that is, the sum of a monopole moment like in the UDW model
and an analog scalar Röntgen term. This monopole term has
the peculiarity that spatial localization is given in terms of the
COM wave function (as was also argued in [22]). The new
monopole interaction then reads

Ĥmono = λμ̂ ⊗
∫
R3

d3R φ̂(R)|R〉〈R|. (112)

We also need to add an effective coupling of the internal,
COM, and field degrees of freedom mimicking the Röntgen
interaction of (44). This interaction is vectorial in its core,
so it is very difficult to capture its behavior in an analog

scalar model. As we will see, a qubit UDW detector is not
naturally well suited to build such an analogy outside the
(1 + 1)-dimensional case. Further, we need an analog of the
magnetic field operator to build up our Röntgen facsimile.

Our analogy starts between the (n + 1)-dimensional scalar
field as an expansion in plane-wave modes,

φ̂(t, x) =
∫

dnk

(2π )n/2
√

2ω
(e−iωt+ik·xâk + H.c.), (113)

and the electric field (55). We have also a relation between
the magnetic and electric field through the Maxwell equation
∂0Ê = ∇ × B̂ (without external currents). Finding a scalar
analog of this equation that is so remarkably vectorial in
nature will come at the price of some ambiguities and choices
in the model. From the Heisenberg equation of motion we
know that ∂0φ̂ = π̂ , where

π̂ (t, x) = −
∫

dnk
(2π )n/2

√
ω

2
(ie−iωt+ik·xâk + H.c.) (114)

is the canonical momentum operator to φ̂. As there is nec-
essarily a limitation in the alignment of scalar and vector
theory, we suggest here finding an operator ∇X̂ mimicking the
magnetic field such that π̂ = (∇X̂ ) · ε is satisfied, for some
spatial direction ε.

In (1 + 1)D it is straightforward to find the operator

∂xX̂ (t, x) = −∂xφ̂(t, x), (115)

being nothing else than the spatial derivative of the field op-
erator itself. Therefore, an analogous construction in (1 + 1)
dimensions for the Röntgen term of the UDW model would
read

ĤRö = −λ

∫
R

dR

{
P̂

2M
, μ̂ · ∂Rφ̂(R)

}
+
|R〉〈R|. (116)

To better capture an analogy to the Röntgen term in (3 + 1)
dimensions let us therefore model from here on the internal
detector degrees of freedom through a quantum harmonic
oscillator (as is also common for UDW detectors [61–65])
with respective position and momentum operators q̂ and p̂q.
We suggest then that our analog magnetic field should be
−∇φ̂. Therefore, an analogous construction for the Röntgen
term of the UDW model would read

ĤRö = −λ

∫
R3

d3R
{

P̂
2M

, x̂ × ∇Rφ̂(R)

}
+
|R〉〈R|. (117)

Notice that, the same as in the full nonrelativistic light-matter
interaction, this term couples the internal degrees of freedom
of the atom simultaneously with both the COM degrees of
freedom and the field. This coupling cannot be expected to be
any less significant for relativistic studies where the relativis-
tic corrections induce additional couplings between all these
degrees of freedom. Adding to the usual monopole coupling a
term analogous to the Röntgen dynamics is thus necessary if
one wants to mimic atom-light interactions, and if the COM
is treated as a quantum degree of freedom.

Modifications to the UDW model beyond the correspon-
dence with the nonrelativistic multipolar Hamiltonian can be
thought of along several routes. A leading order correction
could come from the analogy with the subleading Darwin
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Hamiltonian from Sec. IV. This however cannot provide a
fully relativistic treatment, and so a nonperturbative approach
is preferable to account for ultrarelativistic regimes. Second,
so far the spin degrees of freedom have been neglected due to
their subleading order effects. However, in relativistic regimes
a coupling of those spin degrees of freedom with the other
atomic and field degrees of freedom should be expected to
become significant. A scalar construction inspired by the Breit
Hamiltonian [55] may be a possible avenue of future work.

VII. CONCLUSION

In this study, we gave an account of the different levels of
light-atom interaction models that are commonly encountered
in the literature, in particular the RQI community. Our aim
was to bring focus on (a) the gauge issues that appear when
considering the light-matter interaction when the center of
mass of the atom is not classical and (b) the often neglected
dynamics arising from the center-of-mass degrees of freedom
that are still leading order and important when considering
quantum COM dynamics, such as Röntgen terms.

