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Conductor’s elastic response to the vacuum-field radiation pressure
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The momentum transfer from an electromagnetic field to reflecting and absorbing surfaces was asserted by
the Maxwell equations. This phenomenon, with important implications for the development of the cosmos, has
also been investigated in the discretized energy scale using optomechanical devices. With the quantization of
the electromagnetic field, it was discovered that the vacuum field may influence the dynamics of some physical
systems, such as in the Casimir effect and the radiative decay of an atom. Here, the effect of the radiation
pressure by the electromagnetic vacuum on the surface of a compressible conductor is analyzed, and the model
based on the Born-Markov master equation predicts a harmonic strain and momentum analog to the classical
counterpart. A fundamental difference observed is the oscillating purity of the deformation state. In addition, it
was demonstrated that the time-averaged force originated from the elastic reflection of the vacuum-field modes
is comparable to the Casimir force for two ideal metallic plates separated by a distance proportional to the
reflectivity cutoff wavelength.
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I. INTRODUCTION

With the advent of quantum optics, and the experimental
realization of optomechanical devices and lasers, radiation
pressure, normally associated with the optical tweezers [1,2]
and with phenomena in the astronomical scale [3,4], has also
been investigated at the level of the quantized energy. For
example, systems such as suspended mirrors [5–8], mem-
branes [9–11], and optical microresonators [12,13] have their
trajectories affected upon the reflection of photons from a
coherent field. Along with these advances, the quantization of
the electromagnetic field revealed the influence of the vacuum
field on the dynamics of some physical systems, such as the
Casimir effect [14] and the radiative decay of atoms [15].

It is known that the reflection of the quantized vacuum-field
modes originates the radiation pressure causing the Casimir
force [16–18], which is attractive between two ideal metal
plates due to the different boundary conditions inside and
outside the cavity [16,17,19]. In this sense, it has already been
demonstrated that the radiation pressure due to the vacuum
field on metallic plates results in fluctuations on the position
of the mirror [20], on the mass [21], and for a moving mirror,
it is also responsible for the dissipation of energy and subse-
quent stabilization of the system [22,23]. In the experiments,
the mirrors are obviously composed of materials with finite
bulk modulus, and therefore are susceptible to deformations.
Nevertheless, a theoretical description of the elastic behavior
of conductors as a response to the force exerted by reflection
of the vacuum-field modes is still not exhausted.

The purpose of this article is to investigate the time-
dependent normal strain caused by the radiation pressure
due to the vacuum-field fluctuations on a half cavity. Here,
a Born-Markov master equation is derived and analytically
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solved. As a result, it is obtained that the trajectories of the
expectation values for the position—which coincides with
the deformation of the mirror—and momentum operators are
analog to the ones calculated from its classical counterpart.
It is also demonstrated that the same trajectories are attained
from the coherent evolution of the system, by just ignoring the
Lindblad superoperator. However, in this case, a correction on
the energy of the system must be performed.

II. MODEL

The system considered here is composed of a conductor
plate embedded in a photon reservoir at a temperature T → 0.
It is assumed that the bottom surface of the mirror is fixed
in a substrate, therefore not significantly influenced by the
radiation pressure. In addition, it is assumed that the area
of the top surface is much greater than the area of the side
face of the conductor slab, therefore, any dynamics of the side
surface is ignored. The strain caused by the radiation pressure
on the top surface of the conductor can be accounted through
the Young’s modulus Y of the mirror in the linear elasticity
regime of uniaxial deformation at zero temperature. In this
case, the equation of motion describing the dynamics of the
mirror top surface is

Mz̈ = −2P

c
− Mω2z, (1)

where M is the mass of the mirror, P is the total power of
the field reflected by the surface of area A, and z is the dis-
placement of the top surface of the mirror, which is a function
of time and z = 0 when P = 0. In terms of the natural height
of the mirror slab z0, its mass density μ, and Y , the natural
frequency can be written as ω = z−1

0

√
Y/μ. The solution of

Eq. (1), which is

z(t ) = − 4P

Mω2c
sin2

(ωt

2

)
(2)
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for z(0) = 0 and ż(0) = 0, describes the classical dynamics of
the mirror surface.

