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Spatiotemporal effects on squeezing measurements
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The role of the spatiotemporal degrees of freedom in the preparation and observation of squeezed photonic
states, produced by parametric down-conversion, is investigated. The analysis is done with the aid of a functional
approach under the semiclassical approximation and the thin-crystal approximation. It is found that the squeezed
state loses its minimum uncertainty property as the efficiency of down-conversion is increased, depending on the
conditions of the homodyne measurements with which the amount of squeezing is determined.
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I. INTRODUCTION

Squeezed vacuum states [1,2] are among the most useful
quantum states. They are used to make measurements that are
more precise than the standard quantum limit (the shot-noise
limit) would allow. For this reason, they are used in various ap-
plications, ranging from quantum computing to gravitational
wave detection [3–9].

In quantum optics, squeezed vacuum states can be pro-
duced with the aid of nonlinear optical processes, such as
parametric down-conversion [10]. Although challenging to
analyze, parametric down-conversion has been studied for
decades and much progress has been made in its analytical
representation [11–18].

A squeezed vacuum state can be represented by a
squeezing operator applied to the vacuum. Without the spa-
tiotemporal degrees of freedom, the squeezing operator is
parameterized by a single parameter, called the squeezing
parameter. The inclusion of the spatiotemporal degrees of
freedom causes the squeezed vacuum states to become a com-
plex combination of squeezing eigenmodes, each with its own
squeezing parameter [12].

To incorporate the spatiotemporal degrees of freedom in
down-converted squeezed vacuum states, the squeezing oper-
ator is often expressed in terms of a set of ladder operators (or
quadrature operators) in which each operator pair is associated
with one of the eigenmodes [12,17,18]. It leads to a symplectic
formalism where the squeezing operator is represented as a
Gaussian operator—an exponential with an argument that is
second order in ladder (or quadrature) operators [4–7].

The versatility of the symplectic formalism is demon-
strated by its use in numerous analyses of the parametric
down-conversion process and its applications. It represents the
kernels of the down-conversion process as matrices that can
be diagonalized with a Bloch-Messiah reduction [19]. Such
a representation assumes a discrete finite-dimensional sys-
tem. The down-conversion process can also be represented in
terms of a Magnus expansion [20,21]. The symplectic matrix
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representation usually involves only the first order in the Mag-
nus expansion [18].

Moreover, the matrix representation associated with the
Bloch-Messiah reduction assumes knowledge of the eigen-
modes (or Schmidt basis) of the kernels. However, the exact
nature of these eigenmodes are not known and has so far
only been obtained approximately by employing simplifying
assumptions [13,14].

The applicability of the symplectic formalism and the
Bloch-Messiah reduction in the analysis of the parametric
down-conversion process is largely limited to those cases
where the pump can be represented as a classical field, var-
iously called the semiclassical approximation, the parametric
approximation, the undepleted pump approximation, among
others. (An exception is where it is used for a depleted pump
scenario in a waveguide coupler [22].) The justification for
this approximation is that the efficiency of the process is low
enough that the pump remains unaffected (undepleted).

Recently, a functional formalism was used to analyze the
down-conversion process, incorporating all spatiotemporal
degrees of freedom [23]. The functional formalism operates
directly with the kernels of the down-conversion process and
does not need to represent them as finite-dimensional ma-
trices. It avoids the need for knowledge of the eigenmodes
by expressing any final result (such as what would be ob-
tained in a measurement) directly in terms of the kernels.
The functional formalism also allows calculations beyond the
semiclassical approximation, using a perturbative process. It
reproduces the expressions of the semiclassical part of the
solution (zeroth order in the perturbative expansion) as a func-
tional version of the Magnus expansion.

However, without knowledge of the eigenmodes, the ques-
tion of the optimal choice for the mode of a local oscillator to
be used in homodyne measurements is left open. Since the
different eigenmodes are associated with different amounts
of squeezing, the optimal amount of squeezing should be
obtained when the local oscillator has the same mode as that
of the associated eigenmode.

In this paper, we consider the effect of the spatiotem-
poral properties of the local oscillator directly in terms of
the kernels. We perform the calculations with the aid of

2469-9926/2021/103(1)/013701(10) 013701-1 ©2021 American Physical Society

https://orcid.org/0000-0001-9624-4189
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.103.013701&domain=pdf&date_stamp=2021-01-05
https://doi.org/10.1103/PhysRevA.103.013701


FILIPPUS S. ROUX PHYSICAL REVIEW A 103, 013701 (2021)

the Wigner functional formalism [24,25] to all orders in the
Magnus expansion of the down-converted state, under the so-
called thin-crystal approximation. The latter is well satisfied
in most experimental conditions, especially when the spatial
degrees of freedom play an important role [13]. The effect of
higher orders of the Magnus expansion has previously been
investigated in four-wave mixing, for the temporal degrees of
freedom only [26,27].

