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Periodic and solitary waves in an inhomogeneous optical waveguide with third-order
dispersion and self-steepening nonlinearity
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We demonstrate the formation of periodic waves and envelope solitons in dispersive optical media having a
Kerr nonlinear response under the influence of third-order dispersion and self-steepening effect. The stability
properties of the bright- and dark-soliton solutions are proved using the stability criterion based on the theory
of nonlinear dispersive waves. Regimes for the modulation instability of a continuous wave signal propagating
inside the dispersive optical medium are also investigated. The results show that the gain spectrum depends
crucially on the self-steepening parameter, while the third-order dispersion has no effect on the modulation
instability condition. A similarity transformation is presented to reduce the generalized extended nonlinear
Schrödinger equation with distributed coefficients which models the pulse evolution in the presence of the
inhomogeneities of media to the related constant-coefficient one. The propagation behaviors of self-similar bright
and dark solitons are discussed in a periodic distributed fiber system and an exponential dispersion decreasing
fiber.
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I. INTRODUCTION

Solitons are shape-preserving waves that have been ob-
served experimentally in different physical media, such as
monomode fibers [1], femtosecond lasers [2], and bulk optical
materials [3]. The formation of these special wave packets
occurs when the dispersion or diffraction associated with the
finite size of the wave is exactly balanced by the nonlinear
change of the properties of material induced by the wave
itself. Of particular interest are soliton pulses that propagate in
optical fibers because of their enormous potential for telecom-
munication and ultrafast signal-routing systems [4]. Their
remarkable robustness makes them the most suitable means
for processing bits of information [5]. There are two different
soliton types, dark and bright solitons, which can propagate
along an optical fiber without changing their shapes, and at-
tenuation due to the intensity-dependent refractive index of
the fiber exactly compensates for the pulse-spreading effects
of group-velocity dispersion. A dark-soliton pulse can form in
the normal dispersion regime, which appears in the form of a
dip against a uniform background [6]. Unlike the dark soliton,
a bright soliton is a pulse on a zero-intensity background
which could arise in the anomalous dispersion regime of the
fiber spectrum [7]. Usually, the soliton dynamics is governed
by the cubic nonlinear Schrödinger equation (NLSE) that
includes terms accounting for the group-velocity dispersion
(GVD) and self-phase modulation [4]. This model is valid if
the assumption that the spatial width of the soliton is much
larger than the carrier wavelength is satisfied. This is equiv-
alent to the condition that the width of the soliton frequency
spectrum is much less than the carrier frequency [8]. It may be

relevant to mention that the NLSE model is used to describe
the propagation of both temporal and spatial envelope solitons
in fibers and planar waveguides, respectively [9]. Recently,
Song et al. [10] presented experimentally verified optical soli-
tons in fiber lasers. Note that optical soliton formation in such
dissipative nonlinear optical systems is a result of the mutual
interaction among the fiber nonlinearity, cavity dispersion,
laser gain saturation, and gain bandwidth filtering. Recent
studies have shown that fiber lasers also provide an ideal
platform to observe the generation of optical rogue waves
and study their behavior [11]. Interestingly, vector solitons
were also experimentally observed in black phosphorus mode-
locked fiber lasers [12].

For increasing the bit rate further, it is desirable to use
ultrashort (femtosecond) pulses. More precisely, high bit rates
correspond to narrow pulse widths per channel [13]. It is
worth mentioning that the application of such femtosec-
ond pulses is restricted not only to ultrahigh-bit-rate optical
communication systems but also to the ultrafast physical pro-
cesses, optical sampling systems, and infrared time-resolved
spectroscopy [4,14]. Thus, the importance of femtosecond
light pulses is extensive. However, experimental and theoret-
ical studies have shown that higher-order effects should be
taken into account for femtosecond pulse propagation in a
monomode optical fiber and the extended NLSE should be
employed to describe its evolution [15,16]. The most gen-
eral effects that become increasingly important as pulses get
shorter are the third-order dispersion, self-steepening (i.e.,
Kerr dispersion), and the self-frequency shift. Because the
spectral width of the ultrashort light pulses becomes compa-
rable to the carrier frequency, these additional effects should
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be considered [17]. All these effects will give some additional
perturbation to the soliton system. Notably, the behavior of
ultrashort pulses changes under the influence of these addi-
tional effects. For example, third-order dispersion produces
a considerable amount of asymmetrical broadening in the
time domain for ultrashort pulses [18] and results in radiation
phenomena [19]. Also, self-steepening that arises when the
group velocity of a pulse depends on the intensity [20] forces
the peak of the pulse to travel slower than the wings and
consequently causes an asymmetrical spectral broadening of
the pulse [18]. Apart from third-order dispersion and self-
steepening nonlinearity, the ultrashort pulse will also suffer
from many other higher-order dispersive and nonlinear effects
as it become extremely short (below 10 fs). Importantly, when
the intensity of the light pulses crosses a certain threshold
value the optical fiber behaves nonlinearly [21]. It should be
noted that the magnitude of a given higher-order effect in
single-mode fibers is dependent not only on the optical pulse
but also on the fiber parameters.

Naturally, an appropriate modeling of the propagation
characteristics of optical fibers should readily include the
influence of various physical phenomena on short-pulse prop-
agation and generation. To theoretically describe the evolution
of femtosecond pulses through a nonlinear fiber, the non-
linear Schrödinger (NLS) family of equations incorporating
additional corrections terms is widely used with constant or
variable coefficients [22–25]. From a theoretical point of view,
the inclusion of extra terms to model ultrashort pulses changes
drastically integrability properties of the NLSE. Generally,
the addition of further higher-order dispersive and nonlinear
terms to the cubic NLS model produces an equation which is
generally not integrable.

Recently, the influence of various higher-order effects on
the propagation of light pulses has attracted a great deal
of interest. This should not be surprising because these ef-
fects may add qualitatively certain novel properties to the
wave propagation phenomena which are important in many
practical applications (e.g., W-shaped and M-shaped solitons,
modulational instability, rogue waves, and breathers) [24–29].
For example, Akhmediev and Karsson [26] investigated the
amount of radiation emitted by solitons due to higher-order
dispersion in optical fibers. Artigas et al. [27] studied the
effect of quintic nonlinearities in the propagation of solitons
in cubic nonlinear media. Moreover, Li et al. [28] demon-
strated a novel W-shaped solitary-wave structure in an optical
fiber with higher-order effects such as third-order dispersion,
self-steepening, and the self-frequency shift effect. Recent
studies also reported the existence of a dipole solitary wave
in highly nonlinear optical fibers exhibiting quintic non-Kerr
nonlinearities [29]. Furthermore, the present authors demon-
strated in recent papers [30,31] that a generalized NLSE
allows for the existence of quartic and dipole solitons in the
presence of an additional self-steepening term and without
a self-steepening term as well. The model incorporating the
contribution of all orders of dispersion up to the fourth order
as well as self-steepening nonlinearity applies to the descrip-
tion of femtosecond optical pulse propagation in silicon-based
slot waveguides. The experimental observation of quartic
and dipole solitons is possible, for example, in a silicon-on-
insulator waveguide fabricated along a specific direction on

the surface. However, less attention has been paid to the study
of different types of solitons in optical fibers with third-order
dispersion and self-steepening effects.

The intrapulse Raman scattering plays the most important
role among the higher-order nonlinear effects [15,32]. The
stimulated Raman scattering leads to a continuous downshift
of the soliton carrier frequency when the pulse spectrum be-
comes so broad that the high-frequency components of a pulse
can transfer energy to low-frequency components of the same
pulse through Raman amplification. The Raman-induced fre-
quency shift is negligible for the pulse width τ0 > 10 fs and
it becomes of considerable importance for the short soliton
width τ0 < 5 fs. However, it turns out that pulselike solitons
do not exist when the Raman term is included because the
resulting perturbation is non-Hamiltonian type. Physically,
the Raman-induced spectral redshift does not preserve pulse
energy because a part of the energy is dissipated through
the excitation of molecular vibrations. However, a kink-type
topological soliton (with infinite energy) has been found.
The recent advent of photonics based on silicon-on-insulator
(SOI) technology allows design slot waveguides for silicon
and silica or silicon nanocrystals. The important possibility
of such technology is that for a SOI waveguide fabricated
along the special direction [1̄10] on the [110] × [001] surface,
stimulated Raman scattering cannot occur when an input pulse
excites the quasi-transverse-magnetic (quasi-TM) mode of the
waveguide [33,34].

