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Dark-state and loss-induced phenomena in the quantum-optical regime of �-type three-level systems
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The interaction of matter with quantum light leads to phenomena which cannot be explained by semiclassical
approaches. Of particular interest are states with broad photon-number distributions which allow processes with
high-order Fock states. Here, we analyze a Jaynes-Cummings–type model with three electronic levels which
is excited by quantum light. As quantum light we consider coherent and squeezed states. In our simulations
we include several loss mechanisms, namely, dephasing, cavity, and radiative losses which are relevant in real
systems. We demonstrate that losses allow one to control the population of electronic levels and may induce
coherent population trapping, as well as lead to a redistribution of the photon statistics among the quantum fields
and even to a transfer of the photon statistics from one field to another. Moreover, we introduce and analyze
a quantity, the quantum polarization, and demonstrate its fundamental difference compared to the classical
polarization. Using the quantum polarization and the third-level population, we investigate electromagnetically
induced transparency in the presence of quantum light and show its special features for the case of squeezed
light. Finally, quantum correlations between fields are studied and analyzed in the presence of different types of
losses.
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I. INTRODUCTION

Three-level systems (3LS) are a brilliant concept in optics
as they are frequently used for the approximate description
of atomic systems as well as semiconductors and semicon-
ductor nanostructures in situations where predominantly two
transitions can be excited [1–3]. Here, we consider a � system
[4–7] which has been utilized for both, the study of optical
excitations with classical light [8,9], and for effects that are
exclusive for the quantum-optical regime [10–12]. � systems
can be realized in different ways: from optically pumped
semiconductor quantum wells enclosed in optical microcav-
ities [13,14] to charged semiconductor quantum dots [15,16]
and doped semiconductors in strong magnetic fields [17].

Prominent applications that were established by the use of
�-type 3LS are coherent population trapping (CPT) [1,18,19]
and electromagnetically induced transparency (EIT) [1,20–
23], which both describe the formation of dark states [24].
While these phenomena are well studied for classical light,
the quantum-optical regime is poorly investigated and needs a
careful analysis.

Quantum light has several advantages compared to classi-
cal light. The quantum-mechanical description of light as pho-
tons allows for different photon statistics, leading to a class of
states with unique properties. Important examples are higher-
order Fock states [25] and single-photon states [26–29], which
are a central requirement for quantum-information processing
[30] and quantum cryptography [31], as well as squeezed
states [32–34], that allow to reduce the noise level below the
shot-noise limit [32] and were successfully applied to reduce
quantum noise in gravitational wave detectors [35]. Recent
progress in the generation of squeezed light with a large num-
ber of photons includes optical parametric oscillators with the

four-wave mixing (FWM) [32] or the parametric downcon-
version (PDC) process [33,36], as well as optical parametric
amplifiers with short pump pulses [37], which allow the cre-
ation of both highly multimode and single-mode squeezed
states [38]. Experimental preparation of a coherent state can
be carried out by reducing the noise of a laser source due
to proper attenuation [39,40]. The use of quantum light also
leads to phenomena, such as entanglement between light and
matter [41], where a description of the matter with a 3LS is at
the origin of quantum memories [42–44], quantum repeaters
[45], optical storage [46], and all-optical neural networks [47].
Therefore, fundamental properties of the interaction between
quantized light and 3LS are of great interest.

In this article, we investigate the interaction between 3LS
and different kinds of quantum light. Extending a previous
investigation [4] we demonstrate dark-state phenomena such
as EIT and CPT in the quantum-optical regime in the presence
of losses. In contrast to CPT, EIT was not yet demonstrated
within a quantum-optical model taking into account photon
statistics of quantum fields. In this work, we demonstrate it for
coherent and squeezed vacuum states. Since for some quan-
tum fields the classical polarization vanishes, we introduce
a measure to characterize a system interacting with quantum
light: a quantum polarization. The quantum polarization de-
scribes the specific response of the system to quantized light
and contains an information about light-matter correlations.
We use the quantum polarization as well as the time-averaged
population for the demonstration of EIT spectra. The quantum
polarization is compared with the classical polarization and
its benefits are discussed. Finally, we demonstrate and investi-
gate the influence of losses on quantum correlations between
fields.

2469-9926/2021/103(1)/013702(13) 013702-1 ©2021 American Physical Society

https://orcid.org/0000-0002-3079-5428
https://orcid.org/0000-0003-0229-5992
https://orcid.org/0000-0001-8864-2072
https://orcid.org/0000-0003-2115-1847
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.103.013702&domain=pdf&date_stamp=2021-01-05
https://doi.org/10.1103/PhysRevA.103.013702


H. ROSE et al. PHYSICAL REVIEW A 103, 013702 (2021)

first
field

second
field

FIG. 1. Illustration of the considered three-level system.

II. THEORETICAL MODEL

In this work we consider a Jaynes-Cummings–type model:
the interaction between a 3LS and two quantum fields. The
electronic states of the 3LS are denoted with |1〉 for the ground
state and |2〉 and |3〉 for the excited states and we consider
that initially only state |1〉 is fully populated. The transition
between |1〉 and |2〉 is dipole forbidden, while the other tran-
sitions are allowed. We consider two single-mode quantum
fields: the first field excites the transition between levels |1〉
and |3〉, while the second field excites the transition between
levels |2〉 and |3〉. This setup is known as the � scheme and
illustrated in Fig. 1.