Numerous spatiotemporal properties can play a role in
homodyne measurements. Here, we consider the effects of the
mode size for a Gaussian profile and the temporal bandwidth
of the local oscillator. We also consider the effect of the
azimuthal index if the local oscillator has a Laguerre-Gauss
petal mode profile with zero radial index. The Laguerre-Gauss
modal basis is an example of an orbital angular momentum
(OAM) basis. Recently, the incorporation of OAM modes
into squeezed states has attracted much attention [17,28–31].
Our interest is to determine the effect of the azimuthal index
(OAM) on homodyning measurements.

Contrary to our previous work [23], we perform the cal-
culations for the current investigation under the semiclassical
approximation only. The validity for this approximation in
the current situation, however, is not based on an assumed
low efficiency for the down-conversion process. It is justified
simply on the assumption that the pump remains a coherent
state during the process. As such, the relative size of the min-
imum uncertainty area of the pump on the functional phase
space ensures that it can be adequately approximated with the
classical field that parametrizes the coherent state of the pump.

Here, we apply a weak monochromatic assumption: We as-
sume that the pump and the local oscillator both have narrow
spectra but finite bandwidths. It allows us to determine the
bandwidth of the different terms in the Magnus expansion of
the down-converted state, which plays an important role in the
results that we obtain.

II. GENERAL APPROACH

In order to determine how successful a strongly driven
down-conversion process is at producing a squeezed vacuum
state, one can measure the amount of squeezing of the state,
using a homodyne measurement. Here, we calculate what
would be obtained from such a measurement of the squeezing
parameter. It is done by computing the uncertainty (variance)
in the measurement of the quadratures of the down-converted
state. The variance in the quadrature is given by

σ 2
q ≡ 〈

�q̂2
θ

〉 = 〈
q̂2

θ

〉 − 〈q̂θ 〉2 = tr
{
ρ̂q̂2

θ

} − tr{ρ̂q̂θ }2, (1)

where the generalized quadrature operator is defined as

q̂θ ≡ q̂ cos θ − p̂ sin θ, (2)

with θ representing the orientation in phase space.
In terms of the spatiotemporal degrees of freedom, a ho-

modyne measurement selects only a specific spatiotemporal
mode given by the modulus of the mode of the local oscillator.
The phase of the local oscillator determines the orienta-
tion of the generalized quadrature operator in phase space.
The observable for the homodyne measurement is therefore

represented by

ĥγ =
√

2
∫

|γ (k)|q̂θ (k) d̄k, (3)

where γ (k) = |γ (k)| exp(iθ )1 represents the parameter func-
tion for the coherent state of the local oscillator, k is the
three-dimensional wave vector, and

d̄k ≡ d3k

(2π )3ω
. (4)

We will use a Wigner functional formalism [23,32] to per-
form the computations. A tutorial for the Wigner functional
formalism is provided in the Appendix. The Wigner func-
tional for the homodyne measurement operator is

Wĥ[α; γ ] = γ ∗ � α + α∗ � γ , (5)

where the � contraction is defined as

α∗
1 � α2 ≡

∫
α∗

1 (k)α2(k) d̄k (6)

and

α(k) = 1√
2

[q(k) + ip(k)] (7)

is the complex-valued field variable that parametrizes the
functional phase space, with q(k) and p(k) being the eigen-
value functions of the quadrature operators [24,25].

To alleviate the calculation of the expectation values, we
define a generating function given by

W (η) =
∫

exp (ηWĥ[α; γ ])Wρ̂[α] D◦[α], (8)

where η is a generating parameter and Wρ̂[α] is the Wigner
functional of the state. The expectation values are obtained by
computing

〈ĥγ 〉 =
√

2γ0〈q̂θ 〉 = ∂ηW (η)|η=0,〈
ĥ2

γ

〉 = 2γ 2
0

〈
q̂2

θ

〉 = ∂2
ηW (η)|η=0,

(9)

where

γ 2
0 = ‖γ (k)‖2 ≡

∫
|γ (k)|2 d̄k. (10)

III. SQUEEZED VACUUM STATE

The Wigner functional for the squeezed vacuum state pro-
duced by parametric down-conversion is given by [23]

Wρ̂[α] =N0 exp(−2α∗ � A � α − α � B � α − α∗ � B∗ � α∗),
(11)

where N0 is the normalization constant for the Wigner
functional of a pure Gaussian state, and A and B are semi-
classical kernel functions associated with the parametric
down-conversion process.