In this paper we analyze the existence, propagation proper-
ties, and stability of solitary light waves in an optical Kerr
medium exhibiting these effects. The successive approach
we develop here allows us to describe the propagation dy-
namics of two different types of solitons, bright and dark,
in the presence of the third order of the fiber dispersion
and self-steepening process. This approach also enables us
to find the specific soliton characteristics in terms of all
physical parameters. Our results include also investigations
of the modulational instability and self-similar solitary-pulse
propagation in the optical fiber system. It is shown that the
self-similar solitary-wave shape and dynamical behavior can
be controlled by selecting the third-order dispersion and gain
or loss parameters appropriately.

The rest of the paper is organized as follows. Section II
presents a regular method which yields the traveling-wave
solutions of an extended NLSE with third-order dispersion
and self-steepening terms, describing the propagation of fem-
tosecond light pulses in dispersive optical fibers having a
Kerr-type nonlinear response. Section III introduces exact
periodic bounded and unbounded wave solutions as well as
soliton solutions of the model. Section IV is devoted to sta-
bility analysis of the obtained soliton solutions based on the
theory of optical nonlinear dispersive waves. We examine the
modulational instability of a continuous wave signal propa-
gating inside the fiber medium in Sec. V. By means of the
similarity transformation method, we construct self-similar
soliton solutions of the generalized nonlinear Schrödinger
equation with distributed coefficients governing the pulse evo-
lution in the presence of the inhomogeneities of fiber media
in Sec. VI. We also investigate here the dynamical behaviors
of those self-similar solitons in a specified soliton control
system. In Sec. VII we present a physical discussion and

013521-2



PERIODIC AND SOLITARY WAVES IN AN … PHYSICAL REVIEW A 103, 013521 (2021)

results showing the influence of higher-order effects on soli-
ton dynamics. Finally, we present a summary and our main
conclusions in Sec. VIII.

II. TRAVELING WAVES OF THE EXTENDED NONLINEAR
SCHRÖDINGER EQUATION

For ultrashort light pulses whose duration is shorter than
100 fs, the optical field [i.e., ψ (z, τ )] in a nonlinear optical
fiber with third-order dispersion and self-steepening nonlin-
earity is modeled by the extended NLSE [15]

i
∂ψ

∂z
= α

∂2ψ

∂τ 2
+ iσ

∂3ψ

∂τ 3
− γ |ψ |2ψ − iν

∂

∂τ
(|ψ |2ψ ), (1)

where z is the longitudinal coordinate, τ = t − β1z is the
retarded time, α = β2/2, σ = β3/6, and γ is the nonlinear
parameter. The parameter βk = (dkβ/dωk )ω=ω0 is the kth-
order dispersion of the optical fiber, β(ω) is the propagation
constant depending on the optical frequency, and ν = γ /ω0 is
self-steepening coefficient.

The intrapulse Raman scattering effects are governed by
the term γ τRψ∂ (|ψ |2)/∂τ , which in general must be added
to the right-hand side of the extended NLSE (1). Here τR is
the Raman parameter with a value of about 3 fs for silica
fiber. Note that pulselike solitons do not exist when the Ra-
man term is included in the extended NLSE (1). However, as
discussed in Sec. I, the Raman effect is absent for specially
designed slot waveguides based on silicon and silica or silicon
nanocrystals excited with quasi-TM polarized pulses along the
special direction on the surface of waveguide. In this case an
intrapulse Raman scattering disappears and the propagation of
femtosecond optical solitons is governed by Eq. (1).

In the limit of vanishing third-order dispersion (i.e., σ =
0), Eq. (1) reduces to the derivative NLSE [35,36], which de-
scribes the optical soliton propagation in the presence of Kerr
dispersion. In Ref. [37] special conditions were considered to
derive the exact N-soliton solutions of Eq. (1) by use of the
Hirota direct method. Here instead we analyze the existence
of periodic waves and solitons without taking into account
such conditions. We will mainly demonstrate that the balance
among GVD, Kerr nonlinearity, third-order dispersion, and
self-steepening effects in the optical fiber system enables the
formation of different types localized pulses with interesting
properties. Remarkably, the results presented below show that
the NLSE model (1) allows general periodic and soliton so-
lutions, in the sense that no a priori restrictions on equation
parameters are assumed.

To search for exact solitary-wave solutions of Eq. (1), we
consider a solution of the form

ψ (z, τ ) = u(x) exp[i(κz − δτ + φ)], (2)

where u(x) is a real function depending on the variable x =
τ − qz, with q = v−1 the inverse velocity. Here κ and δ are the
corresponding real parameters describing the wave number
and frequency shift, while φ represents the phase of the pulse
at z = 0.

Substituting Eq. (2) into Eq. (1) and removing the expo-
nential term, we obtain the system of two ordinary differential
equations

σ
d3u

dx3
+ (q − 2αδ − 3σδ2 − 3νu2)

du

dx
= 0, (3)

(α + 3σδ)
d2u

dx2
+ (κ − αδ2 − σδ3)u − (γ + νδ)u3 = 0. (4)

Integration of Eq. (3) yields

σ
d2u

dx2
+ (q − 2αδ − 3σδ2)u − νu3 = C, (5)

where C is the integration constant. We choose below C = 0
and then Eq. (4) is equivalent to Eq. (5) in the case when the
following two relations are satisfied:

κ − αδ2 − σδ3

α + 3σδ
= 1

σ
(q − 2αδ − 3σδ2), (6)

γ + νδ

α + 3σδ
= ν

σ
. (7)

Equations (6) and (7) lead to the frequency shift δ and wave
number κ as

δ = γ

2ν
− α

2σ
, (8)

κ = αδ2 + σδ3 + 1

σ
(α + 3σδ)(q − q0), q0 = 2αδ+3σδ2.

(9)

Thus the system of equations (4) and (5) reduces to the non-
linear ordinary differential equation

d2u

dx2
+ au + bu3 = 0, (10)

with the parameters a and b given by

a = q − q0

σ
, b = − ν

σ
, (11)

where q0 = 2αδ + 3σδ2. We emphasize that the parameter
q = v−1 in Eqs. (9) and (11) is an arbitrary quantity which
is in some interval connected with the appropriate solution
of the extended NLSE (1). Integration of Eq. (10) yields the
first-order nonlinear differential equation(

du

dx

)2

+ au2 + 1

2
bu4 = C0, (12)

where C0 is an integration constant. We define a function Y (x)
by the relation

u(x) = ±
√

Y (x)

2b
, (13)

which transforms Eq. (12) to the form(
dY

dx

)2

= −(Y − Y1)(Y − Y2)(Y − Y3). (14)

In Eq. (14) the quantities Y1, Y2, and Y3 are the roots of the
cubic equation

Y 3 + 4aY 2 − 8C0bY = 0. (15)
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We consider in the following section different cases which
yield the periodic bounded and unbounded solutions and soli-
tary waves.

III. PERIODIC BRIGHT-SOLITON AND DARK-SOLITON
SOLUTIONS

In this section we derive the periodic bounded and un-
bounded solutions of the extended NLSE (1). The limiting
cases of these periodic-wave solutions lead to the bright-
soliton and dark-soliton solutions. The general solution of
Eq. (14) is given by

±
∫

dY√
(Y1 − Y )(Y2 − Y )(Y3 − Y )

= x − η, (16)

where η is an integration constant. We consider three cases:
(i) a < 0 and b > 0, (ii) a > 0 and b < 0, and (iii) a = 0 and
b > 0.

