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Engineering helical phase via four-wave mixing in the ultraslow propagation regime
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We describe a theoretical investigation of a four-wave mixing (FWM) scheme in a six-level atomic system
driven by a field with orbital angular momentum and making use of two electromagnetically induced trans-
parency (EIT) control fields. The obtained results allow us to control the helical phase of the output FWM
field by varying the intensities of the two EIT control fields as well as the detuning of the probe field. More
interestingly, we can achieve FWM output fields that are very stable under variation of the system parameters
and allow the helical phase twist to be manipulated and suppressed, if desired, by adjusting the probe detuning.
In this way, our scheme may open a tool to control the helical phase in a compact, efficient, and robust way.
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I. INTRODUCTION

It is well known that the electromagnetically induced trans-
parency (EIT) can modify the linear and nonlinear responses
of the medium to the applied fields [1–3], which allows the
optical properties of atomic media to be manipulated and
hence leads to the suppression of the linear absorption and the
enhancement of the nonlinear susceptibility. Using the EIT,
the four-wave mixing (FWM) in the ultraslow propagation
regime has been the focus of many scenarios. As examples, a
highly efficient FWM experiment based on the EIT technique
was performed in rubidium atomic vapor [4]. Deng et al.
[5] demonstrated a novel channel-opening technique of FWM
associated ultraslow propagation in a four-level system and
showed that a new wave-mixing channel may be opened deep
inside the medium, and the efficiency of the FWM can be sig-
nificantly enhanced. Subsequently, ultraslow FWM resulting
from multiphoton destructive interference [6] and double-dark
resonances [7] have been proposed. Moreover, the coexis-
tence of and interference between FWM and six-wave mixing
processes in the EIT condition were observed in an inverted
Y-type atomic system [8]. However, these studies are per-
formed with space-independent laser beams without carrying
orbital angular momentum (OAM).

The OAM light [9], unlike the conventional laser beam,
represents a fundamentally new optical degree of freedom
and provides unique optical properties [10]. Based on the
OAM light, nonlinear FWM processes have been investigated
[11–14] in recent decades. Unfortunately, in all these schemes
the helical phase wave front of the FWM field is not fully
controlled. Quite recently, we proposed some schemes to
control the helical phase using FWM in atoms [15] or in
semiconductor quantum wells [16,17]. It is interesting to note
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that the obtained results allow us to engineer the helical phase
wave front via multiphoton quantum interference.

In this paper, we theoretically propose a scheme to ma-
nipulate the helical phase via ultraslow four-wave mixing in
a six-level atomic system driven by a field with OAM and
making use of two EIT control fields. Different from those
previous studies, the distinguishing features of this scheme
are given as follows: First and foremost, the helical phase
profile can be modified in a controllable way that enhances
or suppresses the phase twist by adjusting the detuning of the
probe field or the intensities of the two EIT control fields. Sec-
ond, the intensity distributions of the FWM field remain stable
at different system parameters, showing the generated OAM
mode stability. Third, this system is a double-dark resonance
system [18,19] which has many advantages for controlling the
FWM in comparison with the single EIT one. For instance, the
double-dark resonance provides two transparency windows,
and in different windows the spatial variations of the FWM are
different. In this sense, the scheme allows us to explore sin-
gularity characteristics of the helical phase wave front based
on nonlinear FWM processes, which may be useful in phase
imprinting of Bose-Einstein condensates [20], atom manip-
ulation with optical tweezers [21], and new structured-beam
generation [22].