1Here, it is assumed that the phase is a global constant. In general,
it can also be a function of the wave vector θ (k).
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When we substitute Eq. (11) into Eq. (8) and evaluate the
functional integral over α, we obtain

W (η) =N0

∫
exp [−2α∗ � A � α − α � B∗ � α

− α∗ � B � α∗ + η(γ ∗ � α + α∗ � γ )] D◦[α]

= exp

(
η2

2
γ ∗ � A � γ − i

η2

4
γ � A∗ � B∗ � A−1 � γ

+ i
η2

4
γ ∗ � A−1 � B � A∗ � γ ∗

)
. (12)

Computing the expectation values, as in Eq. (9), we obtain
〈ĥγ 〉 = 0 because the squeezed vacuum state is centered at the

origin. The expression for 〈ĥ2
γ 〉 is

〈
ĥ2

γ

〉 = ∂2
ηW (η)|η=0

= γ ∗ � A � γ − i
1

2
γ � A∗ � B∗ � A−1 � γ

+ i
1

2
γ ∗ � A−1 � B � A∗ � γ ∗

= γ ∗ � A � γ − i
1

2
γ � B∗ � γ + i

1

2
γ ∗ � B � γ ∗, (13)

where the final result follows under the assumption that A and
B commute and that A is real valued.

IV. SEMICLASSICAL KERNEL FUNCTIONS

Under the semiclassical approximation, the Wigner functional of the down-converted state can be represented in terms of a
functional Magnus expansion [18,23], in which the bilinear kernels in the exponent are given by

A = 1 +
∫ L

0

∫ z1

0
Z{H∗(z1) � H (z2)} dz2 dz1

+
∫ L

0

∫ z1

0

∫ z2

0

∫ z3

0
Z{H∗(z1) � H (z2) � H∗(z3) � H (z4)} dz4 dz3 dz2 dz1 + · · · ,

B =
∫ L

0
H (z1) dz1 +

∫ L

0

∫ z1

0

∫ z2

0
Z{H (z1) � H∗(z2) � H (z3)} dz3 dz2 dz1

+
∫ L

0

∫ z1

0

∫ z2

0

∫ z3

0

∫ z4

0
Z{H (z1) � H∗(z2) � H (z3) � H∗(z4) � H (z5)} dz5 dz4 dz3 dz2 dz1 + · · · . (14)

Here, L is the length of the nonlinear crystal, H (z) is the bilinear vertex kernel that is obtained by contracting the classical
parameter function of the pump on the vertex for the down-conversion process, and Z{·} represents a symmetrization operation,
which is recursively defined by

Z{ f1(z1) � · · · � fn(zn)} = 1
2 f1(z1) � Z{ f2(z2) � · · · � fn(zn)} + 1

2Z{ f1(z2) � · · · � fn−1(zn)} � fn(z1), (15)

with Z{ f1(z1)} = f1(z1). The identity 1 is defined so that 1 � α = α.

The monochromatic parameter function of the pump is
assumed to be

ζ (k) = ζ0wp

√
2πω

c
S(ω − ωp; δωp) exp

(
−1

4
w2

p|K|2
)

,

(16)

where wp is the beam waist radius, c is the speed
of light, K is the two-dimensional transverse part of
k, S(ω; δω) is a normalized real-valued spectral function
with a bandwidth of δω, and ωp is the center frequency
of the spectrum. The magnitude of the pump’s angu-
lar spectrum is ‖ζ (k)‖2 = |ζ0|2. The spectral function is
normalized: ∫

S2(ω − ωp; δωp)
dω

2π
= 1. (17)

Under the monochromatic approximation, S(ω − ωp; δωp)
is a narrow function centered at ωp. For the cal-
culations, we model the spectral function as a
Gaussian.

For the function in Eq. (16), the bilinear vertex kernel under
collinear type I phase matching is

H (k1, k2) = iK0(ω1, ω2)S(ωp − ω1 − ω2; δωp)

× exp

(
− w2

p

4n2
p

|n1K1 + n2K2|2

+ i3Lcn1n2|ω2K1 − ω1K2|2
2npωpω1ω2

)
, (18)

where np ≡ neff(ωp), n1 ≡ no(ω1), n2 ≡ no(ω2), and

K0(ω1, ω2) = 4ζ ∗
0 σooewpω1ω2

√
2πωp

c3n2
p

, (19)

with σooe being the coefficient for the down-conversion pro-
cess, represented as a scattering cross-section area.

V. THIN CRYSTAL APPROXIMATION

The calculation can be alleviated by employing the thin
crystal approximation, where the Rayleigh range of the pump
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beam is much longer than the length of the nonlinear crystal

L 
 w2
pωp

2c
. (20)

Such conditions are valid in most parametric down-conversion
experiments, especially when the contribution of the spatial
degrees of freedom is maximized [13].