First we consider the case with a < 0. The bounded solu-
tions exist when the roots in Eq. (15) are real. We consider
the case when these roots are real and different. We can order
these roots as Y1 < Y2 < Y3 and then we have the ordered
roots Y1 = 0, Y2 = −2a(1 − λ), and Y3 = −2a(1 + λ), where
λ =

√
1 + 2C0b/a2. The parameter λ is an arbitrary quantity

because C0 is the integration constant. Note that the parameter
λ is in an interval 0 < λ < 1 because we assume that all these
roots are real, different, and ordered. The periodic bounded
solution given by Eq. (16) exists when the function Y (x) is
defined in the interval Y2 � Y (x) � Y3. The explicit form of
this periodic bounded solution is

Y (x) = Y2 + (Y3 − Y2)cn2(w(x − η), k), (17)

where cn(z, k) is the elliptic Jacobi function. The parameters
w and k in this solution are

w = 1

2

√
Y3 − Y1 =

√
−a

2
(1 + λ), (18)

k =
√

Y3 − Y2

Y3 − Y1
=

√
2λ

1 + λ
. (19)

Note that Eq. (17) yields an inequality Y (x) > 0, and hence
one should choose b > 0 because we have the relation u(x) =
±√

Y (x)/2b. Thus we find the bounded periodic solution

u(x) = ±
√

−a

b
{1 − λ + 2λ cn2(w(x − η), k)}1/2. (20)

Note that the parameter k in this solution is defined in the
interval 0 < k < 1 because the parameter λ is in the interval
0 < λ < 1. However, the solutions with λ = 0 and 1 (k = 0
and 1) follow from Eq. (20) as limiting cases. We present be-
low the solutions of Eq. (1) based on the solution in Eq. (20).

A. Periodic bounded waves with a < 0 and b > 0

Equations (2) and (20) lead to a family of periodic bounded
solutions with 0 < λ < 1 as

ψ (z, τ )=�[1−λ+2λ cn2(wξ, k)]1/2 exp[i(κz − δτ + φ)],
(21)

where ξ = τ − qz − η, with η the position of pulse at z = 0,
and k = √

2λ/(1 + λ), with 0 < λ < 1. The frequency shift

δ and wave number κ are given in Eqs. (8) and (9). The
amplitude � and parameter w in this solution are

� = ±
√

(q − q0)

ν
, w =

√
− (q − q0)(1 + λ)

2σ
, (22)

where q is an arbitrary parameter. Hence this periodic so-
lution exists when the following inequalities are satisfied:
(q − q0)/ν > 0 and (q − q0)/σ < 0. It follows from these
relations that νσ < 0.

B. Bright-soliton solution with a < 0 and b > 0

In the limiting case with λ = 1 we have k = 1. Thus the
soliton solution follows from Eq. (22) as

ψ (z, τ ) = A sech[w0(τ − qz − η)] exp[i(κz − δτ + φ)].
(23)

The amplitude A and the inverse width w0 of the soliton
solution are

A = ±
√

2(q − q0)

ν
, w0 =

√
−q − q0

σ
, (24)

where q is an arbitrary parameter. This soliton exists when
the following inequalities are satisfied: (q − q0)/ν > 0 and
(q − q0)/σ < 0. It follows from these relations that the con-
dition νσ < 0 for this soliton solution is satisfied as well. This
soliton solution has the energy and momentum integrals

E =
∫ +∞

−∞
|ψ (z, τ )|2dτ = 4

√
−σ (q − q0)

ν2
, (25)

M = i

2

∫ +∞

−∞

(
ψ

∂ψ∗

∂τ
− ψ∗ ∂ψ

∂τ

)
dτ

= 2(αν − γ σ )

νσ

√
−σ (q − q0)

ν2
. (26)

Note that in the limiting case with λ = 0 the solution in
Eq. (21) is given by ψ (z, τ ) = � exp[i(κz − δτ + φ)].

Now we consider the second case with a > 0. The bounded
solutions exist when the roots in Eq. (15) are real. We con-
sider here the case when these roots are real and different. If
the roots are ordered as Y1 < Y2 < Y3, then we have the or-
dered roots Y1 = −2a(1 + λ), Y2 = −2a(1 − λ), and Y3 = 0,
with λ =

√
1 + 2C0b/a2. The parameter λ is in an interval

0 < λ < 1 because we assume that all these roots are real,
different, and ordered. The periodic bounded solution given
by Eq. (16) exists when the function Y (x) is defined in the
interval Y2 � Y (x) � Y3. Note that in this case Y (x) � 0 and
hence we choose b < 0 because u(x) = ±√

Y (x)/2b. Thus the
periodic bounded solution given in Eqs. (13) and (16) is given
by

u(x) = � sn(w(x − η), k), (27)

where sn(z, k) is the elliptic Jacobi function. The parameters
�, w, and k of this solution are

� = ±
√

−a

b
(1 − λ), w =

√
a

2
(1 + λ), k =

√
1 − λ

1 + λ
.

(28)
The parameter k in Eq. (28) is defined in the interval 0 < k <

1 because the parameter λ is in the interval 0 < λ < 1. We
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present below two solutions of Eq. (1) based on the solution
given in Eq. (27).

C. Periodic bounded waves with a > 0 and b < 0

Equations (2) and (27) lead to a family of periodic bounded
solutions with 0 < λ < 1 as

ψ (z, τ ) = � sn(wξ, k) exp[i(κz − δτ + φ)], (29)

where ξ = τ − qz − η, with η the position of pulse at z = 0,
and k = √

(1 − λ)/(1 + λ), with 0 < λ < 1. The frequency
shift δ and wave number κ are given in Eqs. (8) and (9). The
amplitude � and parameter w in this solution are

� = ±
√

(q − q0)(1 − λ)

ν
, w =

√
(q − q0)(1 + λ)

2σ
, (30)

where q is an arbitrary parameter. Hence this periodic so-
lution exists when the following inequalities are satisfied:
(q − q0)/ν > 0 and (q − q0)/σ > 0. It follows from these
relations that νσ > 0.

D. Dark-soliton solution with a > 0 and b < 0

In the limiting case with λ = 0 we have k = 1. Thus the
dark-soliton solution follows from Eq. (29) as

ψ (z, τ ) = B tanh[w0(τ − qz − η)] exp[i(κz − δτ + φ)].
(31)

The amplitude B and the inverse width w0 of the dark-soliton
solution are

B = ±
√

q − q0

ν
, w0 =

√
q − q0

2σ
, (32)

where q is an arbitrary parameter. This dark-soliton solu-
tion exists when the following inequalities are satisfied: (q −
q0)/ν > 0 and (q − q0)/σ > 0. It follows from these relations
that the condition νσ > 0 for this dark-soliton solution is
satisfied as well. Note that the solution in Eq. (31) has a
kink-type shape; however, the intensity I (z, τ ) = |ψ (z, τ )|2 of
this nonlinear wave has the dark-soliton profile.

Now we consider the third case with a = 0. The bounded
solutions exist when the roots in Eq. (15) are real. We consider
here the case when these roots are real and different. If the
roots are ordered as Y1 < Y2 < Y3, then we have the ordered
roots Y1 = −√

8C0b, Y2 = 0, and Y3 = √
8C0b, where C0 is

an integration constant. The periodic bounded solution given
by Eq. (16) exists when the function Y (x) is defined in the
interval Y2 � Y (x) � Y3. Note that in this case Y (x) � 0 and
hence we choose b > 0 because u(x) = ±√

Y (x)/2b. Thus the
periodic bounded solution given in Eqs. (13) and (16) is

u(x) = ±
√

μ

b
cn(

√
μ(x − η), k0), (33)

where μ = √
2C0b and k0 = 1/

√
2. In this solution we have

a = 0, and hence the parameter q = v−1 is fixed as q = q0

with q0 = 2αδ + 3σδ2. Thus the variable x in this periodic so-
lution is given by x = τ − q0z. We present below the solution
of Eq. (1) based on the solution given in Eq. (33).