We reviewed, with a focus on the models typically used
in RQI, the Hamiltonian formulation of the interaction of an
atom with the electromagnetic field. We reviewed in detail
the different ingredients of the derivation of the multipolar
Hamiltonian of an atom interacting with quantized light at
the dipole level in the nonrelativistic COM motion approx-
imation. Through this, we gave an account of the subtleties
of the transformations between different Hamiltonian formu-
lations for a two-particle atom. We discussed the origin of
the different terms in the Hamiltonian in the preferable and
physically motivated set of canonical variables for which we
can understand the interaction as a hydrogen-like atom per-
turbed by a dynamical electromagnetic field. We discussed
how relativistic COM motion needs to incorporate extra cou-
plings between internal and external degrees of freedom of the
atom when the COM is quantum. In the nonrelativistic regime

we discussed the importance of the Röntgen term for proper
atomic dynamics, in particular at the example of transition
rates and for a delocalized COM. We also discussed how the
Röntgen cannot be canceled by a choice of reference frame
for a quantized center of mass.

We further showed that one can nonetheless consider
relativistic atomic trajectories in simple ways if one is will-
ing to neglect some of the atomic dynamics and treat the
COM as classical. This allows us to use a simple effec-
tive dipolar interaction model, which—in contrast to the
nonrelativistic multipolar Hamiltonian which is manifestly
Galilei-invariant—satisfies a Lorentz-covariant prescription.
Lastly, in the context of scalarized field-matter models, we
suggested modifying the Unruh-DeWitt model if we want to
account for the COM dynamics that comes through the Rönt-
gen term and acts at the same order in all small parameters as
the dipole term.

The discussions in this paper are intended to provide a
closer and more detailed link between the simple particle
detector models (ubiquitously employed in quantum field the-
ory in curved spacetimes as well as in relativistic quantum
information) and atomic physics, pointing out the subtleties
regarding gauge transformations and choice of physical vari-
ables, and identifying to what extent and in what regimes
scalar models capture essential features of the light-matter
interaction. These notes pave the way to further studies of how
relativistic motion of delocalized center-of-mass atoms influ-
ence typical protocols of relativistic quantum information, and
will undoubtedly be studied elsewhere.
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APPENDIX A: COMPARISON OF PZW AND DIRAC-HEISENBERG TRANSFORMATION

In this section we prove that the Dirac-Heisenberg transformation from Eq. (18) is identical to the PZW transformation of
Eq. (19) to all orders. To do so, we expand the field around the position of the COM coordinate R and perform the integral over
λ. From Eq. (18) we get

�̂ =
∫
R3

d3R
∫
R3

d3r|R〉〈R| ⊗ |r〉〈r|
∫ 1

0
dλ

∞∑
n=0

1

n!
rn · ∇n

R(r · Â(t, R))
(
λ − me

M

)n

=
∫
R3

d3R
∫
R3

d3r|R〉〈R| ⊗ |r〉〈r|
∞∑

n=0

rn · ∇n
R

(
r · Â(t, R)

)
(n + 1)!

[(mp

M

)n+1
+ (−1)n

(me

M

)n+1]
. (A1)

We can see that truncating after the first two terms yields �̂(1), i.e., Eq. (17). Now we compare to the PZW transformation:

�̂PZW =
∑
i=e,p

ei

|e| (r̂i − R̂) ·
∫ 1

0
dλ Â(t, R̂ + λ(r̂i − R̂))

=
∫
R3

d3R
∫
R3

d3r|R〉〈R| ⊗ |r〉〈r|r ·
∫ 1

0
dλ
[mp

M
Â
(

t, R + λ
mp

M
r
)

+ me

M
Â
(

t, R − λ
me

M
r
)]
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=
∫
R3

d3R
∫
R3

d3r|R〉〈R| ⊗ |r〉〈r|
∫ 1

0
dλ

∞∑
n=0

λn

n!
rn · ∇n

R

(
r · Â(t, R)

)[(mp

M

)n+1
+ (−1)n

(me

M

)n+1]

=
∫
R3

d3R
∫
R3

d3r|R〉〈R| ⊗ |r〉〈r|
∞∑

n=0

rn · ∇n
R

(
r · Â(t, R)

)
(n + 1)!

[(mp

M

)n+1
+ (−1)n

(me

M

)n+1]
, (A2)

where for the second line we used

r̂e = R̂ + mp

M
r̂, r̂p = R̂ − me

M
r̂. (A3)

We see that the PZW transformation of (A2) and the Dirac-Heisenberg transformation of (A1) are identical to all orders, and
that, therefore, we will obtain the multipolar Hamiltonian after canonical transformation.