The full Hamiltonian describing the model can be written
as the sum of the Hamiltonians corresponding to matter, light
fields, and their interaction:

Ĥ = Ĥ3LS + ĤL,P + ĤL,C + ĤI,P,1 + ĤI,C,2, (1)

where the index L denotes the field Hamiltonians, I the inter-
action Hamiltonians, P corresponds to the first field, and C to
the second field. With the transition operator σ̂i j = |i〉 〈 j| and
bosonic creation (annihilation) operators â†

i (âi) for the mode
i, the Hamiltonians read as

Ĥ3LS =
3∑

n=1

Enσ̂nn, (2)

ĤL,i = h̄ωi

(
â†

i âi + 1

2

)
, (3)

ĤI,i, j = −μ j3ε0i√
2

(â†
i + âi )(σ̂ j3 + σ̂3 j ), (4)

where En are the energies of the electronic levels, μi j is
the dipole matrix element for the |i〉 → | j〉 transition, and

ε0i =
√

4π h̄ωi
V is the constant field amplitude where V denotes

the interaction volume [48]. Applying the rotating-wave ap-
proximation (RWA) leads to the omission of the terms â†

i σ̂3 j

and âiσ̂ j3 in the light-matter interaction. The von Neumann
equation for the density matrix ρ̂ including losses reads as

∂t ρ̂ = 1

ih̄
[Ĥ , ρ̂]− +

∑
L̂

L̂L̂(ρ̂ ), (5)

where the Lindblad term L̂L̂(ρ̂) describes losses by the opera-
tor L̂ [49]. In the Schrödinger picture, the Lindblad term reads
as

L̂L̂(ρ̂) = 1
2 (2L̂ρ̂L̂† − L̂†L̂ρ̂ − ρ̂L̂†L̂). (6)

We take into account three loss mechanisms: cavity losses,
radiative losses, and dephasing losses with parameters κ , r,
and γ , respectively. The cavity losses arise from the finite
lifetime of a photon in the cavity and are modeled with the op-
erator L̂ = √

κ âi. Furthermore, the recombination of electrons
from excited states to the ground state without emission of a
photon leads to radiative losses which are modeled with L̂ =√

ri, j |i〉 〈 j| for Ej > Ei. These losses are also applied to the
dipole-forbidden transition and take into account higher-order
processes. Moreover, material polarizations can decay due to
various processes, e.g., scattering with phonons or Coulomb
scattering. This is described by dephasing losses which are
modeled with L̂ = √

γi, j (|i〉 〈i| − | j〉 〈 j|) for i > j [50]. The
dephasing losses will be applied only to the nondiagonal ele-
ments since they decay more rapidly than the diagonal ones.

The density matrix is composed of three subsystems,
namely, the electronic levels and two light modes, and can
be written in the general form

ρ̂ =
3∑

n = 1
n′ = 1

∞∑
k = k′ = 0
m = m′ = 0

ρ n, k, m
n′, k′, m′

|n, k, m〉 〈n′, k′, m′| , (7)

where n denotes the electronic state which can either be 1, 2,
or 3 and k and m denote Fock states of the first and the second
field, respectively. In the initial moment of time, the electronic
and fields subsystems are given by

|M〉 =
3∑

n=1

cM
n |n〉 , (8)

|P〉 =
∞∑

k=0

cP
k |k〉 , (9)

|C〉 =
∞∑

m=0

cC
m |m〉 , (10)

where cM
n are the probability amplitudes for an electron to be

in the state |n〉 and cP
k and cC

m are the probability amplitudes to
find the first field in the Fock state |k〉 and the second field in
the Fock state |m〉, respectively.

Therefore, the statistics of the quantum fields are incor-
porated in the initial condition for Eq. (5). In this paper,
we consider coherent and squeezed vacuum states at the
initial moment of time. A coherent state |α〉 gives the
quantum-mechanical description of classical laser light and is
characterized by the following probability amplitudes ck and
the mean photon number 〈n̂〉 = 〈â†

i âi〉:

ck = e− |α|2
2

αk

√
k!

, (11)

〈n̂〉 = |α|2. (12)

The probability amplitudes and the mean photon number of a
squeezed state |ξ 〉 read as

c2k = (−1)k

√
2β

1 + β2

√
(2k)!

2kk!

(
1 − β2

1 + β2

)k

, (13)

c2k+1 = 0, (14)
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〈n̂〉 = 1

4

(
β − 1

β

)2

, (15)

where ξ = e−|β| is the squeezing parameter. Squeezed vacuum
states are characterized by zero population of all odd states,
however, this situation can be changed due to different pro-
cesses, e.g., interaction with matter or losses. To denote the
mean photon number of the first and the second fields, we use
NP and NC , respectively. In the case of 〈n̂〉 = NP = NC , we
will use only 〈n̂〉.

The population of the electronic states On and the photon
distribution of the first Wk and the second W̃m fields can be
extracted by tracing out the density matrix over the other
variables

On(t ) =
∞∑

k=0

∞∑
m=0

ρn, k, m
n, k, m

, (16)

Wk (t ) =
3∑

n=1

∞∑
m=0

ρn, k, m
n, k, m

, (17)

W̃m(t ) =
3∑

n=1

∞∑
k=0

ρn, k, m
n, k, m

. (18)

The polarization response for classical fields is proportional to
the dipole moment, averaged over the time-dependent wave
function [2]. This would result in our case in the following
expression for a classical polarization response to the first
field:

PC
31(t ) =

∞∑
k=0

∞∑
m=0

ρ3, k, m
1, k, m

. (19)

During the interaction of matter with quantum fields, the
light and the matter subsystems become correlated and the
averaged dipole moment can be zero for certain initial states of
light. This leads to a vanishing classical polarization response

because an excitation of electronic levels is connected with a
corresponding change in the field statistics.

Thus, one should introduce a measure, the quantum polar-
ization response, where both the dipole operator and the field
operator are taken into account. This quantum polarization for
a chosen electronic transition can be obtained from the density
matrix by tracing out one of the fields. For example, for the
transition between levels |1〉 and |3〉 initiated by the first field,
the quantum polarization reads as

P̂31(t ) =
∞∑

m=0

ρ3, k, m
1, k′, m

|k〉 〈k′| . (20)

Since we suppose only single-photon absorption and emission
processes, only the elements which fulfill k = k′ − 1 are con-
sidered. Thus, the macroscopic quantum polarization can be
written as

PQ
31(t ) =

∞∑
k=0

∞∑
m=0

ρ 3, k, m
1, k + 1, m

. (21)

In a numerical simulation, the sum is truncated by introducing
the maximum photon numbers kmax and mmax that can be
chosen differently for both fields and strongly depend on the
initial field statistics. Since the number of elements in the
density matrix increases with the fourth power of the maxi-
mum photon number, the numerical evaluation is a demanding
task for high photon numbers. However, the problem can be
simplified using the following substitution:

ρ n, k, m
n′, k′, m′

= p n, k, m
n′, k′, m′

exp

(
1

ih̄
(En,k,m − En′,k′,m′ )t

)
, (22)

where En,k,m = En + Ek + Em is the total energy composed
of electronic state and photon energies. Subsequently, detun-
ings for the excitations can be introduced as �P = E3 − E1 −
(Ek+1 − Ek ) for the first and �C = E3 − E2 − (Em+1 − Em)
for the second field. After applying the RWA, Eq. (5) is trans-
formed to