A. Optomechanical Hamiltonian and the Born-Markov
master equation

The Lagrangian resulting in the equation of motion (1) may
be written as

L = Mż2

2
− Mω2z2

2
− 2Pz

c
. (3)

Using the Legendre transformation, promoting the coordinate
z and its conjugate momentum pz to operators as for a free
harmonic oscillator, we obtain the Hamiltonian

Ĥ = h̄ωb̂†b̂ + P̂

ω

√
2h̄ω

Mc2
(b̂† + b̂) +

∑
k,s

h̄ωksâ
†
ksâks, (4)

where b̂ (b̂†) is the annihilation (creation) operator for the
mechanical harmonic oscillator, ωk,s is the frequency of the
mode with wave vector k and polarization s, and âks (â†

ks) is
the annihilation (creation) operator associated with the photon
reservoir. The power has also been promoted to the operator
because of its dependence on the quantized field of the reser-
voir, such as

P̂ = cεA

2
lim

z→0+
Ê · Ê

†
, (5)

with

Ê =
∑
k,s

(
uk,sâks + u∗

k,sâ
†
ks

)
, (6)

and

uk,s = i

√
h̄ωks

2εV eks exp (ik · r), (7)

where V is the normalization volume and eks is a unit vector
[24]. The dynamical Casimir effect, describing the photon
emission as a response to the movement of the reflecting
surface, is not included in this model.

The first approximation considered in the derivation of the
master equation is the Born approximation, in which it is
assumed that the dynamics of the system does not affect the
vacuum state of the photon reservoir. Moreover, the rotating-
wave approximation is applied and the terms oscillating at
high frequencies are ignored. The Markov approximation is
also applied, in which the predictability of the system evolu-
tion depends only on the present, not on the past. This is valid
when the bandwidth of the vacuum field is much larger than
the spectral diffusion of the system [24]. Finally, nonlinear
terms involving the mechanical harmonic oscillator operators
are also ignored because their expectation values are relatively
very small. Therefore, after performing the partial trace over
the reservoir operators, the Lindblad master equation achieved
is

∂ρ̂

∂t
= − i

h̄
[Ĥm, ρ̂] + � sin(ωt )(K̂[b̂†] + K̂[b̂]), (8)

where

Ĥm = h̄ωb̂†b̂ + h̄

√
ω�

2
(b̂† + b̂), (9)

and K̂ is the Lindblad superoperator, given by

K̂[Ô] = Ôρ̂Ô† − 1

2
{Ô†Ô, ρ̂}. (10)

Only the photons traveling toward the top surface of the mirror
were considered for the derivation of (8), so the characteristic
rate is

� = h̄π4c2V

Y λ8
c

, (11)

with V = Az0. The interaction between the mirror surface
and the photon reservoir at a temperature T → 0 is due to
the vacuum fluctuations, and the lack of an upper bound on
its spectral bandwidth leads to infinite energy exchange if
the reflectance spectrum of the conductor is nonzero towards
ωk → ∞. Fortunately, this does not correspond to the physi-
cal reality since the metals become transparent at frequencies
much greater than the plasma frequency. In the calculation of
the coupling rate �, for the sake of simplicity, the reflectance
spectrum was defined as a Heaviside step function with dis-
continuity at a cutoff wavelength λc, necessary to avoid an
unrealistic description of the mirror dynamics [25]. Thus, the
integral over the modes was performed for ωk between 0 and
ωc. However, for a specific material, the reflectance spectrum
should be taken into account in the integration over the k, s
modes.