The thin crystal approximation is to be separated from
the down-conversion efficiency. Therefore, the L’s that appear
in the exponents of the kernels contribute to the thin crystal
approximation, while those outside the exponential functions
combine into the down-conversion efficiency and do not play
a role in the thin crystal approximation. If we remove the
L-dependent part in the exponent of Eq. (18), which means
that we only consider the leading-order term in the thin crys-
tal approximation, then the computation of the higher order
terms in the Magnus expansions of the semiclassical kernels
simplifies. Without the higher order thin crystal contributions
in the exponents, the integrals can in some cases become
singular. However, in the current analysis, where we overlap
the kernels with the parameter function of the local oscillator,
such situations do not occur.

The z integrals in the Magnus expansion terms produce
factors of Ln/n! for contractions of n bilinear kernels. Hence,
the semiclassical kernels can be expressed as

A = 1 +
∞∑

m=1

L2m

(2m)!
H�2m

0 ≡ cosh�(LH0),

B = i
∞∑

m=1

L2m−1

(2m − 1)!
H�(2m−1)

0 ≡ i sinh�(LH0), (21)

where we set HL=0 ≡ iH0.
The integrals associated with the � contractions can be

evaluated. For even and odd orders, respectively with 2m and
2m − 1 contractions, we obtain

H�me
0 = MeMme

1

m5/4
e

exp

(
−1

4

w2
pn1|K1 − K2|2

menp

)

× S(ω1 − ω2;
√

meδωp),

H�mo
0 = MoMmo

1

m5/4
o

exp

(
−1

4

w2
p|n1K1 + n2K2|2

mon2
p

)

× S(ωp − ω1 − ω2;
√

moδωp), (22)

where me ≡ 2m, mo ≡ 2m − 1, and

Me = π5/4w2
pn2

1ω1

cn2
p

√
δωp

, Mo = π5/4w2
pn1n2

√
ω1ω2

cn2
p

√
δωp

,

M1 = 4|ζ0|σooe
√

2ωpω1ω2δωp

π3/4wpc2n1n2
. (23)

Substituted into Eq. (14), these results lead to explicit expres-
sions for the semiclassical kernels to all orders in the Magnus
expansion.

The factors of 1/2m and 1/(2m − 1) in the exponents in
Eq. (22) have a significant effect. They cause these functions
to become broader for larger m. A similar broadening effect
is produced by the factors of

√
2m and

√
2m − 1 that appear

with the bandwidths in the spectral functions. These factors
appear as a result of the repeated convolutions involved in the
multiple contractions and they only become apparent when
considering the spatiotemporal degrees of freedom for all the
terms in the Magnus expansion. The broadening plays an
important role in the parametric process, as we will see below.

VI. QUADRATURE VARIANCE

Since the semiclassical approximation provides us with a
Gaussian Wigner functional, the calculation of the variance in
quadrature can be performed directly. These kernels commute
and A is real valued. Therefore, we can substitute Eq. (21) into
Eq. (13) to obtain〈

ĥ2
γ

〉 = γ ∗ � cosh�(LH0) � γ − 1
2γ � sinh�(LH0) � γ

− 1
2γ ∗ � sinh�(LH0) � γ ∗. (24)

First, we consider the case where the parameter function
for the local oscillator is a Gaussian angular spectrum with a
narrow temporal spectrum. It is given by

γ (k) = γ0w0

√
2πω

c
�0S0(ω − ωd; δωd)

× exp

(
−1

4
w2

0|K|2
)

, (25)

where w0 is the local oscillator beam waist radius, imaged
to the crystal plane, �0 = exp(iθ ), and S0(ω − ωd; δωd) is
a narrow spectral function with a bandwidth δωd, modeled
as a Gaussian function centered at the degenerate down-
conversion frequency ωd.

We substitute Eq. (22) into Eq. (21) and then, together
with Eq. (25), into Eq. (13). After evaluating the integrals, we
obtain the quadrature variance

σ 2
q =

〈
ĥ2

γ

〉
2γ 2

0

= 1

2
+

∞∑
m=1

�2m(1 + mξ )−1/2

2(1 + mτ )(2m)!