E. Periodic bounded waves with a = 0 and b > 0

Equations (2) and (33) lead to a family of periodic bounded
solutions with μ > 0 as

ψ (z, τ ) = � cn(wξ, k0) exp[i(κz − δτ + φ)], (34)

where ξ = τ − q0z − η, with q0 given in Eq. (9). The param-
eter k0 defining the elliptic Jacobi function in Eq. (34) is fixed
as k0 = 1/

√
2. The frequency shift δ is given in Eq. (8) and

the wave number is κ = αδ2 + σδ3 because in this solution
we have q = q0. The amplitude � and parameter w in Eq. (34)
are given by

� = ±
√

−σμ

ν
, w = √

μ, (35)

where μ is an arbitrary parameter (μ > 0). Hence this peri-
odic solution exists when the inequality νσ < 0 is satisfied.

We also present the periodic unbounded solution of
Eq. (10) given by

u(x) = �
sn(w(x − η), k)

1 + cn(w(x − η), k)
, (36)

where the parameters � and w are

� = ±
√

− a

b(2k2 − 1)
, w =

√
2a

2k2 − 1
. (37)

In this solution an arbitrary parameter k is in the interval 0 �
k < 1/

√
2 or the interval 1/

√
2 < k < 1.

F. Family of periodic unbounded waves

Equations (2) and (36) lead to a family of periodic un-
bounded solutions as

ψ (z, τ ) = �
sn(wξ, k)

1 + cn(wξ, k)
exp[i(κz − δτ + φ)], (38)

where ξ = τ − qz − η and an arbitrary parameter k is in the
interval 0 � k < 1/

√
2 or the interval 1/

√
2 < k < 1. The

frequency shift δ and wave number κ are given in Eqs. (8)
and (9). The amplitude � and parameter w in this solution are

� = ±
√

(q − q0)

ν(2k2 − 1)
, w =

√
2(q − q0)

σ (2k2 − 1)
. (39)

These unbounded waves exist under the conditions (q −
q0)/ν(2k2 − 1) > 0 and (q − q0)/σ (2k2 − 1) > 0. In the lim-
iting case with k = 0 the solution in Eq. (38) yields the
periodic unbounded waves

ψ (z, τ ) = ±
√

−q − q0

ν
tan(w0ξ ) exp[i(κz − δτ + φ)],

(40)
with w0 = √−(q − q0)/2σ . We note that in the limiting case
with k → 1 the unbounded solution in Eq. (38) transforms to
dark-soliton solution given by Eq. (31).

In the Conclusion we emphasize that the solutions pre-
sented in this section significantly differ from solutions of
the ordinary NLSE with σ = 0 and ν = 0. This is apparent
because the solutions presented have no sense in the limit
when σ → 0 and ν → 0. We emphasize that the solutions of
the extended NLSE (1) obtained in this section have relevance
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for the experiments on the short-pulse propagation in optical
fiber communications, ultrafast lasers, and slow-light devices.
Together with the fact that the Raman effect is absent for spe-
cially designed slot waveguides (see the discussion presented
in Secs. I and II), the above periodic and solitary solutions
can find various practical applications. We also discuss the
experimental observation of femtosecond optical solitons in
the Conclusion. Note that experimental implementation of
optical solitons is connected with the stability condition which
is obtained in the following section based on the theory of
nonlinear dispersive waves.

IV. STABILITY ANALYSIS OF SOLITARY WAVES

We consider in this section the analytical stability analysis
of soliton solutions for the extended NLSE (1) based on the
theory of nonlinear dispersive waves in nonlinear optics and
fluid dynamics [30,31,38]. For our purposes, we develop the
dynamics of dispersive waves in the form

ψ (z, τ ) = F (ω) exp[i�(z, τ )], (41)

where the amplitude F (ω) and phase �(z, τ ) are real func-
tions. The wave number k and frequency ω of nonlinear
dispersive waves are given by

k(ω) = ∂�

∂z
, ω = −∂�

∂τ
. (42)

We have by definition that �zτ = kτ and �τ z = −ωz, which
yield

∂ω

∂z
+ ∂k(ω)

∂τ
= 0. (43)

We assume that ω(z, τ ) = ω̃(Z, T ) and k(z, τ ) = k̃(Z, T ),
where Z = εz and T = ετ with ε � 1, are slow variables.
Here ω̃(Z, T ) and k̃(Z, T ) are slowly varying functions of
the variables Z and T . The substitution of Eq. (41) into the
extended NLSE (1) leads to a series of nonlinear equations.
The equation in the zeroth order to the small parameter ε is

k(ω) = k0(ω) + �(ω)F 2(ω), (44)

where k0(ω) and �(ω) are

k0(ω) = αω2 + σω3, �(ω) = γ + νω. (45)

The parameter �(ω) = γ (1 + ω/ω0) is the renormalized non-
linear coefficient γ by the self-steepening effect. Equations (1)
and (41) in the first order to the small parameter ε yield

∂F

∂z
+ k′(ω)

∂F

∂τ
= − 1

2
k′′

0 (ω)F
∂ω

∂τ

+ 2�(ω)FF ′ ∂F

∂τ
− 2νF 2 ∂F

∂τ
, (46)

with k′(ω) = dk(ω)/dω and F ′ = dF (ω)/dω. Thus Eq. (44)
is the nonlinear dispersion relation and Eq. (46) is the equation
for the amplitude F (ω) of nonlinear waves. Note that Eq. (43)
for varying frequency ω(z, τ ) can also be written in the form

∂ω

∂z
+ k′(ω)

∂ω

∂τ
= 0, (47)

where the function k′(ω) is

k′(ω) = k′′
0 (ω) + 2�(ω)F (ω)F ′(ω) + νF 2(ω). (48)

The nature of Eqs. (44)–(47) based on the method of slow
variables can be hyperbolic or elliptic. We first consider the
case when this system of equations is hyperbolic. The charac-
teristics connected to the hyperbolic system of equations (46)
and (47) are given by

dτ

dz
= k′(ω),

dω

dz
= 0, (49)

dF

dz
= F

∂ω

∂τ

(
2�(ω)(F ′)2 − 2νFF ′ − 1

2
k′′

0 (ω)

)
. (50)

It follows from Eq. (49) that dF/dz = F ′(ω)dω/dz = 0.
Thus Eq. (50) yields

dF (ω)

dω
= νF (ω)

2�(ω)
± 1

2

√
ν2F 2(ω)

�2(ω)
+ k′′

0 (ω)

�(ω)
, (51)

where k′′
0 (ω) = 2α + 6σω. Equations (49)–(51) yield the

characteristic equation

dτ

dz
= k′

0(ω) + 2νF 2(ω) ± �(ω)F (ω)

√
ν2F 2(ω)

�2(ω)
+ k′′

0 (ω)

�(ω)
.

(52)
It follows from this equation that the system of equations (46)
and (47) with infinitesimal amplitude F (ω) is hyperbolic
when the condition k′′

0 (ω)/�(ω) � 0 is satisfied and the sys-
tem of equations (46) and (47) with infinitesimal amplitude
F (ω) is elliptic for the condition k′′

0 (ω)/�(ω) < 0.
Equations (51) and (52) lead to a physical interpretation of

stability for the soliton solutions of the extended NLSE (1).
We may suppose [31] that the soliton is stable when it cannot
radiate the nonlinear dispersive waves. We note that the out-
going nonlinear dispersive waves with infinitesimal amplitude
F (ω), connected to such a radiation process, exist only in the
case when the above system of equations is hyperbolic. More-
over, in the case of elliptic equations the problem of optical
pulse radiation is not correct from a mathematical point of
view. For the infinitesimal amplitude F (ω) this takes place
in the case when k′′

0 (ω)/�(ω) < 0. This relation follows from
Eqs. (51) and (52) because the outgoing nonlinear dispersive
waves do not exist when the square root in these equations is
imaginary and hence the system of equations (51) and (52) is
elliptic. Note that the inequality k′′

0 (ω)/�(ω) < 0 is satisfied
in some domain D of parameters α, σ , γ , and ν. Thus this
physical interpretation of the stability of the soliton solution
yields the stability domain Dst for a given type of soliton.