III. RESULTS

In order to analytically solve the master equation (8), it
is convenient to perform a further simplification, which can
be achieved by performing the unitary transformation ρ̂α =
D̂(α)ρ̂D̂†(α), where D̂(α) is the displacement operator with

α =
√

�

2ω
(1 − e−iωt ). (12)

In this case, the master equation in the interaction picture
(superscript i) reduces to

∂ρ̂ (i)
α

∂t
= � sin(ωt )(K̂[b̂†] + K̂[b̂]), (13)

which can be solved through the vectorization of the Liou-
villian and consequent disentanglement of the exponential
operator [26]. Taking as the initial state ρ̂0 = |0〉〈0| and re-
turning to the original basis, the solution can be expressed in
terms of displaced Fock states as

ρ̂ = 1

1 + |α|2
∞∑

n=0

[ |α|2
1 + |α|2

]n

D̂†(α)|n〉〈n|D̂(α). (14)

To describe the effects of the radiation pressure exerted by
the electromagnetic vacuum on the mirror of the half cavity, it
is necessary to calculate the expectation values of the opera-
tors b̂, b̂†, and b̂†b̂. Using the density operator from Eq. (14),
they are

〈b̂†b̂〉 = 2|α|2, (15)

〈b̂〉 = −α, (16)
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and 〈b̂†〉 = −α∗. As a result, the deformation of the metal
does not achieve the thermal equilibrium through the weak
radiation pressure by the electromagnetic vacuum, as for a
classical forced harmonic oscillator.

The expectation values for the position and momentum can
be easily calculated from (16), giving

〈ẑ〉 = −
√

4h̄�

Mω2
sin2

(ωt

2

)
, (17)

〈p̂z〉 = −
√

Mh̄� sin (ωt ). (18)

So, the conductor slab is compressed by the field of the elec-
tromagnetic vacuum and the time-averaged normal strain is
given by 〈 〈ẑ〉

z0

〉
t

= − h̄π2c

Y λ4
c

. (19)

The time-averaged compression value is very small and its
dependence on only intensive properties of the material makes
it relatively difficult to manipulate. As an example, if the
mirror is composed of a material with Y = 80 GPa and λc ∼
100 nm, the strain is 〈〈ẑ〉/z0〉t ∼ 3.9 × 10−8, meaning that for
every millimeter of the slab height, the average displacement
of the top surface by the electromagnetic vacuum is on the
order of the Bohr radius. The compression caused by the
vacuum-field radiation pressure is, indeed, expected to be
much smaller than one. This imposes a lower bound to the
cutoff wavelength, which is

λc 	
(

h̄cπ2

Y

)1/4

. (20)

For most of the solid state conductors, the Young’s modulus
is on the order of 1–100 GPa, so a rough estimate gives λc 	
3 nm, which is the case for most of the real metals. The time-
averaged force exerted by the vacuum field can be obtained
from the compression (19), giving

〈F 〉t = h̄cAπ2

λ4
c

. (21)

For an insight about the magnitude of this force, it can be
directly compared to the Casimir force between two perfectly
reflecting mirrors distant by L ≈ λc/2 4

√
15 [17]. Differing

from the expectation value of the position (17), the time
average of the expectation value of the momentum is zero,
however, its amplitude may be significant since it depends on
the slab volume as

√
Mh̄� = h̄π2cV

λ4
c

√
μ

Y
. (22)

Using the numbers from the previous example, the amplitude
of the expectation value of the momentum per volume unit is
≈1.1 kg/m2s for μ = 10 g/cm3 and Y = 80 GPa.