+ sin(2θ )
∞∑

m=1

�2m−1
[
1 + 1

2 (2m − 1)ξ
]−1/2

[2 + (2m − 1)τ ](2m − 1)!
, (26)

where

ξ ≡ δω2
p

δω2
d

, τ ≡ n2
pw

2
0

n2
dw

2
p

, (27)

with nd ≡ no(ωd) and

� ≡ 27/2π5/4L|ζ0|σooe
√

δp

wpn2
dλ

2
p

, (28)

represent the efficiency of the down-conversion process, with
the fractional bandwidth defined by

δp ≡ δλp

λp
= δωp

ωp
. (29)

The dimensionless quantity ξ represents the squared ratio
of the bandwidths of the pump and the down-converted light.

These bandwidths are respectively determined by the prop-
erties of the pump source and the spectral filters used before
the detection of the down-converted light. The dimensionless
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quantity τ is the squared ratio of the beam widths of the local
oscillator and the pump in the crystal plane, combined with
their associated refractive indices. Both ξ and τ are control-
lable in terms of the chosen experimental parameters.

A. Small ξ and small τ

The standard result of squeezing behavior is obtained when
we assume that wp � w0 and δωd � δωp, so that ξ → 0 and
τ → 0. These conditions reproduce the well-known result

σ 2
q = 1

2
+ 1

2

∞∑
m=1

�2m

(2m)!
+ 1

2
sin(2θ )

∞∑
m=1

�2m−1

(2m − 1)!

= 1

2
cosh(�) + 1

2
sin(2θ ) sinh(�). (30)

The phase of the local oscillator is used to select two special
orientations in phase space. For sin(2θ ) = ±1,

σ 2
± = 1

2 exp(±�). (31)

These orientations represent those along which the Wigner
functional has is maximum and minimum variance,
respectively—i.e., the squeezing direction and the direction
orthogonal to it. The down-conversion efficiency �, given
in Eq. (28), is identified as the squeezing parameter. The
product of the standard deviations along these orientations is
a constant

σ+σ− = 1
2 , (32)

which indicates that the part of the state that is observed in the
homodyne experiment remains a minimum uncertainty state,
regardless of the amount of squeezing.

In a practical situation, ξ and τ will have finite values. Even
if they are small, there will be a point where m becomes large
enough so that the approximations ξ → 0 and τ → 0 are not
valid anymore. Next, we will consider the effect of these two
cases in turn.

B. Small ξ and arbitrary τ

Here we still assume ξ → 0, but consider arbitrary τ . For
ξ = 0, τ > 0, and sin(2θ ) = ±1, the variance becomes

σ 2
± =

∞∑
n=0

(±�)n

(nτ + 2)n!
= 1

2
1F1

(
2

τ
; 1 + 2

τ
; ±�

)
, (33)

where 1F1 is a hypergeometric function. The result is that the
squeezing effect is reduced. In Fig. 1, the curves for minimum
variance σ 2

− are shown as a function of the squeezing parame-
ter � for different values of τ . It demonstrates the increase in
the minimum variance as the value of τ increases.

The observed size of the uncertainty area is shown in Fig. 2,
as a function of the squeezing parameter � for the same values
of τ shown in Fig. 1. We see that, for τ > 0, the observed part
of the state loses its minimum uncertainty property:

σ+σ− > 1
2 . (34)

It is interesting to note that the increase in the size of the
uncertainty area is not a monotonous function of τ . In Fig. 3,
the uncertainty area is shown as a function of τ for different
values of the squeezing parameter �. It shows that the size of

FIG. 1. The minimum variance σ 2
− is plotted as a function of the

squeezing parameter � for τ = 0.1, τ = 1, and τ = 10.

the uncertainty area peaks around τ ≈ 6 and then decreases
again.

C. Small τ and arbitrary ξ

For the opposite situation, we assume τ → 0 and consider
arbitrary ξ . For τ = 0, ξ > 0, and sin(2θ ) = ±1, we obtain a
result that cannot be summed:

σ 2
± =

∞∑
n=0

(±�)n

n!
√

2
√

2 + nξ
. (35)

However, with the aid of the auxiliary integral,

1√
a

= 1√
π

∫
exp(−ax2) dx, (36)

we can represent it as an integral, given by

σ 2
± =

∫
exp(−2x2)√

2π
exp[±� exp(−ξx2)] dx. (37)

It can be seen as an ensemble average of different curves with
squeezing parameters varying as � exp(−ξx2) for a Gaussian
probability density. The effect of the ensemble averaging is to
diminish the squeezing effect, depending on the value of ξ . If
ξ 
 2, the ensemble averaging effect is negligible, and one
can set ξ = 0.

FIG. 2. The uncertainty area size σ+σ− as a function of the
squeezing parameter � for τ = 0.1, τ = 1, and τ = 10.
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FIG. 3. The uncertainty area size σ+σ− as a function of the beam
width ratio τ for � = 1, � = 3, and � = 10.