Now we consider the stability condition for the soliton
solutions given in Eq. (23) with the frequency δ = (γ σ −
αν)/2νσ . Equation (52) at ω = δ has the form

dτ

dz
= q0 + 2νF 2(δ) ± �F (δ)

√
F 2(δ)

(ω0 + δ)2
+ k′′

0 (δ)

γ (1 + δ/ω0)
,

(53)
with � = �(δ) = γ (1 + δ/ω0) and k′′

0 (δ) = 3γ σ/ν − α.
Note that the solutions of the extended NLSE (1) should
satisfy the condition |δ|/ω0 � 1, where ω0 is the carrier fre-
quency. Derivation of the extended NLSE (1) is based on
this condition for the envelope of nonlinear waves. Hence
Eq. (53) with infinitesimal amplitude F (δ) yields the criterion
k′′

0 (δ)/γ < 0 of the soliton stability. Thus the criterion of the
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soliton stability for the solution in Eq. (23) is given by the
inequality

α

γ
>

3σ

ν
. (54)

Using the relation ν = γ /ω0, the criterion (54) can also be
written as αν > 3σγ . Hence the criterion (54) can be written
in the form

νβ2 > γβ3. (55)

Thus the necessary and sufficient conditions for stability
of the bright soliton in Eq. (23) are given by the inequal-
ities (q − q0)/ν > 0, (q − q0)/σ < 0, and αν > 3σγ . We
emphasize that the stability criterion formulated for the ex-
tended NLSE (1) can be applied to more general nonlinear
Schrödinger equations which have the Hamiltonian form. We
also note that the similarity transformation of the generalized
NLSE developed in Sec. VI does not influence the stability
of solitons because this similarity transformation is connected
with scaling functions only.

V. MODULATIONAL INSTABILITY

An important phenomenon closely associated with the soli-
ton formation is the occurrence of modulational instability
(MI). It refers to a process in which the amplitude and phase
modulations of a wave grow as a result of an interplay between
the nonlinearity and dispersion [39]. In what follows, we ex-
amine the MI of a continuous wave (cw) propagating in a fiber
system governed by the extended NLSE (1). This can be done
by employing the standard linear stability analysis [4]. To
study the process in detail, the cw solution will be perturbed
first and then this small perturbation will be analyzed whether
it grows or decays with propagation.

The steady-state solution of Eq. (1), corresponding to a cw
signal, is given by

ψ (z, τ ) = √
P0 exp(iφnl), (56)

where the nonlinear phase shift φnl is related to the optical
power P0 and the propagation distance as φnl = γ P0z. The
latter relation, together with Eq. (56), shows that the cw signal
acquires only a power-dependent phase shift after propagation
through the optical fiber. To examine the stability of such a
steady-state solution, we add a small perturbation a(z, τ ) to
the cw light so that we have

ψ (z, τ ) = [
√

P0 + a(z, τ )] exp(iφnl), (57)

where a small perturbation a(z, τ ) satisfies the condition
|a(z, τ )| � √

P0. Hence, if the perturbed field grows exponen-
tially, the steady state becomes unstable. Substituting Eq. (57)
into Eq. (1), we get the linearized equation of the perturbed
field as

iaz = αaττ + iσaτττ − γ P0(a + a∗) − iνP0(2aτ + a∗
τ ),

(58)
where the asterisk denotes the complex conjugate. Now we
make the ansatz for the perturbed field

a(z, τ ) = a1 exp [i(Qz − �τ )] + a2 exp [−i(Qz − �τ )],
(59)

where Q and � are, respectively, the wave number and the fre-
quency of the modulation, while a1 and a2 are real amplitudes
of infinitesimal perturbation.

With further substitution of this ansatz into Eq. (58), we
can obtain a system of two homogeneous equations for a1 and
a2. This system has a nontrivial solution only when Q and �

satisfy the dispersion relation

Q = σ�3 + 2νP0� ± |�|
√

f (�), (60)

where the function f (�) is given by

f (�) = 2αγ P0 + α2�2 + ν2P2
0 . (61)

The steady state becomes unstable if the wave number Q
has an imaginary part for some values of � since the small
perturbation a experiences an exponential growth along the
optical fiber length. This phenomenon is referred to as MI
since it leads to the modulation of the steady-state ampli-
tude [40]. The MI is measured by the power gain defined
at any pump frequency � as G(�) = 2|ImQ|, where ImQ
represents the imaginary part of Q. If we let f (�) < 0 for the
interval of frequencies � ∈ S, [�2 < −2γ P0/α − ν2P2

0 /α2],
then the corresponding gain spectrum is given by

G(�) = 2|�|
√

−2αγ P0 − α2�2 − ν2P2
0 (62)

for � ∈ S and G(�) = 0 for � 	∈ S.
We observe that only the GVD, Kerr nonlinearity, and

self-steepening effects contribute to the MI gain spectrum.
However, the third-order dispersion does not play any role in
the gain spectrum. Also, the MI gain G(�) does not depend
on the sign of the self-steepening parameter ν.

It follows from Eq. (60) that the plain wave will be modu-
lation stable for the frequencies f (�) � 0. This condition can
be written in the form

�2 � −2γ P0

α
− ν2P2

0

α2
. (63)

Thus, we see from the cases above that the modula-
tion instability phenomenon studied within the extended
NLSE (1) framework can exist not only in an anomalous GVD
regime, but also in the normal GVD regime that uniquely
depends on the values of Kerr nonlinearity and self-steepening
parameters.

VI. SIMILARITY TRANSFORMATION
OF THE GENERALIZED NLSE

Propagation of light pulses in optical fibers is understood
completely if the inhomogeneities of media resulting from
various factors such as the variation in lattice parameters of
the fiber media and fluctuation of the fiber diameters are
considered [41]. The inclusion of the variable coefficients
in the governing NLSEs is currently an effective way to
reflect the inhomogeneous effects of the nonlinear optical
pulses [42]. In what follows, we discuss the wave propagation
phenomenon in a realistic fiber system exhibiting varying
third-order dispersion and self-steepening nonlinearity. An
appropriate model equation for describing femtosecond pulse
propagation through such an inhomogeneous optical fiber can
be readily obtained by considering the variation with respect
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to the propagation distance of all waveguide parameters in
Eq. (1) resulting in the generalized NLSE with distributed
coefficients

i
∂�

∂s
= D2(s)

∂2�

∂t2
+ iD3(s)

∂3�

∂t3
− R1(s)|�|2�

− iR2(s)
∂

∂t
(|�|2�) + iG(s)�, (64)

where D2(s) and D3(s) are the variable parameters of GVD
and third-order dispersions, respectively. The parameters
R1(s) and R2(s) are related to the Kerr nonlinearity and
self-steepening effect, respectively. Also G(s) represents the
amplification or absorption coefficient.

To connect solutions of Eq. (64) with those of Eq. (1), we
will use the transformation [43–45] as

�(s, t ) = ρ(s)ψ (z(s), τ (s, t )) exp[iϕ(s, t )], (65)

where the real quantities ρ(s) and ϕ(s, t ) represent the ampli-
tude and phase of the self-similar pulse, respectively. Also,
z(s) is an effective propagation distance to be determined,
while τ (s, t ) is the similarity variable depending on both
s and t .