II. MODEL AND DYNAMIC EQUATIONS

We propose a six-level tripod system with three ground
states (|0〉, |4〉, and |5〉) and three excited states (|3〉, |2〉,
and |1〉), as shown in Fig. 1. A weak pulse probe field �p =
�p0

√
π/(2 ln 2) exp[−t2/(2 ln 2/π2)] (t is the time and �p0

is a constant related to the value of the initial Rabi frequency
at time t = 0) drives the transition |0〉 → |3〉. Two additional
continuous-wave laser fields �c1 and �c2 form a tripod EIT
configuration with states |0〉, |3〉, |4〉, and |5〉 and thus a
dispersion modulation of state |3〉. The transitions |3〉 → |2〉
and |2〉 → |1〉 are coupled by a pump field �a and a field
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FIG. 1. Diagram of the six-level atomic system.

carrying OAM �ν , respectively. Here, the OAM field is a
Laguerre-Gaussian mode and is given as

�ν = �ν0�(r)e−iφl , (1)

where �(r) =
√

2p!/π (p+|l|)!
ω0

(
√

2r
ω0

)
|l|

L|l|
p ( 2r2

ω2
0

)e−r2/ω2
0 , �ν0 is the

initial Rabi frequency of the LG field, r is the radius, and
the beam waist is ω0. φ is the azimuthal angle, and L|l|

p is the
Laguerre polynomial. The radial index and azimuthal index
are defined by p and l , respectively. It is expected that an
internal FWM field �m containing OAM information will be
generated.

Based on the electric dipole and the rotating-wave approxi-
mations, the Hamiltonian in the interaction picture is given by
(h̄ = 1)

HI = �m|1〉〈1| + �a|2〉〈2| + �p|3〉〈3|
+ (�p − �c1)|4〉〈4| + (�p − �c2)|5〉〈5|
− (�peikp·r̂|3〉〈0| + �aeika·r̂|2〉〈3|
+�νeikν ·r̂|1〉〈2| + �c1eikc1·r̂|3〉〈4|
+�c2eikc2·r̂|3〉〈5| + �meikm·r̂|1〉〈0| + H.c.), (2)

where �p, �a, �m, �c1, and �c2 represent the de-
tunings of the corresponding optical transitions. ki (i =
p, a, ν, m, c1, c2) are wave vectors of the corresponding
fields. r̂ is the position vector. Then the evolution equations for
the probability amplitudes ai (i = 0–5) can be easily obtained

from Schrödinger’s equation [23],

∂a1

∂t
= i�νa2 + i�ma0 + i(�m + iγ1)a1, (3a)

∂a2

∂t
= i�∗

νa1 + i�aa3 + i(�a + iγ2)a2, (3b)

∂a3

∂t
= i�∗

aa2 + i�pa0 + i�c2a5

+ i�c1a4 + i(�p + iγ3)a3, (3c)

∂a4

∂t
= i�∗

c1a3 + i(�p − �c1 + iγ4)a4, (3d)

∂a5

∂t
= i�∗

c2a3 + i(�p − �c2 + iγ5)a5, (3e)

where γi (i = 1–5) are the corresponding decay rates of the
atomic state |s〉 (s = 1–5).

The propagations of the probe and FWM fields in the
atomic medium are described by Maxwell’s equations,

∂�p

∂z
+ ∂�p

c∂t
= ci

2ωp
∇2

⊥�p + ik03a3a∗
0, (4a)

∂�m

∂z
+ ∂�m

c∂t
= ci

2ωm
∇2

⊥�m + ik01a1a∗
0, (4b)

where k03(01) = Naωp(m)|p03(01)|2/(2ε0ch̄) are the coupling
constants, Na is the atomic density, and pi j is the electric
dipole matrix element associated with the transition from |i〉
to | j〉.

Under the weak-probe-field mechanism, we assume that
most atoms will remain in the ground state |0〉, so we can
choose |a0|2 ≈ 1. Taking the Fourier transform of Eqs. (3) and
(4), we obtain [24]

β1A1 + �νA2 + �m = 0, (5a)

β2A2 + �∗
νA1 + �aA3 = 0, (5b)

β3A3 + �∗
aA2 + �p + �c2A5 + �c1A4 = 0, (5c)

β4A4 + �∗
c1A3 = 0, (5d)

β5A5 + �∗
c2A3 = 0, (5e)

and

∂Fp

∂z
− i

ω

c
Fp = i

c

2ωp
∇2

⊥Fp + ik03A3, (6a)