∂t p n, k, m
n′, k′, m′

(t ) = �1
i√
2

(
pn + 2, k − 1, m

n′, k′, m′
(t )ei�Pt

√
k + pn − 2, k + 1, m

n′, k′, m′
(t )e−i�Pt

√
k + 1

− p n, k, m
n′ + 2, k′ − 1, m′

(t )e−i�Pt
√

k′ − p n, k, m
n′ − 2, k′ + 1, m′

(t )ei�Pt
√

k′ + 1

)

+�2
i√
2

(
pn + 1, k, m − 1

n′, k′, m′
(t )ei�Ct (1 − δn,1)

√
m + pn − 1, k, m + 1

n′, k′, m′
(t )e−i�Ct (1 − δn,2)

√
m + 1

− p n, k, m
n′ + 1, k′, m′ − 1

(t )e−i�Ct (1 − δn′,1)
√

m′ − p n, k, m
n′ − 1, k′, m′ + 1

(t )ei�Ct (1 − δn′,2)
√

m′ + 1

)

+ κ

2

[
2p n, k + 1, m

n′, k′ + 1, m′
(t )

√
k + 1

√
k′ + 1 + 2p n, k, m + 1

n′, k′, m′ + 1

(t )
√

m + 1
√

m′ + 1 − p n, k, m
n′, k′, m′

(t )
(
k + k′ + m + m′)]

− γn,n′ p n, k, m
n′, k′, m′

(t )(1 − δn,n′ ) + 1

2

2∑
i=1

ri,3

[
p 3, k, m

3, k′, m′
(t )2δn,iδn,n′ − p n, k, m

n′, k′, m′
(t )(δ3,n + δ3,n′ )

]

+ r1,2

2

[
2p 2, k, m

2, k′, m′
(t )δ1,nδn,n′ − p n, k, m

n′, k′, m′
(t )(δ2,n + δ2,n′ )

]
. (23)
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FIG. 2. Time evolution of the electronic level populations with
dephasing, radiative, and cavity losses. The loss parameters are set to
κ = 0.001�1, r1,3 = r2,3 = 0.01�1, r1,2 = 0.002�1, γ3,1 = γ3,2 =
0.01�1, and γ2,1 = 0.002�1. Two exciting coherent states with
〈n̂〉 = 10 are considered. The dynamics is shown up to (a) t�1 = 100
and (b) t�2 = 5000.

This set of differential equations allows to identify the ele-
ments that are relevant for the dynamics. Without losses and
detunings, Eq. (23) can be solved analytically [4].

In the following, we use times and frequencies in units of
Rabi periods 1

�1
and Rabi frequencies �1, respectively, and

use �2 = �1 for all simulations, where �i = 1
h̄μi3ε0i is the

Rabi frequency for the respective transition. For a coherent
state with a mean photon number of 〈n̂〉 � 100 or a squeezed
state with a mean photon number of 〈n̂〉 � 10, kmax = 200 is
chosen, while for a squeezed state with a mean photon number
of 〈n̂〉 � 100, kmax = 1200 is chosen.

III. RESULTS AND DISCUSSION

In this section, we present and discuss our theoretical con-
siderations and the results of our numerical simulations. First,
it is shown that the population dynamics and the photon statis-
tics can be manipulated by loss mechanisms. After that, we
investigate the EIT effect within the quantum-optical regime
and compare the classical and the quantum polarizations.
Lastly, the impact of losses on quantum-optical correlations
between the two quantum fields is studied. Henceforth, the
initial condition for the electronic system is chosen as cM

1 = 1
and cM

2 = cM
3 = 0.

A. Manipulation of population dynamics with losses

In this section, we show that losses can influence the
dynamics of observables in unexpected and nontrivial ways
and may induce interesting effects such as CPT. We start our
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FIG. 3. Time evolution of the population and the coherence PC
21

with losses for two coherent states with mean photon numbers of
〈n̂〉 = 10. Cavity and dephasing losses are neglected, while the pa-
rameters for the radiative losses are set to r1,3 = r2,3 = 0.05�1 and
in (a) r1,2 = 0 whereas in (b) r1,2 = 0.01�1.

analysis by considering the population dynamics for the ex-
citation by two coherent states with mean photon numbers of
〈n̂〉 = 10 in the presence of weak losses (see Fig. 2). The loss
parameters are chosen as κ = 0.001�1, r1,3 = r2,3 = 0.01�1,
r1,2 = 0.002�1, γ3,1 = γ3,2 = 0.01�1, and γ2,1 = 0.002�1.

We note that in the time range shown in Fig. 2(a), the well-
known behavior of collapses and revivals is seen in the level
populations induced by coherent fields. However, due to the
presence of losses, all level populations are finally transferred
to the ground state, i.e., O1 = 1 and O2 = O3 = 0, as can be
seen on the long timescale shown in Fig. 2(b). This is caused
by the finite photon flux in the quantum-optical regime. All
excitations from the finite photon flux are lost over time due
to cavity losses and thus the system reverts to the ground
state again. In contrast, continuous-wave classical fields have
a steady photon flux by which steady states different from the
ground state can be formed.

Contrary to a conventional treatment, the presence of losses
enables the control of the population dynamics, which we will
demonstrate below focusing on CPT. In atomic three-level
systems with the first and the second levels populated initially,
CPT can be achieved by introducing an initial relative phase
between the populated atomic states, the states of light, or the
dipole matrix elements [1,4]. This is not possible when only
the lowest electronic level is initially populated. However,
activated radiative losses r1,3 and r2,3 lead to a fast decay of
the third level, whereby almost equal populations of the first
and the second levels can be achieved, which is demonstrated
in Fig. 3(a). For this analysis, we assume high-quality cavities
that provide negligibly small photon losses, so that we can
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study the effects induced by radiative losses without taking
the cavity losses into account. Therefore, we consider quasi-
steady states, that are induced by radiative losses at a point in
time where the photon losses do not have a visible impact.