APPENDIX B: COMMUTATOR COMPUTATIONS

Through derivatives acting on

[Âi(t, x), Â j (t, x′)] =
∫
R3

d3k
(2π )3

h̄

2ε0c|k|
(
δi j − ei

ke j
k

)
(eik·(x−x′ ) − e−ik·(x−x′ ) ), (B1)

we find the commutators

[Âi(t, x), ∂l Â
j (t, x′)] =

∫
R3

d3k
(2π )3

−ih̄

2ε0c|k|kl
(
δi j − ei

ke j
k

)
(eik·(x−x′ ) + e−ik·(x−x′ ) )

x=x′−−→ 0, (B2)

[∂l Â
i(t, x), ∂mÂ j (t, x′)] =

∫
R3

d3k
(2π )3

h̄

2ε0c|k|kmkl
(
δi j − ei

ke j
k

)
(eik·(x−x′ ) − e−ik·(x−x′ ) )

x=x′−−→ 0, (B3)

[Âi(t, x), ∂t∂l Â
j (t, x′)] =

∫
R3

d3k
(2π )3

h̄

2ε0
kl
(
δi j − ei

ke j
k

)
(eik·(x−x′ ) − e−ik·(x−x′ ) )

x=x′−−→ 0, (B4)

[∂l Â
i(t, x), ∂t Â

j (t, x′)] =
∫
R3

d3k
(2π )3

h̄

2ε0
(−kl )

(
δi j − ei

ke j
k

)
(eik·(x−x′ ) − e−ik·(x−x′ ) )

x=x′−−→ 0, (B5)

[Âi(t, x), ∂t Â
j (t, x′)] =

∫
R3

d3k
(2π )3

ih̄

2ε0

(
δi j − ei

ke j
k

)
(eik·(x−x′ ) + e−ik·(x−x′ ) ) = ih̄

ε0
δi j,(tr)(x − x′), (B6)

[∂l Â
i(t, x), ∂t∂mÂ j (t, x′)] =

∫
R3

d3k
(2π )3

ih̄

2ε0
kl km

(
δi j − ei

ke j
k

)
(eik·(x−x′ ) + e−ik·(x−x′ ) ) = ih̄

ε0

∂δi j,(tr)(x − x′)
∂xl∂x′m ; (B7)

note that ∂t Â j = −Ê j , and δi j,(tr)(x) = 1
(2π )3

∫
R3 d3k(δi j − e j

ke j
k)eik·x is the transverse delta function. We see that in the coin-

cidence limit x = x′, Eqs. (B1)–(B5) vanish. Equation (B2) vanishes due to parity: there is always an odd number of powers
of ki being integrated over the whole momentum space. The other commutators are zero due to the cancellations of the plane
waves. As all spatial commutators (without any time derivative being involved) vanish, this implies that the vector potential is
left invariant under the unitary operator generated by Eq. (17). As we work in the dipole approximation, no higher derivatives
will be needed to compute ˆ̃H (1) in Eq. (23).

APPENDIX C: RELATIONS BETWEEN THE DIFFERENT ELECTROMAGNETIC WIGHTMAN TENSORS

The Wightman tensors can be derived in integral form by virtue of 〈0|âk,sâ
†
k′,s′ |0〉 = δs,s′δ(k − k′), and the completeness

relations of the polarization vectors

2∑
s=1

εi
k,sε

j
k,s = δi j − e j

ke j
k = F (δi j,(tr) ), (C1)

where F represents the Fourier transform from x to k. It turns out that knowing two Wightman tensors suffices to characterize
all remaining Wightman tensors of the electromagnetic field strength tensor. Starting with the purely electric field case, we get

W i j
E [t, t ′; x, x′] = 〈0|Ê i(t, x)Ê j (t ′, x′)|0〉

=
2∑

s,s′=1

h̄c

2(2π )3ε0

∫
R3

d3k
∫
R3

d3k′√|k||k′|εi
k,sε

j
k,s′ 〈0|âk,sâ

†
k′,s′ |0〉e−ic(|k|t−|k′|t ′ )ei(k·x−k′·x′ )

= h̄c

2ε0

∫
R3

d3k
(2π )3

|k|e−ic|k|(t−t ′ )eik·(x−x′ )(δi j − ei
ke j

k

)
. (C2)
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For the purely magnetic Wightman function we make use of (assuming a right-handed orthonormal basis)

ek × εk,s =
{
εk,2, s = 1,

−εk,1, s = 2,
⇒

2∑
s=1

(ek × εk,s)i(ek × εk,s) j =
2∑

s=1

εi
k,sε

j
k,s. (C3)

It follows then simply

W i j
B [t, t ′; x, x′] = 〈0|B̂i(t, x)B̂ j (t ′, x′)|0〉 = W i j

E [t, t ′; x, x′]
c2

. (C4)

For the remaining Wightman functions we need

2∑
s=1

(ek × εk,s)iε
j
k,s = εi

k,2ε
j
k,1 − εi

k,1ε
j
k,2 = −εi jk (ek)k . (C5)

Hence, we find

W i j
BE [t, t ′; x, x′] = 〈0|B̂i(t, x)Ê j (t ′, x′)|0〉 = − h̄

2ε0

∫
R3

d3k
(2π )3

|k|e−ic|k|(t−t ′ )eik·(x−x′ )εi jk (ek)k = W ji
EB[t, t ′; x, x′]. (C6)
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