∂Fm

∂z
− i

ω

c
Fm = i

c

2ωm
∇2

⊥Fm + ik01A1, (6b)

where β1 = ω + �m + iγ1, β2 = ω + �a + iγ2, β3 = ω +
�p + iγ3, β4 = ω + �p − �c1 + iγ4, and β5 = ω + �p −
�c2 + iγ5. ω is the Fourier variable. Ai=1−5, Fp, and Fm are the
Fourier transforms of ai=1−5, �p, and �m, respectively. The
first terms on the right-hand side of Eqs. (6a) and (6b) account
for the transverse variations of the probe and FWM fields,
which are responsible for the diffraction either in the medium
or in vacuum. If the propagation distance L of the probe field
or the FWM field is much less than the Rayleigh distance
zR = πω2

0/λ, i.e., L 
 πω2
0/λ, then the diffraction terms can

be ignored [25,26]. In this work, the propagation distance of
the FWM field is L = 20 mm, and the transverse characteristic
size is beam waist ω0 = 0.2 mm. The wavelength of the FWM
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field is λ ≈ 297 nm; then we can obtain πω2
0/λ ≈ 422.9 nm

�20 mm, so the diffraction term can be canceled out in the
following.

By solving Eq. (5), it is easy to obtain the following rela-
tions:

A1 = �ν�aβ4β5

D
Fp + D1

D
Fm, (7a)

A3 = D3β4β5

D
Fp + �∗

ν�
∗
aβ4β5

D
Fm, (7b)

where we defined D1 = β2β3β4β5 − β2β5|�c1|2 −
β2β4|�c2|2 − β4β5|�a|2, D2 = β1β2 − |�ν |2, and
D = β1β2β5|�c1|2 + β1β2β4|�c2|2 + β1β4β5|�a|2 −
β5|�ν |2|�c1|2 − β4|�c2|2|�ν |2 − β1β2β3β4β5.

Substituting Eq. (7) into Eq. (6) with the initial conditions
Fp(z = 0, ω) = �p0 exp(−ω2 ln 2/2π2) and Fm(z = 0, ω) =
0, the analytical solutions of Fp and Fm are

Fp(z, ω) = U+e(iK−z) − U−e(iK+z)

U+ − U−
Fp(0, ω), (8a)

Fm(z, ω) = U+U−Fp(0, ω)

U+ − U−

[
e(iK−z) − e(iK+z)

]
, (8b)

where U± = (k01D1 − k03D2β4β5 ± G)/(2k∗
03�

∗
ν�

∗
aβ4β5)

and K± = ω/c + (k01D1 + k03β4β5D3 ± G)/(2D) =
K±(0) + ω/V g± + O(ω2), where Vg± = 1/Re(∂K±/∂ω|ω=0)
is the group velocity of the K± mode and G = [(k01D1 −
k03β4β5D2)2 + 4k01k03β

2
4β2

5 |�ν |2|�a|2]1/2.
From Eqs. (8a) and (8b), one can see that there are two

modes described by the dispersion relations K+ and K−. In the
adiabatic regime [27,28], mode K− will quickly decay around
the center frequency, which can be neglected after propagating
for a longer optical depth. Then, the inverse Fourier transform
of Fm and Fp can be written as

�p(z, t ) = U−
U− − U+

�p(η+)eiK+z, (9a)

�m(z, t ) = U+U−
U− − U+

�p(η+)eiK+z, (9b)

where η+ = t − z/Vg+.
Finally, the generated FWM field after a propagation dis-

tance L can be given as

�m(L, t ) = �̃me−iφl eiLK+ , (10)

where �̃m = k01�(r)�ν0�a�p(η+)β4β5/G. From Eq. (10),
we find the FWM field �m(L, t ) ∼ e−ilφ is generated with the
same vorticity as the OAM field �ν ∼ e−ilφ , which implies
the OAM phase of field �ν is entirely transferred to the FWM
field.

Using K+ = Re(K+) + iIm(K+), we can rewrite Eq. (10)
as

�m(L, t ) = �̃me−LIm(K+ )e−i[φl−L Re(K+ )], (11)

where the intensity of the FWM field is ∝|�̃me−LIm(K+ )|2,
while the factor e−i[φl−LRe(K+ )] reflects the phase of the
FWM field.