This result is better understood by considering the reduced
density matrix, traced over the states of light:

ρ̂red =
∞∑

k,m

〈k, m| ρ n, k′, m′
n′, k′′, m′′

|n, k′, m′〉 〈n′, k′′, m′′|k, m〉 . (24)

We can identify the diagonal elements as populations and the
nondiagonal elements or coherences as classical polarizations,
i.e., 〈i|ρ̂red|i〉 = Oi and 〈i|ρ̂red| j〉 = PC

i j , respectively. The clas-
sical polarization for the transition |i〉 → | j〉 is calculated with
Eq. (19), by substituting indices 1 and 3 with i and j. Note
that considering i, j ∈ {1, 2} is sufficient in the steady state
since O3 = 0. Therefore, Fig. 3(a) fully describes the reduced
density matrix. An important quantity in this context is the
Schmidt number K , which is given by

K = 1

Tr
[
ρ̂2

red

] , (25)

where Tr is the trace. In the case discussed above, the expres-
sion for the Schmidt number simplifies to

K = 1

O2
1 + O2

2 + 2
∣∣PC

21

∣∣2 , (26)

which is found to be very close to one in the steady state
and therefore the electronic subsystem is essentially in a pure
state. Thus, we find a coherent superposition of levels |1〉 and
|2〉. The classical polarization carries information about the
relative phase of these levels. Denoting the absolute phases of
levels |1〉 and |2〉 with φ1 and φ2, respectively, we can rewrite
the classical polarization for a pure steady state as

PC
21st =

√
O1O2ei(φ2−φ1 ), (27)

which equals to PC
21 for K = 1. Since Im[PC

21] = 0 and
Re[PC

21] < 0 in the steady state, we can conclude that the
electronic levels |1〉 and |2〉 have a relative phase of π and
CPT is realized.

Figure 3(b) shows a more realistic scenario, in which a
finite r1,2 is introduced. In this case, losses are applied to
the dipole-forbidden transition also and therefore the CPT is
finally destroyed. However, since the r1,2 losses are small, we
find a large time interval where CPT is still present.

For the case of two squeezed vacuum states, we can also
achieve almost equal populations of the first and the second
electronic levels in the steady state by applying losses (see
Fig. 4). However, due to complete vanishing of the classical
polarization for the squeezed vacuum light PC

21 = 0, in the
steady-state regime the Schmidt number is K = 2. This means
that the electronic subsystem is in a mixed state and there
is no CPT. Thereby, in contrast to coherent fields, squeezed
vacuum fields do not induce CPT but lead to the entanglement
of electronic levels which were initially in a pure state.

B. Manipulation of photon statistics with losses

The controlled manipulation of the dynamics is not limited
to the electronic level populations, but can also be applied to
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FIG. 4. Time evolution of the population with losses for two
squeezed vacuum states with a mean photon number of NP = 10
and NC = 4, respectively. Cavity and dephasing losses are neglected,
while the parameters for the radiative losses are set to r1,3 = r2,3 =
0.05�1 and r1,2 = 0�1.

photon statistics. For this analysis, we again neglect cavity
losses and consider quasi-steady states, as was mentioned in
Sec. III A.

Figure 5 demonstrates the dynamics of Wk and W̃m induced
by two coherent fields with mean photon numbers of 〈n̂〉 = 10
in the presence of radiative losses. One can see that even
though the photon statistics of the first field is reverted to the
vacuum state, this is not the case for the photon statistics of the
second field W̃m in the steady state. Rather, the photon statis-
tics is redistributed. The redistribution of the photon statistics
is caused by higher-order processes described by r1,2. Due to
this loss mechanism, the transition from the second to the first
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FIG. 5. Dynamics of the photon statistics for two incident co-
herent states with 〈n̂〉 = 10 is presented for (a) the first field (Wk)
and (b) the second field (W̃m). Radiative losses are applied with
r1,3 = r2,3 = 0.5�1 and r1,2 = 0.1�1.
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ange bars) is shown together with the photon statistics of the second
field W̃m at t�1 = 2000 (filled blue bars), where in (a) and (b) only
r1,2 = 0.5�1 is considered, while in (c) and (d) r1,3 = r2,3 = 0.05�1

and r1,2 = 0.01�1 are chosen. The initial photon statistics of the first
field is chosen as a coherent field in (a) and (c) and as a squeezed field
in (b) and (d) with 〈n̂〉 = 10, respectively. The second field initially
is in the vacuum state.

level is possible without a change in the number of photons.
Therefore, in the special case of a finite r1,2, while all other
losses are zero, the photons are transferred from the first to
the second field.

Starting from a vacuum state for the second field leads to
a complete transfer of the photon statistics from the first to
the second field, which is demonstrated in Figs. 6(a) and 6(b).
Such scheme gives the possibility to obtain information about
an unknown input field by measuring the properties of the
second field. In a more realistic scenario, i.e., r1,3 = r2,3 =
0.05�1 and r1,2 = 0.01�1, this transfer is less ideal, i.e., the
final photon statistics of the second field is not the same as
the original photon statistics of the first field [see Figs. 6(c)
and 6(d)]. However, in all cases the first field is in the vacuum
state in the end, which means that all photons from the first
field are transferred completely.

 0

 0.05

 0.1

 0.15

 0.2

          

pr
ob

ab
ili

ty

fir
st

 f
ie

ld
 c

oh
er

en
t

(a) initial statistics of the second field
final statistics of the second field

 0

 0.05

 0.1

 0.15

 0.2

          

pr
ob

ab
ili

ty

(b) initial statistics of the second field
final statistics of the second field

 0

 0.05

 0.1

 0.15

 0.2

          

pr
ob

ab
ili

ty

fir
st

 f
ie

ld
 s

qu
ee

ze
d

(c) initial statistics of the second field
final statistics of the second field

 0

 0.05

 0.1

 0.15

 0.2

0 5 10 15 20 25 30 35 40 45

pr
ob

ab
ili

ty

Fock state number

(d) initial statistics of the second field
final statistics of the second field

FIG. 7. Photon statistics of the second field W̃m at the initial
moment of time (empty orange bars) and for t�1 = 2000 (filled blue
bars) when the steady state is formed. Different combinations of the
first and the second fields are considered in the initial moment of
time: (a) two coherent states, (b) a coherent and a squeezed vacuum
state, (c) a squeezed vacuum and a coherent state, and (d) two
squeezed vacuum states. All initial fields have a mean photon number
〈n̂〉 = 10. r1,3 = r2,3 = 0.5�1 and r1,2 = 0.1�1 are chosen.