Regarding the energy transfer from the vacuum field to the
metal slab, a straight comparison with the solution for the
classical harmonic oscillator (2) leads to

P = ωc

2

√
Mh̄�. (23)

In term of the time-averaged strain, the intensity I = P/A can
be written as

I = −Y c

2

〈 〈ẑ〉
z0

〉
t

. (24)

Hence, the corresponding classical intensity depends only on
the cutoff wavelength λc. If the mirror is a disk with 1 μm of
radius, then P ≈ 1.5 W for λc = 100 nm, which is compara-
ble to the power of lasers. Nevertheless, from the expectation
value of the Hamiltonian operator, it is obtained that only
the time-dependent amount of power Pm = h̄ω� sin(ωt ) is
transferred to the mechanical harmonic oscillator, leading to

Pm

P
=

√
4h̄�

Mc2
sin (ωt ). (25)

In order to stay in the regime of the Born approximation, the
energy exchange between the system and the reservoir must be
small, thus |Pm| � P. This condition is easily fulfilled, since
M is a macroscopic mass. As a consequence, the condition
propagated to the cutoff wavelength is

λc 	
(

4h̄2π4

Y μ

)1/8

. (26)

The mass densities of solid state conductors are found within
3–20 g/cm3. Then, a rough estimate suggests λc 	 1 Å,
which is within the range obtained from (20).

Comparison with the coherent evolution

Supposing that the Lindblad superoperator term in Eq. (8)
can be neglected under the argument that its coefficient aver-
ages to zero, the Schrödinger equation is retrieved as[

h̄ω

(
b̂†b̂ + 1

2

)
+ h̄

√
�

2ω

(
b̂† + b̂

)]|ψ〉 = ih̄
∂

∂t
|ψ〉, (27)

and has as a solution the coherent state |ψ〉 = | − α〉, with
the initial state |ψ0〉 = |0〉. Thus, the expectation value of the
operator b̂ is identical to the one obtained from the master
equation (16). As a result, the trajectory of the mirror surface,
which is completely described by its position and momen-
tum, is determined by the coherent evolution in this case of
an oscillating Lindblad coefficient. However, the number of
excitations is now 〈b̂†b̂〉 = |α|2, which is only half of the
value obtained in Eq. (15). Therefore, although the oscillating
Lindblad term does not lead to the thermal equilibrium, it does
correct the number of expected excitations of the mechanical
harmonic oscillator, and consequently the energy.

A fundamental discrepancy between the two approaches
relies on the purity of the state in Eq. (14), which decreases
with the time-dependent expectation value of the number of
excitations as

Tr[ρ̂2] = 1

1 + 2|α|2 . (28)

Hence, for low values of �/ω, the purity oscillates with small
amplitude with a crest equal to one. The amplitude of the
purity oscillations increase with the ratio �/ω and the trough
lasts much longer than the crest for �/ω 	 1, as shown in
Fig. 1.
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FIG. 1. Purity of the displaced Fock state describing the mirror
surface dynamics as a function of ωt and the ratio �/ω.

IV. CONCLUSION

In this article, the evolution of the mirror compression
due to the vacuum-field fluctuations was investigated from
the Born-Markov master equation perspective. With the an-
alytical solution of the master equation resulting in a density

operator composed of displaced Fock states in its diagonal,
the trajectories of the compression and momentum operators
were obtained. The same trajectories were obtained from the
coherent evolution of the system, however, in this case, a cor-
rection to the expectation value of the number operator had to
be performed. These trajectories are analog to the ones derived
from the classical mechanics upon replacing the vacuum field
by a classical field, and a straight comparison resulted in an
estimate of the power exchange between the vacuum field and
the mirror surface. In addition, it was demonstrated that, as a
consequence of the energy exchange between the system and
the reservoir, the purity of the density operator describing the
system oscillates with an amplitude strongly dependent on the
ratio between the incoherent coupling rate � and the natural
frequency of the mechanical harmonic oscillator ω.

The expectation value of the compression of the conductor
is generally a small number, with a dependence on the range
of reflected wavelength. On the other hand, the momentum
transferred from the electromagnetic vacuum to the metal sur-
face is proportional to the area where the interaction happens,
which could lead the way towards experimental realizations.
A possible effect of the mirror surface vibration is the photon
emission through the dynamical Casimir effect, which is not
included in this model.
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