FIG. 2. Normalized intensity patterns of the FWM field for dif-
ferent values of the control field �c1: (a) �c1 = 1 MHz, (b) �c1 =
10 MHz, (c) �c1 = 20 MHz, and (d) �c1 = 30 MHz. (e)–(h) Cor-
responding phase patterns of the FWM field. The parameters are
�c2 = 10 MHz, �ν0 = 3 MHz, ω0 = 0.2 mm, ωsp = 3ω0, l = 3, p =
0, �p = 10 MHz, �a = �m = 0, �c1 = −2 MHz, �c2 = 1 MHz,
�a = 10

√
2 MHz, γ1 = 0.09 MHz, γ2 = 0.8 MHz, γ3 = 5.9 MHz,

γ4 = γ5 = 0, L = 2 cm, �p0 = 1 MHz, k01 = 109 m−1s−1, k03 =
1011 m−1 s−1.

III. RESULTS AND DISCUSSION

In Fig. 2, we illustrate the intensity distribution as well
as the phase pattern profiles of the generated FWM field
described by Eq. (11) for different values of the control field
�c1. As shown in Figs. 2, the intensity distribution remains
unchanged and shows a doughnut pattern, while the phase
pattern becomes twisted. Actually, states |0〉, |3〉, and |4〉
construct a standard EIT system. By tuning the intensity of
the control field �c1, the linear and nonlinear responses of the
atomic medium can be easily controlled, which results in the
different findings in Fig. 2. In order to inspect the influence of
the control field �c1 on the FWM field, we plot the real part
Re(K+) and imaginary part Im(K+) of the dispersion relation
K+ versus radius r for different values of the control field �c1

in Fig. 3. As illustrated in Fig. 3(a), as the control field �c1 in-
creases, the influence of the control field �c1 on the imaginary
part Im(K+) is weak, so the change in the intensity distribution
is very limited in Figs. 2(a)–2(d). In contrast, by increasing the
control field �c1, the real part Re(K+) increases remarkably
[see Fig. 3(b)], which means that the spatial dependency of the
phase is increasing. So we can see the phase patterns become
twisted in Figs. 2(f)–2(h).

Figure 4 shows the effect of the control field �c2 on the
FWM field. From this figure, we can see that the intensity
distributions and the phase patterns are very similar to the
profiles displayed in Figs. 2. Clearly, the control field �c2 can
also be used to modulate the phase of the FWM field. In order
to understand the above phenomena, again we display the real
part Re(K+) and imaginary part Im(K+) of the dispersion
relation K+ versus radius r for different values of control
field �c2 in Fig. 5. The resulting curves of the imaginary
part Im(K+), shown in Fig. 5(a), confirm that the intensity
distribution is nearly independent of the control field �c2 in
Figs. 4(a)–4(d). Yet with changing the control field �c2, the
real part Re(K+) varies significantly in Fig. 5(b), causing the
twisted phase patterns in Figs. 4(f)–4(h).
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FIG. 3. The (a) imaginary and (b) real parts of the dispersion re-
lation K+ versus radius r for different values of the control field �c1:
Solid line, �c1 = 1 MHz; dashed line, �c1 = 10 MHz; dot-dashed
line, �c1 = 20 MHz; and dotted line, �c1 = 30 MHz. The inset in
(a) shows the minima of Im(K+). Other parameters are the same as
in Fig. 2.

We note that, very recently, a theoretical scheme for con-
trolling the space-dependent FWM in a four-level atomic
system was proposed [29]. In that scheme, a four-level atomic
system was used to manipulate the FWM via the inten-
sity of a control field. In comparison with that scheme, the
major features of our proposal are the following. First, the
main difference between our scheme and the one in [29] is

FIG. 4. Normalized intensity patterns of the FWM field for dif-
ferent values of the control field �c2: (a) �c12 = 1 MHz, (b) �c2 =
10 MHz, (c) �c2 = 20 MHz, and (d) �c2 = 30 MHz. (e)–(h) Corre-
sponding phase patterns of the FWM field. Other parameters are the
same as in Fig. 2 except for �c1 = 10 MHz.