If the second field has a special statistics in the initial
moment of time, the final distribution of the second field
reflects features of this statistics. Figure 7 demonstrates the
photon-number probability distribution of the second field W̃m

at the initial moment of time (empty orange bars) and at the
moment of time when the steady state is formed (filled blue
bars). Four different combinations of coherent and squeezed
states of light with the mean photon number of 〈n̂〉 = 10 are
considered at the initial moment of time. One can see that fea-
tures of the initial photon statistics of both the first field Wk (0)
and the second field W̃m(0) strongly influence the steady-state
distribution of the second field. For the case of two coherent
states [see Fig. 7(a)], the resulting distribution is similar to a
coherent state but has a higher mean photon number 〈n̂〉 ≈ 16.
In the case of two squeezed vacuum states [see Fig. 7(d)], the
resulting distribution has a mean photon number of 〈n̂〉 ≈ 13.8
and shows similarities to the squeezed vacuum state but has a
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nonzero probability of measuring odd photons due to activated
radiative losses r1,3 and r2,3. The mean number of photons
were directly calculated from the resulting photon statistics of
the second field and show that coherent states lead to a more
efficient transfer of photons in comparison to squeezed states.
In both cases, the final photon statistics cannot be described
with the initial photon statistics of the first or the second field
separately, but still shows a similar to them behavior. For the
case of two different initial photon statistics [see Figs. 7(b)
and 7(c)], we find almost the same mean photon numbers
of 〈n̂〉 ≈ 14.9 and 〈n̂〉 ≈ 14.8, respectively, but completely
different final statistics of the second field. The final state of
the first field is the vacuum state in all cases.

Thereby, the second field may inherit properties of the pho-
ton statistics of the first field due to the higher-order processes
described by r1,2. This allows a redistribution of the photon
statistics, whose quality depends on the other losses.

C. Electromagnetically induced transparency

EIT is an effect in which an otherwise opaque medium
can be rendered transparent for a resonant probe field in the
presence of a coupling field, which is well understood from
a semiclassical theory [21] and was observed experimentally
[20,22]. This effect is based on destructive interference be-
tween the transitions from the ground state to two quasienergy
states describing the upper level dressed by the strong cou-
pling field. The destructive interference found at the resonance
frequency is lifted for detuned excitations, which is why an
EIT spectrum has a minimum at zero detuning and two peaks
next to it [1,20–22].

The use of quantum light leads to features in EIT which
we demonstrate in this section. With the system shown in
Fig. 1, we consider the first field as the probe and the second
field as the coupling field. Due to the chosen initial condi-
tion where only the first electronic level is filled, while the
others are empty, the time-averaged population of the third
level can be considered as a measure for absorption. Thus,
the detuning-dependent time-averaged third-level population
yields an absorption spectrum. The data for the averaging
were calculated from t�1 = 0 to 100 with �t�1 = 0.01. To
simulate a strong coupling field, NP = 10 is chosen, whereas
NC is chosen as 50 and 100, respectively. The calculated EIT
spectra for different combinations of initial states of light are
shown in Fig. 8 with a decrease in the mean photon number
of the coupling field from (a) to (c).

It is demonstrated that the spectra obtained by using two
coherent states are similar to the semiclassical result but are
not its direct reproduction due to a set of collapses and revivals
in the dynamics of the electronic populations in the quantum-
optical regime. The form of the absorption spectra is mainly
determined by the photon statistics of the coupling field,
whereas the probe field changes their magnitude. Figures 8(a)
and 8(b) demonstrate that a squeezed state as a probe field
results in less absorption across the detuning range, therefore
leading to a more efficient EIT. In the quantum regime, prop-
erties of the probe field directly influence the absorption. To
demonstrate this, we consider the vacuum state as the coupling
field, while the choice of NP = 10 for the coherent and the
squeezed probe field remains unchanged [see Fig. 8(c)]. In this
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FIG. 8. The time-averaged population of the third electronic
level as a function of the detuning for different combinations of light
states. Here, NP = 10 and (a) NC = 100, (b) NC = 50, and (c) NC = 0
is chosen and no losses are applied, i.e., κ = ri, j = γi j = 0.

case one can see that the probability of promoting electrons
to the excited state is higher for a coherent state than for a
squeezed state. This means that the absorption for a squeezed
probe field is lower than for a coherent probe field with the
same mean photon number. This effect is directly connected
with the photon statistics. The excitation induced by squeezed
light is less efficient due to a large contribution of the zeroth
Fock state which cannot initiate transitions between electronic
levels. Thereby, due to the presence of the high-populated vac-
uum component, a certain amount of the electronic population
cannot be promoted. This property of squeezed light remains
in the EIT regime, therefore, squeezed states can be applied to
reduce absorption.

The line shapes of the EIT spectra can be explained from
the point of view of the dressed states. The splitting of the
quasienergy levels for squeezed coupling light is smaller in
comparison to coherent states. This is the reason why the
maxima in the case of a squeezed coupling field are very close
to each other, leading to no pronounced minimum in the center
[see Figs. 8(a) and 8(b)]. But, this splitting increases with the
increase of the number of photons of the coupling field, which
can be seen by comparing Figs. 8(a) and 8(b). This allows
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FIG. 9. Dynamics of the classical polarization for the |3〉 - |1〉 transition without losses and detunings. The four graphs show the dynamics
of PC

31(t ) for different initial states of light for the first and the second fields: (a) two coherent states, (b) a squeezed vacuum and a coherent
state, (c) a coherent and a squeezed vacuum state, and (d) two squeezed vacuum states.

us to interpret the EIT process as a probing of the dressed
light-matter state, which was created by the interaction of
matter with the coupling field.

The EIT spectra can also be understood quantitatively
by considering the quasienergy states. The position of the
maxima induced by a coupling field with the initial photon
statistics cC

m can be estimated by the following expression:

�g = ± �1√
2

∞∑
m=0

∣∣cC
m

∣∣2√
m. (28)

Evaluating this expression for a coherent state with mean pho-
ton numbers of 100 and 50 leads to �g = ±7.06�1 and �g =
±4.99�1, respectively. These values are in a good agreement
with the positions of the maxima in the corresponding spectra,
found at ±7.2�1 and ±5.2�1, respectively. Note that the
values obtained using Eq. (28) are an estimation since Eq. (28)
does not take into account the fact that each Fock state forms
its own quasienergy and, furthermore, the probe field is not
taken into account.