Substituting Eq. (65) into Eq. (64) leads to Eq. (1), but we
must have the set of equations

ρs − Gρ − D2Aϕtt + 3D3Aϕtϕtt = 0, (66)

τs − 2D2τtϕt + 3D3τtϕ
2
t − D3τttt = 0, (67)

ϕs − D2ϕ
2
t − D3ϕttt + D3ϕ

3
t = 0, (68)

(3D3ϕt − D2)τtt + 3D3τtϕtt = 0, (69)

(R1 − R2ϕt )ρ
2 = γ zs, (70)

(D2 − 3D3ϕt )τ
2
t = αzs, (71)

D3τ
3
t = σ zs, (72)

τtt = 0, (73)

R2τtρ
2 = νzs. (74)

Solving this set of equations self-consistently, we obtain the
self-similar pulse parameters

z(s) = K3

σ

∫ s

0
D3(ζ )dζ , (75)

ρ(s) = ρ0 exp

(∫ s

0
G(ζ )dζ

)
, (76)

τ (s, t ) = Kt + K p

(
2Kα

σ
+ 3p

) ∫ s

0
D3(ζ )dζ + t0, (77)

ϕ(s, t ) = pt + p2
(Kα

σ
+ 2p

) ∫ s

0
D3(ζ )dζ + φ0, (78)

together with the constraint conditions on the inhomogeneous
fiber parameters

D2(s) =
(

3p + Kα

σ

)
D3(s), (79)

R1(s) = K2(pν + Kγ )

σρ2
0

D3(s) exp

(
−2

∫ s

0
G(ζ )dζ

)
, (80)

R2(s) = K2ν

σρ2
0

D3(s) exp

(
−2

∫ s

0
G(ζ )dζ

)
, (81)

where the parameters K and p are related to the pulse width
and phase shift, respectively, and the subscript 0 denotes
the initial value of the corresponding parameters at distance
s = 0. Thus, the general form of self-similar solutions of the
generalized NLSE (64) can be obtained as

�(s, t ) = ρ0ψ

(
K3

σ

∫ s

0
D3(ζ )dζ , τ (s, t )

)

× exp

(∫ s

0
G(ζ )dζ + iϕ(s, t )

)
, (82)

where ψ (z, τ ) satisfies the extended NLSE with constant co-
efficients (1), while the functions τ (s, t ) and φ(s, t ) are given
by Eq. (77) and (78).

Having obtained this result, we are able to construct exact
self-similar solutions to Eq. (64) by using the closed-form
solutions of Eq. (1) via the transformation (82). Therefore,
it is significant to use the exact solutions of the constant-
coefficient NLSE (1) presented above. The necessary and
sufficient conditions for the existence of these self-similar so-
lutions are given by the parametric conditions (79)–(81). The
relations (75)–(78) clearly show that the third-order dispersion
parameter D3(s) affects the form of the effective propagation
distance, similarity variable, and phase of the self-similar
pulse.

Now let us construct the exact self-similar solutions of the
generalized NLSE with varying coefficients (64) by using the
obtained exact solutions of the constant-coefficient NLSE (1)
and the transformation (82). First we construct the families of
self-similar cnoidal wave solutions of the generalized NLSE
model (64). Employing the periodic bounded solutions (21)
of Eq. (1) and the transformation (82) with Eqs. (75)–(78)
and considering the constraint conditions (79)–(81), we have
a self-similar cnoidal wave solution of Eq. (64) as

�(s, t ) = ρ0� exp

(∫ s

0
G(ζ )dζ

)
[1 − λ

+ 2λ cn2(wξ, k)]1/2 exp [iθ (s, t )], (83)

where the traveling coordinate ξ is given by

ξ (s, t ) = Kt − η +
[

K p

(
2Kα

σ
+ 3p

)
− qK3

σ

]

×
∫ s

0
D3(ζ )dζ + t0 (84)

and the phase of field has the form

θ (s, t ) = κz − δτ + φ + ϕ(s, t ), (85)

where z and τ are given by Eqs. (75) and (77), respectively,
the phase ϕ(s, t ) is given by Eq. (78), and � and w satisfy
Eq. (22).

We may also obtain a second family of exact self-similar
cnoidal sn wave solutions of Eq. (64) by inserting the
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solution (29) into the transformation (82) as

�(s, t ) = ρ0� exp

(∫ s

0
G(ζ )dζ

)
sn(wξ, k) exp [iθ (s, t )],

(86)
where ξ is given by Eq. (84), the phase θ (s, t ) is the same
expression in (85), and � and w satisfy Eq. (30).

A third family of exact self-similar cnoidal cn wave solu-
tions of Eq. (64) can be obtained by substituting Eq. (34) into
the transformation (82) as

�(s, t ) = ρ0� exp

(∫ s

0
G(ζ )dζ

)
cn(wξ, k0) exp [iθ (s, t )],

(87)
where the variable ξ is given by

ξ (s, t ) = Kt − η +
[

K p

(
2Kα

σ
+ 3p

)
− q0K3

σ

]

×
∫ s

0
D3(ζ )dζ + t0 (88)

and θ (s, t ) satisfies Eq. (85). Also, q0 is shown in Eq. (9),
k0 = 1/

√
2, and � and w are given in Eq. (35).

In addition, we obtained a fourth family of exact self-
similar cnoidal wave solutions of Eq. (64) by inserting the
solution (38) into the transformation (82) as

�(s, t ) = ρ0� exp

(∫ s

0
G(ζ )dζ

)
sn(wξ, k)

1 + cn(wξ, k)

× exp [iθ (s, t )], (89)

where ξ is given by Eq. (84), the phase θ (s, t ) is the same
expression in (85), and � and w satisfy Eq. (39).

Next we construct the exact self-similar soliton solutions of
the generalized NLSE with distributed coefficients (64). Sub-
stituting the solution (23) into the transformation (82) leads to
an exact self-similar bright-soliton solution of Eq. (64) of the
form

�(s, t ) = ρ0A exp

(∫ s

0
G(ζ )dζ

)
sech(w0ξ ) exp [iθ (s, t )],

(90)
where A and w0 are given by Eq. (24) and ξ and θ (s, t ) are
given by Eqs. (84) and (85), respectively. Moreover, substitu-
tion of the solution (31) into the transformation (82) yields an
exact self-similar dark-soliton solution of Eq. (64) of the form

�(s, t ) = ρ0B exp

(∫ s

0
G(ζ )dζ

)
tanh(w0ξ ) exp [iθ (s, t )],

(91)
where B and w0 are given by Eq. (32) and ξ and θ (s, t ) are the
same expressions in (84) and (85), respectively.

For the completeness of the investigation, let us discuss the
propagation dynamics of the obtained self-similar structures
in a specified soliton control system. We should note that for
the self-similar solutions of Eq. (64), only two of the five
distributed parameters D2(s), D3(s), R1(s), R2(s), and G(s) in
the generalized NLSE (64) are free parameters. For instance,
if D3(s) and G(s) are selected to be the free parameters, then
the parameters D2(s), R1(s), and R2(s) will be determined
from Eqs. (79), (80), and (81), respectively. To illustrate our
results, we consider a soliton control system similar to the

FIG. 1. Propagation dynamics of the self-similar bright soli-
ton (90) with D3(s) = D30 cos(gs) and G(s) = G0 for (a) G0 = 0.02,
(b) G0 = 0.02, and (c) G0 = 0. The parameters for the bright-soliton
solution with the dimensionless function |�(s, t )|2 and variables s
and t are defined in Sec. VI.

system in [44] with the periodic varying third-order dispersion
and a constant gain or loss parameter [46,47]

D3(s) = D30 cos(gs), G(s) = G0, (92)

where D30 and g are the parameters describing the third-
order dispersion and G0 denotes the constant net gain (greater
than zero) or loss (less than zero). We note that the other
parameters can be obtained exactly through the constraint
conditions (79)–(81). For these parameter choices, the effec-
tive propagation distance given by Eq. (75) ends up being
z(s) = D30K3

σg sin(gs), indicating that z varies periodically with
the original propagation distance s. Moreover, the ampli-
tude of self-similar pulses can be determined from Eq. (76)
as ρ(s) = ρ0 exp(G0s). This result shows that the gain or
loss coefficient affects the evolution of the self-similar pulse
amplitude.