In the case where both ξ and τ can have arbitrary values,
one would have a combination of these two effects. Hence,
the optimal experimental conditions are those where wp � w0

and δωd � δωp.

VII. LAGUERRE-GAUSS LOCAL OSCILLATOR

Next, we consider the effect of using the Laguerre-
Gauss modal basis for the local oscillator profile. Since the
down-converted photon pairs under collinear phase-matching
conditions maintain the angular momentum of the pump pho-
tons that produced them, the azimuthal index of the one
photon would always be the opposite of the other photon,
if the pump has a zero azimuthal index. As a result, a local
oscillator profile consisting of only one Laguerre-Gauss mode
would only be able to see one of the two photons in a down-
converted pair. Both photons are necessary for the squeezing
effect. Therefore, such a single Laguerre-Gauss mode local
oscillator would not see any squeezing.

For this reason, we consider petal modes that are formed
as the superposition of two Laguerre-Gauss modes with op-
posite azimuthal indices. In terms of their angular spectra, the
superposition is given by

φ
(petal)
|�|,p (k) = 1√

2
φ

(LG)
�,p (k) + 1√

2
φ

(LG)
−�,p(k). (38)

Note that a relative phase between the two Laguerre-Gauss
modes would only produce an ineffectual rotation of the petal
mode. Therefore, we do consider such a relative phase.

To alleviate the calculation, we use a generating function
for the angular spectra of the Laguerre-Gauss modes, given
by [33,34]

G(k, μ, ν, s) = w0N�,p

1 + ν
exp

[
iw0(kx + isky)μ

2(1 + ν)

]

× exp

[
−w2

0

(
k2

x + k2
y

)
(1 − ν)

4(1 + ν)

]
, (39)

where μ and ν are generating parameters for the azimuthal
and radial indices � and p, respectively, and s is a sign that
represents the sign of the azimuthal index. The normalization

constant is given by

N�,p =
√

2|�|−1 p!

π (p + |�|)! . (40)

The mode of the local oscillator is now defined in terms of
the generating function:

γ (k, μ, ν, s) = 2π�0γ0w0

√
ω

c
S0(ω − ωd; δωd)G(k, μ, ν, s).

(41)

The construction of the petal modes from this generating
function is left until after the calculations.

The expression in Eq. (41) is substituted into Eq. (24),
together with the expansions of the kernels in Eq. (22). Since
the generating function in Eq. (41) appears twice in each term,
two different sets of generating parameters need to be used:
{μ1, ν1, s1} and {μ2, ν2, s2}. After evaluating all the integrals,
we obtain

J = 2πN�,p

∞∑
m=0

{
�2m(1 + mξ )−1/2

de(ν1, ν1, τ )(2m)!
exp

[
μ1μ2(1 + s1s2)

2de(ν1, ν1, τ )

]

± �2m+1
[
1+ 1

2 (2m+1)ξ
]−1/2

do(ν1, ν1, τ )(2m + 1)!
exp

[
μ1μ2(1−s1s2)

2do(ν1, ν1, τ )

]}
,

(42)

where

de(ν1, ν1, τ ) ≡ 2m(1 − ν1)(1 − ν2)τ + 2(1 − ν1ν2),

do(ν1, ν1, τ ) ≡ (2m + 1)(1 − ν1)(1 − ν2)τ

+ 2(1 − ν1ν2). (43)

If the local oscillator consists of one Laguerre-Gauss mode
only, we must set s1 = s2, which implies that the second
term in Eq. (42) becomes independent of μ1 and μ2. There-
fore, only the first term survives for |�| > 0, leading to no
squeezing.

At this point, we produce the petal modes by producing
superpositions for both s1 = ±1 and s2 = ±1. The result then
becomes

J ′ =
∞∑

m=0

2πN�,p(±�)m
(
1 + 1

2 mξ
)−1/2

[m(1 − ν1)(1 − ν2)τ + 2(1 − ν1ν2)]m!

× exp

[
μ1μ2

m(1 − ν1)(1 − ν2)τ + 2(1 − ν1ν2)

]
. (44)

If we assume ξ → 0 and τ → 0, the expression reverts
back to that for ideal squeezing, independent of � and p.
Therefore, under such conditions, the petal basis still supports
squeezing in the same way one finds for � = 0.

We will assume ξ → 0 but allow arbitrary values for τ . We
also set the radial index to zero p = 0, which is equivalent to
setting ν1 = ν2 = 0. The resulting expression for the gener-
ating function can then be used to generate the variance for
arbitrary |�|:

σ 2
± =

∞∑
n=0

(±�)n2|�|

(nτ + 2)|�|+1n!
. (45)
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FIG. 4. The minimum variance σ 2
− is plotted as a function of the

squeezing parameter � for τ = 1 and � = 0 . . . 5.