A similar comparison for squeezed states leads to �g =
±5.58�1 and �g = ±3.91�1 for NC = 100 and NC = 50,
respectively. One can see that these values are not in a good
agreement with the peaks in the EIT spectra, which are found
at around ±3.6�1 and ±2.5�1, respectively. This difference
arises since the peaks in the EIT spectra are not clearly sep-
arated but overlap, which results in an overall shift of the
maxima. Nevertheless, this estimation shows that the splitting
for the case of squeezed vacuum is smaller than for coherent
states.

D. Classical polarization vs quantum polarization

In this section, we investigate the classical polarization
PC

31(t ) and the quantum polarization PQ
31(t ) induced by the first

field, which were introduced in Eqs. (19) and (21), respec-
tively. We start our analysis with the classical polarization
PC

31(t ) in the absence of any loss mechanisms and for resonant
excitation. We consider states of light with a mean photon
number 〈n̂〉 = 10. In a semiclassical theory, a resonant exci-
tation leads to a polarization that oscillates with the band-gap
frequency, i.e., the transition frequency between the states |1〉
and |3〉. This property can be seen in PC

31(t ) by extracting the
time-dependent exponent from the density matrix elements:

PC
31(t ) = exp

(
− i

E3 − E1

h̄
t

) ∞∑
k=0

∞∑
m=0

p3, k, m
1, k, m

, (29)

where ω31 = E3−E1
h̄ is the band-gap frequency for the |3〉 - |1〉

transition and p3, k, m
1, k, m

correspond to a slowly varying envelope

of the rapid oscillations with ω31. ω31 has to be larger than
all considered detuning values and we assume ω31 = 100�1

in our numerical simulations. Figure 9 shows the dynamics of
Im[PC

31(t )] for four different combinations of initial states of
light. The envelope p3, k, m

1, k, m

is found to be purely imaginary, the

rapid oscillations of the real and imaginary parts of PC
31(t ) are

caused by the time-dependent exponential factor. This is why
they cannot be distinguished on a long timescale and the real
part of PC

31(t ) is not shown.
It is demonstrated by Fig. 9 that PC

31(t ) is finite when a
coherent state excites the |3〉 - |1〉 transition but vanishes for
a squeezed state. This can be understood from the equations
of motion and initial conditions. From the equations of motion
(23) it follows that the dynamics of ρ3, k, m

1, k, m

is connected with

ρ1, k + 1, m
1, k, m

, which should be nonzero initially. The last density

matrix elements are proportional to the product of probability
amplitudes for measuring k and k + 1 photons in the first field
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FIG. 10. Dynamics of the quantum polarization for the |3〉 - |1〉 transition without losses or detunings. The four graphs show the dynamics
that arises due to different initial states of light for the first and the second fields: (a) two coherent states, (b) a squeezed vacuum and a coherent
state, (c) a coherent and a squeezed vacuum state, and (d) two squeezed vacuum states.

according to

ρ1, k + 1, m
1, k, m

(t = 0) ∝ ck+1c∗
k . (30)

Therefore, whether ck+1c∗
k is zero or not is the main criterion

for whether PC
31(t ) is zero or not. Thus, the existence of the

classical polarization PC
31(t ) is a property of the initial state

of the first field. With this criterion, one can conclude that
PC

31(t ) is nonzero when the first field is a coherent field, while
the second field can be arbitrary. For example, the classical
polarization PC

31(t ) is nonzero when a squeezed state excites
the |3〉 - |2〉 transition while the |3〉 - |1〉 transition is excited
by a coherent state. This statement is also valid for PC

32(t ),
where the second field needs to be a coherent state. For a finite
PC

21(t ), both fields need to be coherent or, more precisely, none
of them can be a squeezed state.

We furthermore note that a classical polarization is not
required in order to induce an electronic population in the
third level |3〉 since this can also be generated by two squeezed
states, as shown in Sec. III A. This aligns with the result
shown in [51], where the generation of an exciton population
was demonstrated without a polarization-to-population con-
version, by using a thermal state as quantum excitation.

Thus, the classical polarization cannot be a suitable mea-
sure for describing the interaction of arbitrary quantum light
with matter, and one should introduce a measure, namely,
the quantum polarization PQ

31(t ), on which we concentrate
below. Figure 10 shows Im[PQ

31(t )] for all four combinations
of coherent and squeezed states as initial fields. Since the en-
velopes p 3, k, m

1, k + 1, m

are pure imaginary and the time-dependent

exponent is zero for the quantum polarization, the real part is
also zero (without the consideration of an optical detuning)
and is not shown. Due to the zero time-dependent exponent,
the quantum polarization does not have rapid oscillations as

the classical polarization, which oscillates with the band-gap
frequency ω31. We note that the dynamics of the quantum po-
larization PQ

31(t ) is similar to the population dynamics that was
investigated in Sec. III A. Moreover, the quantum polarization
is nonzero for all combinations of the considered initial states
of light, which makes PQ

31(t ) a suitable measure for analyzing
light-matter interaction with quantum light. Collapses and
revivals of the quantum polarization are found if at least one
of the fields is initially a coherent state.

The quantum polarization PQ
31(t ) can be used to describe

the dispersion and absorption of a quantum excitation. We
demonstrate this both numerically by calculating of the
time-averaged real and imaginary parts of PQ

31(t ) across the
detuning range, which is denoted with PQ

31,N , and analytically
in the perturbation regime for a very weak probe field. The
analytical expression reads as

PQ
31,A(�P ) =

∞∑
k=0

∞∑
m=0

�1�P

√
k+1

2

∣∣cP
k+1

∣∣2∣∣cC
m

∣∣2

�2
2

(
m+1

2

) − �2
P − i�Pr̃1,3

, (31)

where r̃1,3 denotes the decay of the nondiagonal matrix ele-
ments without additional dephasing as in [1].