In order to demonstrate the controllable self-similar waves,
here we take the self-similar bright and dark solitons (90)
and (91) as an example to discuss the evolution of the ob-
tained self-similar structures. Figure 1 depicts the propagation
dynamics of the self-similar bright-soliton solution (90) with
D3(s) and G(s) given by Eq. (92) for the parameter values α =
−2, γ = 1, σ = −0.5, ν = 0.5, and D30 = −1/9. The results
for the self-similar dark-soliton solution (91) are illustrated in
Fig. 2 for the values α = 0.25, γ = 1.25, σ = 0.5, ν = 0.5,
and D30 = 0.1875. The other parameters are chosen as g = 1,
p = 1/3, η = 0, q = 3, ρ0 = 1/

√
2, K = 1, and t0 = 0. From

the evolution plots, we see that the self-similar structures ex-
hibit a snakelike propagation behavior. For such an oscillatory
trajectory, the self-similar optical pulse keeps its shape while
propagating along the optical fiber, although its position oscil-
lates periodically. One can also see that the self-similar soliton
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FIG. 2. Propagation dynamics of the self-similar dark soli-
ton (91) with D3(s) = D30 cos(gs) and G(s) = G0 for (a) G0 = 0.02,
(b) G0 = 0.02, and (c) G0 = 0. The parameters for the dark-soliton
solution with the dimensionless function |�(s, t )|2 and variables s
and t are defined in Sec. VI.

amplitude increases [Fig. 1(a)] or decreases [Fig. 1(b)] along
the propagation direction of the optical medium depending on
the sign of G0. For the special case of vanishing gain or loss
(G0 = 0), the self-similar pulse propagates in the inhomoge-
neous optical fiber without changing its amplitude and width
[Fig. 1(c)]. It is obvious that the feature of the self-similar
dark-soliton solution is the same as the bright-soliton one
[Figs. 2(a)–2(c)].

Behavior completely different from the preceding self-
similar pulses appears when the gain or loss function is chosen
to vary periodically with the distance s as [48] G(s) = sin(s).
The propagation of both self-similar bright and dark solitons
in gain and loss media is shown in Figs. 3(a) and 3(b) with the
same selection of the parameter D3(s) and the same parameter
values as in Figs. 1 and 2, respectively. For this choice of
gain or loss management, the snakelike propagation behavior
disappears and we get a periodic emergence of pulses due to
the presence of periodic gain [Figs. 3(a) and 3(b)].

Additionally, we have investigated the behavior of self-
similar pulses in an inhomogeneous optical fiber system
with varying third-order dispersion and gain or loss parame-
ters [48]: D3(s) = D30tanh(s) and G(s) = sin(s). Figures 3(c)
and 3(d) display the propagation dynamics of the self-similar
bright- and dark-soliton solutions (90) and (91) for the same
values of parameters as those in Figs. 1 and 2, respectively.
From these figures we see that this choice of dispersion and
gain or loss management leads to an interesting periodic oc-
currence of self-similar bright and dark solitons, as shown in
Figs. 3(c) and 3(d), respectively.

Now we discuss the evolution of self-similar pulses in an
exponential dispersion decreasing fiber system [44,49] with

D3(s) = D30 exp (−rs), G(s) = G0, (93)

FIG. 3. Propagation dynamics of (a) the self-similar bright soli-
ton (90) and (b) the self-similar dark soliton (91) with D3(s) =
D30 cos(gs) and G(s) = sin(z) and of (c) the self-similar bright soli-
ton (90) and (d) the self-similar dark soliton (91) with D3(s) =
D30 tanh(s) and G(s) = sin(s). The other parameters for the bright-
and dark-soliton solutions with the dimensionless function |�(s, t )|2
and variables s and t are the same as in Figs. 1 and 2, respectively.

where D30 and r are the parameters to describe the third-order
dispersion and G0 denotes the constant net gain or loss. Then
it follows from Eq. (75) that the effective propagation dis-
tance can be written as z(s) = D30K3

σ r [1 − exp(−rs)]. Figure 4
displays the evolutional dynamics of the self-similar bright-
and dark-soliton solutions (90) and (91) with D3(s) given by
Eq. (93) and without gain (G0 = 0) for the parameter r = 0.3.
The other parameters are the same as those in Figs. 1 and 2,
respectively. From this figure we can see that the self-similar
pulses keep their shapes, except for the change of soliton
velocity at the beginning of propagation.

Importantly, we can choose different profiles of third-order
dispersion and gain (loss) parameters to control the evolution
of self-similar pulses through the optical fiber system, which
results in widely different shapes. The specific form of these
parameters can be selected depending upon the soliton control
system under study.

VII. DISCUSSION

Before concluding, let us discuss the experimental verifica-
tion of the results presented here. With the current utilization
of optical fibers as the transmission medium in long-distance
communications systems, it becomes crucially important to
know the characteristics of nonlinear operating modes in such
systems. We have found that the balance among GVD, Kerr
nonlinearity, third-order dispersion, and the self-steepening
effect in the fiber medium described by the extended NLSE (1)
gives rise to the formation of a rich variety of periodic
and solitary waves. We also observed from the relations (8)
and (9) that the frequency shift δ and wave number κ of such
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FIG. 4. Propagation dynamics of (a) and (b) the self-similar
bright soliton (90) and (c) and (d) the self-similar dark soliton (91)
with D3(s) = D30 exp (−rs) and G(s) = 0. The other parameters for
the dimensionless function |�(s, t )|2 and variables s and t are defined
as in Figs. 1 and 2, respectively.

structures are strongly dependent on the fiber parameters. It is
within the framework of such relationships that the fiber sys-
tem allows periodic-wave and soliton-type pulse propagation.
Importantly, the achievement of such necessary and sufficient
conditions needs the utilization of special optical fibers.

In order to discuss the experimental possibilities to real-
ize the obtained structures in an optical fiber, here we take
the localized pulses as an example to analyze the forma-
tion of the bright soliton (23) and dark soliton (31) in the
fiber system. Regarding the bright pulse (23), we have seen
that the condition νσ < 0 is necessary for the existence of
such a soliton envelope. For a conventional single-mode fiber,
β3 > 0 holds [50] (i.e., σ > 0). Moreover, the nonlinearity
parameter γ takes values in the range 1–100 W−1/km if we
use n2 = 2.6 × 10−20 m2/W [15]. Since ν = γ /ω0, with ω0

the signal carrier frequency, we obtain a positive value of
the self-steepening parameter (i.e., ν > 0) and consequently
we have νσ > 0. As a result, the case β3 > 0 does not al-
low the existence of the obtained bright-soliton pulses in
conventional single-mode fibers. However, if considering the
negative third-order dispersion regime, i.e., β3 < 0, the exis-
tence condition νσ < 0 is readily satisfied and the fiber can
support optical bright solitons. Hence, we may conclude that
the condition β3 < 0 is required for the existence of bright
pulses in the present fiber system. Importantly, one can have
negative values of the parameter β3 only in overcompensated
light guides with a flat dispersion curve [50].

Unlike the bright-type soliton, the dark pulse (31) ex-
isted when νσ > 0. For experimental verification of this
kind of soliton, we may use, for example, a conventional
fiber with [51] β2 = −20 ps2/km, β3 = 0.108 ps3/km, Aeff =

FIG. 5. Intensity profiles of the bright soliton in an optical fiber
at z = 200 with γ = 1, β2 = −1, and ν = 0.6 for (a) β3 = −2 and
(b) β3 = −0.3. The dashed and solid lines represent the input and
output soliton pulses, respectively.