It reproduces Eq. (33) for � = 0, as expected. After evaluating
the summation, we obtain the hypergeometric function

σ 2
± = 1

2 t Ft (M, . . . , M; N, . . . , N ; ±�), (46)

where t = |�| + 1, M = 2/τ , and N = 1 + 2/τ . The se-
quences of M’s and N’s in the argument of the hypergeometric
function denote |�| + 1 entries each.

The minimum variance obtained when using a local oscil-
lator with such petal mode profiles are shown in Fig. 4 as a
function of the squeezing parameter � for different values of
the azimuthal index � and with τ = 1. The rate of decrease in
the minimum width slows down for larger azimuthal index.

The curves of the uncertainty area for these petal mode
profiles are shown in Fig. 5 as a function of the squeezing
parameter � for different values of the azimuthal index � and
with τ = 1. It is surprising to see that the uncertainty area
increases more slowly for higher azimuthal indices than for
lower azimuthal indices.

We also consider the size of the uncertainty area as a
function of the parameter τ . In Fig. 6, it is shown for different
values of the azimuthal index � at � = 7. Again, we note that
the size of the uncertainty area reaches a peak for a certain

FIG. 5. The uncertainty area size σ+σ− as a function of the
squeezing parameter � for τ = 1 and � = 0 . . . 5.

FIG. 6. The uncertainty area size σ+σ− as a function of the beam
width ratio τ at � = 7 for � = 0 . . . 5.

value of τ that depends on the azimuthal index � and decreases
for larger values of τ .

VIII. DISCUSSION

The effect of selected spatiotemporal properties of the local
oscillator on the measurement of squeezing on a paramet-
ric down-converted state is investigated. The calculations are
done directly in terms of the kernel functions and not on
matrices derived from these kernel functions, which would
require knowledge of the eigenbasis of the process. It makes
it possible to perform calculations to all orders in the Mag-
nus expansion of the down-converted state under thin crystal
conditions.

The calculation demonstrates the efficacy of the Wigner
functional approach: It incorporates all the spatiotemporal
degrees of freedom without the need for discretization, which
would require truncation to obtain explicit results. Yet, it
contains all the relevant experimental parameters to make
the analytically calculated result suitable for comparison with
experimental results.

The Wigner functional approach reveals a progressive
broadening of the angular spectra and spectral functions for
higher order terms in the Magnus expansion. The observed
effect of the broadening depends on the experimental param-
eters of the local oscillator used for homodyne measurements
of the amount of squeezing.

When the spatiotemporal degrees of freedom are ignored
in analyses of the down-conversion process, one obtains the
ideal squeezing behavior. Such ideal behavior is also seen
in those analyses that incorporate the spatiotemporal degrees
of freedom, but only goes as far as the first-order term in
the Magnus expansion [18]. It is only analyses that consider
higher order terms in the Magnus expansion that would reveal
the broadening in the widths of the angular spectra and spec-
tral functions, leading to a reduction in the squeezing effect.

We investigate the parameter dependence of the reduction
in squeezing, which deviates from the ideal squeezing behav-
ior. It is found that, to get as close to the ideal squeezing
behavior as possible, the mode size of the local oscillator
should be as small as possible compared to the mode size of
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the pump and the bandwidth of the local oscillator should be
much larger than that of the pump.

We also consider the effect of the azimuthal index when
the local oscillator has a petal mode structure composed of
the superposition of the Laguerre-Gauss mode with opposite
azimuthal index. It is found that for a finite beam width ratio,
the best squeezing behavior is obtained when the azimuthal
index is zero.

Some interesting observations emerged from this investiga-
tion. The uncertainty area of the part of the squeezed vacuum
state that is observed at first increases as the beam width
ratio increases, but then it starts to decrease again for further
increases in the beam width ratio. We also found that although
the minimum variance is better for smaller azimuthal indices,
the size of the uncertainty area increases faster for smaller
azimuthal indices.
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APPENDIX: WIGNER FUNCTIONAL FORMALISM
FOR QUANTUM OPTICS

The Wigner functionals for quantum optics [23–25,32] is
formulated in terms of quadrature bases that are obtained as
eigenstates of the wave vector dependent quadrature opera-
tors,

q̂s(k)|q〉 = |q〉qs(k), p̂s(k)|p〉 = |p〉ps(k), (A1)

which are defined in terms of the ladder operators,

q̂s(k) = 1√
2

[âs(k) + â†
s (k)],

p̂s(k) = −i√
2

[âs(k) − â†
s (k)]. (A2)

The subscript s represents the spin degrees of freedom. To
simplify notation, the spin is henceforth neglected; it can be
readily reintroduce, if necessary.