Figure 11 shows the real and imaginary parts of both PQ
31,N

(solid lines) and PQ
31,A (dashed lines) for two coherent states

in Fig. 11(a) and two squeezed vacuum states in Fig. 11(b)
with NP = 10 and NC = 100. The time averaging is performed
until t�1 = 20, which models a situation in which the signal
has decayed after the first collapse of the wave function. We
note that Fig. 11(a) is similar to the result known from the
semiclassical theory [1], however, presents a measure that is
exclusively connected with a quantum-optical treatment and
applicable to nonclassical states of light in contrast to the
classical polarization.
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FIG. 11. Time-averaged real and imaginary parts of the numeri-
cally calculated quantum polarization PQ

31,N (solid lines) and the real
and imaginary parts of the analytical solution PQ

31,A from Eq. (31)
(dashed lines). The time averaging is performed until t�1 = 20
and no losses are included. The analytical calculation is performed
for r̃1,3 = 5�1. In (a) two coherent states and in (b) two squeezed
vacuum states are considered. The temporal step width is chosen as
(a) �t�1 = 0.01 and (b) �t�1 = 0.001. In all cases, NP = 10 and
NC = 100.

The real parts Re[PQ
31,N ] and Re[PQ

31,A] are in a good qual-
itative agreement since the shapes are similar, but the peaks
are more pronounced for the analytical result. We also note
that Re[PQ

31,N ] is already converged for the time averaging up

to t�1 = 20. This is not the case for Im[PQ
31,N ], whose value

depends on the chosen time intervals and approaches zero
for increasingly long time intervals. The choice of the time
interval is the reason for the oscillatory behavior of Im[PQ

31,N ]
in Fig. 11(b). Also note that the fast oscillations are only
visible in the range from �P = −5�1 to 5�1 since it was
calculated with a step width of 0.1�1, while a step width
of 1�1 was used otherwise. In contrary, Im[PQ

31,A] does not
show fast oscillations and is finite since it was derived in
the perturbative limit and only represents the linear response.
Nevertheless, Im[PQ

31,A] is in a good qualitative agreement
with the spectra shown in Fig. 8, where the main difference
is that Im[PQ

31,A(0)] = 0, which arises from the weak probe
field approximation.

Thus, we have found and introduced a quantity, namely
quantum polarization, which correctly describes the electronic
response after the impact of any initial quantum field states
and presents a different approach for the demonstration of
EIT.
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FIG. 12. Bipartite photon-number distribution Wkm at t�1 =
23.21 for the lossless case. The magnitude is normalized to a maxi-
mum value of 1. Two coherent states with a mean photon number of
〈n̂〉 = 10 are considered.

E. Entanglement between fields with losses

In Ref. [4], it was demonstrated that the bipartite photon-
number distribution for the third electronic level Wkm = ρ3, k, m

3, k, m

is a suitable representation for the correlation between pho-
tons of the two quantum fields, i.e., their entanglement.
Figure 12 demonstrates Wkm without losses for two coherent
states with a mean photon number of 〈n̂〉 = 10 at t�1 =
23.21, which is during the first collapse of the population
dynamics. The non-Gaussian shape is a clear demonstration
of entanglement between the quantum fields that arises due to
the light-matter interaction.

In the following, we examine the behavior of Wkm in the
presence of radiative and cavity losses. Figures 13(a)–13(e)
show the same scenario as in Fig. 12, but with cavity losses
applied with a value of κ1 = 0.001�1, κ2 = 0.003�1, κ3 =
0.05�1, κ4 = 0.1�1, and κ5 = 0.2�1, respectively. We see
that with ascending cavity losses, the bipartite photon-number
distribution not only strives towards a Gaussian shape, but also
the mean photon number decreases until the bipartite photon-
number distribution eventually approaches the vacuum state
[see Fig. 13(e)]. This corresponds to the loss of all photons
in the system and the destruction of entanglement between
the two quantum fields since a Gaussian distribution is a
factorized state.

This analysis is repeated for the case of radiative losses.
Here, we always choose r1,3 = r2,3 = r and 5r1,2 = r, which
fits to the parameter sets chosen before. Figures 13(f)–13(j)
demonstrate how the result of Fig. 12 is modified by radiative
losses. We assign the same value to the loss parameters r, as
we did for κ , so that a row in Fig. 13 corresponds to the same
loss parameter for cavity and radiative losses, respectively.
One can see that in comparison to cavity losses, a higher
radiative loss parameter r is required in order to destroy the
non-Gaussian shape. The cavity losses reduce entanglement
more efficiently than radiative losses.

This conclusion can be understood from the physical
mechanisms described by these losses. While cavity losses
explicitly destroy photons and therefore directly influence a
bipartite photon-number distribution, radiative losses destroy
the excitation of a transition. As a result, the electronic system
has a transition from the excited to the ground state without a

013702-10



DARK-STATE AND LOSS-INDUCED PHENOMENA IN THE … PHYSICAL REVIEW A 103, 013702 (2021)

cavity losses

 0

 5

 10

 15

 20

 25

Fo
ck

 s
ta

te
 n

um
be

r 
m

 0

 1
(a)

 0

 5

 10

 15

 20

 25

Fo
ck

 s
ta

te
 n

um
be

r 
m

 0

 1
(b)

 0

 5

 10

 15

 20

 25

Fo
ck

 s
ta

te
 n

um
be

r 
m

 0

 1
(c)

 0

 5

 10

 15

 20

 25

Fo
ck

 s
ta

te
 n

um
be

r 
m

 0

 1
(d)

0 5 10 15 20 25
Fock state number k

 0

 5

 10

 15

 20

 25

Fo
ck

 s
ta

te
 n

um
be

r 
m

 0

 1
(e)

radiative losses

 0

 1
(f)

 0

 1
(g)

 0

 1
(h)

 0

 1
(i)

0 5 10 15 20 25
Fock state number k

 0

 1
(j)

FIG. 13. Bipartite photon-number distribution Wkm at t�1 =
23.21 with losses applied. For (a)–(e) only cavity losses κ are
applied, while for (f)–(j) only radiative losses r1,3 = r2,3 = r and
5r1,2 = r are included. The loss parameters κ and r are chosen as
(a) and (f) 0.001�1, (b) and (g) 0.003�1, (c) and (h) 0.05�1, (d) and
(i) 0.1�1, and (e) and (j) 0.2�1. The magnitudes are individually
normalized to a maximum value of 1. Two coherent states with mean
photon numbers of 〈n̂〉 = 10 are considered.

change in the number of photons. This destruction leads to
a redistribution of the fields and to the loss of entanglement.
Finally, we obtain a completely uncorrelated state, where dis-

tributions of the first and the second fields are not correlated
with each other [see Fig. 13(j)]. Therefore, this result is con-
sistent with the physical interpretation of the investigated loss
mechanisms.