FIG. 5. The (a) imaginary and (b) real parts of the dispersion re-
lation K+ versus radius r for different values of the control field �c2:
Solid line, �c2 = 1 MHz; dashed line, �c2 = 10 MHz; dot-dashed
line, �c2 = 20 MHz; and dotted line, �c2 = 30 MHz. The inset in
(a) shows the minima of Im(K+). Other parameters are the same as
in Fig. 4.

that we have utilized the double-dark resonance induced by
two additional control beams, �c1 and �c2, while in [29]
only a single-dark resonance (i.e., conventional EIT) is used.
The double-dark resonance scheme has many advantages for
controlling the FWM in comparison with the single-dark

FIG. 6. Normalized intensity patterns of the FWM field for dif-
ferent values of the probe detuning �p: (a) �p = 3 MHz, (b) �p =
6 MHz, (c) �p = 10 MHz, and (d) �p = 15 MHz. (e)–(h) Corre-
sponding phase patterns of the FWM field. Other parameters are the
same as in Fig. 2 except for �c1 = �c2 = 10 MHz.
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FIG. 7. The (a) imaginary and (b) real parts of the dispersion
relation K+ versus radius r for different values of the probe detuning
�p: Dashed line, �p = 3 MHz; dot-dashed line, �p = 6 MHz; solid
line, �p = 10 MHz; and dotted line, �p = 15 MHz. The inset in
(a) shows the minima of Im(K+). Other parameters are the same as
in Fig. 6.

resonance one. For example, the double-dark resonance pro-
vides two transparency windows, and in different windows
the spatial variations of the FWM are different. Second, in
the double-dark resonance scheme more physical parameters
(e.g., the control fields �c1 and �c2) can be manipulated, and
hence, one can select suitable parameters to explore singular-
ity characteristics of the helical phase wave front in nonlinear
processes. Third, with increasing the control field �c1 or con-
trol field �c2, intensity distribution remains unchanged, but
the phase pattern is twisted. The findings are quite different
from the results obtained in [29], where the FWM field is

enhanced and phase twist is almost completely suppressed by
increasing the control field.

Finally, we present the intensity distribution and the phase
pattern of the FWM field for different values of the probe
detuning �p in Fig. 6. Figure 6 shows that the FWM field
has an intensity distribution independent of the probe de-
tuning �p, yet the singularity variation appears obviously in
phase patterns, indicating that spatially varying dispersion is
almost completely suppressed with increasing detuning of the
probe field �p. Also, the real part Re(K+) and imaginary
part Im(K+) of the dispersion relation K+ versus radius r for
different values of the probe detuning �p are illustrated in
Fig. 7. As we expected, by increasing the probe field �p,
the imaginary part changes limitedly, while the real part in-
creases remarkably. In fact, one can see from Figs. 6 and 7
that, in comparison with the results in [15–17,29], where the
increasing detuning leads to phase twist, we can effectively
suppress phase twist via the increasing detuning of the probe
field �p in our present six-level tripod scheme. Here, it should
be emphasized that the above description may provide a clue
for engineering the helical phase wave front by properly ad-
justing the probe detuning, which could potentially be used
to engineer the helical phase profile, such as helical phase
reconstruction and helical phase purification.

IV. CONCLUSION

In conclusion, we proposed a theoretical scheme to ma-
nipulate the helical phase via ultraslow four-wave mixing in
a six-level atomic system driven by a field with OAM and
making use of two EIT control fields. It was found that the
FWM field has stable intensity distribution independent of the
corresponding system parameters. More interestingly, one can
effectively control the helical phase of the output FWM field
via the intensities of the two EIT control fields as well as the
detuning of the probe field. As a result, the phase engineering
proposed here has the potential for various applications in the
transfer of OAM [30], storage of OAM [31], high-helicity
OAM conversion [32], and the generation of OAM entangle-
ment [33,34].
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