While the quadrature operators are unique operator-valued
functions of the wave vector, there are an infinite number
of the real-valued eigenvalue functions q(k) and p(k), such
that q, p ∈ L2{R3}. There is a unique eigenstate |q〉 or |p〉
associated with each eigenvalue function q(k) or p(k). The
quadrature eigenstates form complete orthogonal bases for
the entire Hilbert space of all quantum optical states [24,25].
These completeness and orthogonality relationships require
integrations over the space of all real-valued eigenvalue func-
tions, thus leading to a functional integral formulation.

To alleviate the notational burden of such functional ex-
pressions, we introduce a binary operator denoted by � and
call it a � contraction. For the inner product between two
functions, the � contraction is represented by

〈 f , g〉 ≡
∫

f ∗(k)g(k) d̄k ≡ f ∗ � g. (A3)

When there is a kernel function involved, we have

f ∗ � B � g ≡
∫

f ∗(k)B(k, k′)g(k′) d̄k d̄k′. (A4)

However, note that

f ∗ � T � g �=
∫

f ∗(k)T (k)g(k) d̄k. (A5)

An important quantity is the overlap 〈q|p〉, which reads

〈q|p〉 = exp

[
i
∫

q(k)p(k)d̄k

]
≡ exp(iq � p). (A6)

It indicate that the quadrature bases are related by functional
Fourier transforms.

It is convenient to combine the real-valued eigenvalue
functions of q(k) and p(k) as

α(k) = 1√
2

[q(k) + ip(k)]. (A7)

The resulting complex-valued function represents the field
variable for the functional phase space on which quasidistri-
bution functionals are defined.

Using the orthogonality relationships of the quadrature
bases, one can show that∫

exp (α∗
0 � α − α∗ � α0) D◦[α] = (2π )�δ[α0], (A8)

where α0 is an independent field variable. The measure of
the functional integral combines those for the two quadrature
bases,

D◦[α] ≡ D
[
q,

p

2π

]
. (A9)

It indicates that the functional integration is performed over
the space of all finite-energy angular spectral functions. The
Dirac δ functional with the complex-valued argument is de-
fined as the product of those for the two real-valued functions,

δ[α0] ≡ δ[q0] δ[p0]. (A10)

The constant (2π )� is formally divergent, because � is a
cardinal number representing the number of degrees of free-
dom of the functional space. These divergent constants are
inevitable for properly normalized states defined on functional
phase space. However, they would cancel for any physically
observable quantity.

The generic functional integral with an integrand in
isotropic Gaussian form can be evaluated to give∫

exp (−α∗ � K � α − α∗ � ξ − ζ ∗ � α) D◦[α]

= exp (ζ ∗ � K−1 � ξ )

det{K} , (A11)

where K is an invertible kernel, and ξ and ζ are complex
functions. The functional determinant is given by

det{K} = exp[tr{ln�(K )}], (A12)

013701-8



SPATIOTEMPORAL EFFECTS ON SQUEEZING … PHYSICAL REVIEW A 103, 013701 (2021)

where ln�(·) is defined as the inverse of

exp�(H ) ≡ 1 + H + 1

2
H � H + · · · = 1 +

∞∑
n=1

1

n!
(H )�n,

(A13)

for an arbitrary kernel function H (k1, k2), and the trace of
such a kernel is given by

tr{H} ≡
∫

H (k, k) d̄k. (A14)

The Wigner functional is now defined by

WÂ[α] ≡
∫ 〈

q + 1

2
x

∣∣∣∣Â
∣∣∣∣q − 1

2
x

〉
exp(−ip � x) D[x], (A15)

where x is a real-valued integration field variable and Â is an
operator on the Hilbert space of all quantum optical states,
incorporating both particle-number degrees of freedom and
spatiotemporal degrees of freedom.

The trace of the operator is represented by the functional
integral of its associated Wigner functional, which gives 1 if

Â is a density operator ρ̂,

tr{ρ̂} =
∫

Wρ̂[α] D◦[α] = 1. (A16)

As a quasiprobability distribution over the functional phase
space, the Wigner functional of a state does not qualify
as a true probability density. However, one can compute a
probability density (the marginal distributions) from it by
integrating over either p or q (or any linear combination of
p and q):

∫
W [q, p] D

[ p

2π

]
= 〈q|ρ̂|q〉 = ρ[q, q],∫

W [q, p] D[q] = 〈p|ρ̂|p〉 = ρ[p, p]. (A17)

If we integrate these marginal probability distributions over
the remaining variables, we obtain 1, thanks to the normaliza-
tion.
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