IV. CONCLUSION

In this work, using a Jaynes-Cummings–type model, we
investigated the interaction between a 3LS and quantum light.
We found that CPT can be achieved by applying radiative
losses, without the requirement of an initial coherent superpo-
sition of electronic states, which simplifies the experimental
realization that should be possible in atomic systems and
semiconductor nanostructures.

By applying higher-order losses to the system, we demon-
strated a redistribution of the photon statistics between the two
quantum fields, which in an ideal case can lead to a one-by-
one transfer of the statistics. In a more realistic description,
key features of the photon statistics are transferred.

Moreover, we demonstrated the EIT effect in the quantum-
optical regime by identifying the time-averaged population as
a measure for absorption. The EIT spectrum obtained with
coherent states is similar to the well-known result from a
semiclassical description but is not its direct representation. In
the quantum regime, properties of the probe field directly in-
fluence EIT: the EIT effect can be improved using a squeezed
probe field, when other parameters are the same. This espe-
cially plays a role for the center of the spectrum, where a
small absorption is desired. The energetic position of the EIT
peaks can be understood from the quasienergy states and can
be estimated analytically.

Furthermore, we introduce and analyze a quantity, the
quantum polarization, which describes the response of mat-
ter on quantum fields and therefore contains an information
about the quantum field properties. We compared the classical
polarization with the quantum polarization and show that the
classical polarization vanishes for certain quantum states of
light in contrast to the quantum polarization. This makes the
quantum polarization a valuable quantity in the context of a
quantum-optical description, e.g., allowing to calculate the ab-
sorption and dispersion of a quantum excitation. In addition,
a qualitative approach for the visualization of quantum cor-
relations between fields was used to demonstrate the impact
of losses. It was shown that cavity losses destroy correlations
faster than radiative losses, which originates from the mecha-
nism that they are describing.

Our results open possibilities for characterizing the re-
sponse of matter interacting with arbitrary quantum light, as
well as for manipulating electronic state populations and field
statistics using losses which can be used to store quantum
memory and transfer quantum information.

ACKNOWLEDGMENT

This work is supported by the joint grant by the Deutsche
Forschungsgemeinschaft (DFG) and the Russian Science
Foundation (RSF) (Projects No. SH 1228/2-1 and No. ME
1916/7-1, Grant No.19-42-04105). P. R. Sh. thanks the state
of North Rhine-Westphalia for support by the Landespro-
gramm für geschlechtergerechte Hochschulen.

013702-11



H. ROSE et al. PHYSICAL REVIEW A 103, 013702 (2021)

[1] M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge
University Press, Cambridge, 1997).

[2] H. Haug and S. W. Koch, Quantum Theory of the Optical
and Electronic Properties of Semiconductors, 4th ed. (World
Scientific, Singapore, 2005).

[3] T. Meier, P. Thomas, and S. W. Koch, Coherent Semiconductor
Optics: From Basic Concepts to Nanostructure Applications,
(Springer, Berlin, 2007).

[4] D. V. Popolitova and O. V. Tikhonova, Phase-sensitive
excitation of atomic systems and semiconductor quantum
wells by non-classical light, Laser Phys. Lett. 16, 125301
(2019).

[5] Y. Wu, Effective Raman theory for a three-level atom in the �

configuration, Phys. Rev. A 54, 1586 (1996).
[6] H. Wang and S. O’Leary, Electromagnetically induced trans-

parency from electron spin coherences in semiconductor
quantum wells, J. Opt. Soc. Am. B 29, A6 (2012).

[7] M. Salewski, S. V. Poltavtsev, I. A. Yugova, G. Karczewski, M.
Wiaterm, T. Wojtowicz, I. A. Akimov, T. Meier, and M. Bayer,
High Resolution Two-Dimensional Optical Spectroscopy of
Electron Spins, Phys. Rev. X 7, 031030 (2017).

[8] Y.-C. Li and X. Chen, Shortcut to adiabatic population transfer
in quantum three-level systems: Effective two-level problems
and feasible counterdiabatic driving, Phys. Rev. A 94, 063411
(2016).

[9] J. N. Elgin, Semiclassical formalism for the treatment of three-
level systems, Phys. Lett. A 80, 140 (1980).

[10] K. Inomata, Z. Lin, K. Koshino, W. D. Oliver, J.-S. Tsai, T.
Yamamoto, and Y. Nakamura, Single microwave-photon detec-
tor using an artificial �-type three-level system, Nat. Commun.
7, 12303 (2016).

[11] J. Kabuss, A. Carmele, M. Richter, W. W. Chow, and A. Knorr,
Inductive equation of motion approach for a semiconductor
QD-QED: Coherence induced control of photon statistics, Phys.
Status Solidi B 248, 872 (2011).

[12] E. S. Moiseev, A. Tashchilina, S. A. Moiseev, and A. I.
Lvovsky, Darkness of two-mode squeezed light in �-type
atomic system, New J. Phys. 22, 013014 (2020).

[13] J. L. Tomaino, A. D. Jameson, Y.-S. Lee, G. Khitrova,
H. M. Gibbs, A. C. Klettke, M. Kira, and S. W. Koch, Ter-
ahertz Excitation of a Coherent �-Type Three-Level System
of Exciton-Polariton Modes in a Quantum-Well Microcavity,
Phys. Rev. Lett. 108, 267402 (2012).

[14] A. C. Klettke, M. Kira, S. W. Koch, J. L. Tomaino, A. D.
Jameson, Y.-S. Lee, G. Khitrova, and H. M. Gibbs, Terahertz
excitations of lambda systems in a semiconductor microcavity,
Phys. Status Solidi C 10, 1222 (2013).

[15] X. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D.
Gammon, and L. J. Sham, Coherent population trapping of an
electron spin in a single negatively charged quantum dot, Nat.
Phys 4, 692 (2008).

[16] K. G. Lagoudakis, K. A. Fischer, T. Sarmiento, P. L. McMahon,
M. Radulaski, J. L. Zhang, Y. Kelaita, C. Dory, K. Müller, and
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