55 μm2, and n2 = 2.6 × 10−20 m2/W. Here Aeff is the ef-
fective fiber core area which is related to the core radius w

of the fiber by Aeff = πw2 and n2 is the nonlinear refractive
index coefficient. In general, the nonlinearity coefficient is
found from γ = 2πn2/λAeff to be equal to γ = 1.91 W−1/km
at the telecommunication wavelength λ = 1.55 μm. For the
ultrashort laser pulse propagation through an optical fiber
at the wavelength 1.55 μm and carrier frequency ω0 =
1.22 × 1015 s−1, i.e., T0 = 5.1475 × 10−15 s [52], we can es-
timate the size of the self-steepening coefficient ν = γ /ω0 =
0.0983 W−1/2π km THz. With this choice of fiber parame-
ters, the condition νσ > 0 is readily satisfied and therefore
the dark-pulse propagation can be realized experimentally.
Thus we can conclude that the obtained dark solitons can
be experimentally verified in conventional single-mode fibers
with positive third-order dispersion (i.e., β3 > 0). With re-
gard to realizing such soliton pulses experimentally, several
practical techniques were introduced. For example, in one
method for generating dark solitons, a Mach-Zehnder modu-
lator, driven by nearly rectangular electrical pulses, modulates
the continuous-wave output of a semiconductor laser [53].
Optical switching using a fiber-loop mirror, in which a phase
modulator is placed asymmetrically, can also be employed to
generate solitons [54].

The preceding analysis has shown that the third-order dis-
persion and self-steepening nonlinearity play a significant
role in the formation of localized pulses. We note that these
higher-order effects not only play a role in the existence con-
ditions, but also influence the characteristics of propagating
solitary waves. Let us discuss numerically the impact of the
third-order dispersion on soliton dynamics. Here we take the
bright soliton (23) as an example to study the effect of higher
order on the soliton propagation in the fiber system. To this
end, we numerically integrated Eq. (1) using the exact soliton
solution (23) as an initial condition. For our numerical sim-
ulation, we use the split-step Fourier method and the results
are presented in Fig. 5, which shows the intensity profiles of
the bright soliton under the influence of third-order dispersion
when ν = 0.6. Figures 5(a) and 5(b) show the input and output
intensity profiles of the soliton envelope for β3 = −2 and
β3 = −0.3, respectively. In the setting of optical fibers, it has
been demonstrated that as the propagation distance increases,
the positive self-steepening effect shifts the center of the gen-
erated optical pulse towards the trailing edge [15]. We can
clearly see from Fig. 5(a) that the soliton is shifted towards
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FIG. 6. Interaction scenario of two neighboring bright soli-
tons (23) when the initial separation is equal to 7. The adopted
parameters are γ = 0.5, β2 = −1.01, ν = 0.01, and β3 = −0.3.
These parameters also satisfy the stability condition in Eq. (55).

the trailing edge of the pulse. We also see that an increased
value of the third-order dispersion parameter tries to bring the
peak of the soliton pulse towards zero temporal shift as shown
in Fig. 5(b). From this result, we can conclude that an appro-
priate choice of positive ν and negative β3 can suppress the
soliton shift in the optical fiber. Hence, the interplay between
third-order dispersion and the self-steepening effect provides
stable propagation of the soliton.

In what follows, for the completeness of the investigation,
we study the soliton interaction numerically in the presence of
third-order dispersion and the self-steepening effect. It of in-
terest to know how the soliton solution (23) mutually interacts
in the fiber medium under the influence of these higher-order
effects. Here we can use a superposition of two soliton solu-
tion (23) profiles so that the initial pulse waveform is

ψ (z = 0, τ ) = ψ1(τ ) + ψ2(τ ), (94a)

ψ1(τ ) = A1sech[w1(τ + τ0/2)]e−iδ1τ , (94b)

ψ2(τ ) = A2sech[w2(τ − τ0/2)]e−iδ2τ , (94c)

where A1,2 and w1,2 are defined in the relation (24), κ1,2

is given by (9), and τ0 is the initial separation between the
two solitons. Then we numerically simulate the interaction
scenario between two neighboring soliton pulses with
the initial separation τ0 = 7. Corresponding to the input
waveform given by (94), we consider here the case of
in-phase solitons with equal amplitudes [55]. The evolution
of the soliton pair in the optical fiber is presented in Fig. 6. It
can be seen from this figure that the two soliton pulses hardly
interact and the separation remains constant while propagating
600 dispersion lengths along the fiber. This indicates that the
interaction force between neighboring solitons is weaker in
the presence of higher-order effects. However, when the initial
separation decreases further, the interaction between two
neighboring solitons becomes serious and repulsion occurs.
Through numerical studies it was shown that third-order
dispersion may suppress the collision between two in-phase
pulses [56]. Here, in addition to the third-order dispersion,

the self-steepening effect is taken into account and a similar
result is found. It is relevant to mention that significant results
have also shown that under the influence of the third-order
dispersion, self-steepening, and self-frequency shift effects,
the interaction between neighboring solitons can be restrained
to some extent [57]. We would like to note that in our case
of study, the presence of the third-order dispersion and self-
steepening nonlinearity in the fiber can lead to the suppression
of the two-soliton interaction, thus stabilizing the propagation
of the pulse pair. This interaction process confirms the remark-
able robustness of these solitons and their ability to execute
stable propagation in the fiber system under the influence of
higher-order effects. This property is a real advantage for ex-
perimental demonstration prospects and possible applications.

VIII. CONCLUSION

We have studied the possibility of the formation of peri-
odic waves and localized pulses in an optical fiber medium
characterized by a Kerr-type nonlinear response and exhibit-
ing third-order dispersion and self-steepening effects. Pulse
evolution in such a system is described by the extended NLSE
with second- and third-order dispersions, Kerr nonlinearity,
and self-steepening terms. The experimental observation of
femtosecond optical solitons is possible, for example, in
a silicon-on-insulator waveguide with quasi-TM polarized
pulses excited along the special direction on the surface of the
waveguide. The discussion that the Raman effect is absent for
specially designed slot waveguides was presented in Secs. I
and II, as well as appropriate references.

The regular method that we have developed for studying
the existence of propagating pulses has shown that both bright
and dark envelope solitons are possible within this model in
the presence of all equation parameters. It was found that
the soliton characteristics obtained depend on all the material
parameters. The developed approach also leads to a variety
of exact cnoidal wave solutions of the extended NLSE (1)
expressed in term of elliptic functions like cn and sn. These
cnoidal waves representing exact solutions in the form of
periodic arrays of pulses to NLSE models play an important
role in the analysis of the data transmission in fiber-optic
telecommunications links [45]. Furthermore, we have stud-
ied analytically the stability of soliton solutions based on
the theory of optical nonlinear dispersive waves [31]. The
results indicate that the stability properties of these solitons
depend strongly on the higher-order effects such as third-order
dispersion and self-steepening nonlinearity. The modulation
instability of the continuous wave propagating through the
optical fiber system was also studied. It was found that the
additional self-steepening term provides extra freedom to con-
trol the amplitude of the modulation instability gain profile,
but the third-order dispersion does not contribute to the gain
spectrum. We also examined the self-similar propagation of
femtosecond light pulses inside the optical fibers within the
framework of the generalized NLSE with varying disper-
sion, cubic nonlinearity, self-steepening, and gain or loss.
By means of the similarity transformation method, we con-
structed the relation between this generalized wave equation
and the related constant-coefficient one. Then, based on the
resulting transformation, we presented exact self-similar
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cnoidal wave solutions as well as self-similar bright- and
dark-soliton solutions under certain parametric conditions. We
further discussed the dynamical behavior of self-similar struc-
tures in the dispersion changing periodically fiber system and
an exponentially varying dispersion medium. We observed
that the soliton shape can be controlled by selecting the third-
order dispersion and the gain or loss parameters appropriately.

Characteristics and stability properties of the localized
structures and theoretical modeling of the underlying NLSE
with the third-order dispersion and self-steepening nonlinear-
ity indicate the potential relevance of the obtained envelope
solitons for the experiments on the short-pulse propagation in
optical fiber communications, ultrafast lasers, and slow-light
devices.
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