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Enhancement of Stokes–anti-Stokes correlations by the classical incoherent incident light
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It is known that spontaneous Raman scattering is accompanied by the appearance of nonclassical cross
correlations of photons at Stokes and anti-Stokes frequencies. Such correlations occur due to the internal
nonlinear interaction between electronic and nuclear vibration degrees of freedom. Since the properties of a
given media are unchangeable, the possibilities for controlling the cross correlations are limited. This, in turn,
restricts the possible applications of the correlated light obtained during the spontaneous Raman scattering. In
this work, we investigate the influence of statistical properties of an incident light on the cross correlations of
Stokes and anti-Stokes light. We show that the incoherence of the incident light results not only in the incoherence
of the scattered light but also in the enhancement of the interbeam coherence at different frequencies. We
demonstrate that the cross correlations of Stokes and anti-Stokes light intensities are enhanced when the incident
light with high second-order autocorrelation function is applied. Our results pave the way to control correlated
light obtained in the process of spontaneous Raman scattering.
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I. INTRODUCTION

Raman scattering of light is a powerful and widespread
tool for quantitative analysis of the composition of substances,
which has been used for more than 50 years [1–3]. In addition
to the spectroscopic applications, it was revealed that the scat-
tered light obtained from spontaneous Raman scattering may
exhibit quantum correlations [4,5]. In this case, the cross cor-
relations of Stokes and anti-Stokes light can exceed the clas-
sical limit [4,5]. The latter means that the product of second-
order coherence functions at the Stokes and anti-Stokes
frequencies, g(2)

St,St = 〈â†
Stâ

†
StâStâSt〉/〈â†

StâSt〉2 and g(2)
aSt,aSt =

〈â†
aStâ

†
aStâaStâaSt〉/〈â†

aStâaSt〉2, is less than the square of the
cross correlation g(2)

St,aSt = 〈â†
Stâ

†
aStâaStâSt〉/〈â†

aStâaSt〉〈â†
StâSt〉

from the Stokes and anti-Stokes components, i.e., the follow-
ing inequality holds: g(2)

St,Stg
(2)
aSt,aSt < (g(2)

St,aSt )
2. Experimental

studies of this phenomenon showed that nonclassical corre-
lations of Stokes and anti-Stokes light are observed when
light is scattered on diamond [6–11], water [12,13], organic
molecules [14], and other substances [13,15,16], as well as
micromechanical systems [17,18]. Nonclassical correlations
of Raman light emerge in waveguides [19–22]. Moreover, in
experiments on spontaneous Raman scattering of light in a
silicon waveguide [23], it was shown that nonclassical cross
correlations can occur between Stokes light and phonons in
the waveguide. In the above experimental works [19,20,23]
it was noted that a necessary condition for observation is a
small number of phonons (vibrons) excited by temperature
fluctuations of the environment [7].

Correlations of Stokes and anti-Stokes light can be mea-
sured with a Hanbury-Brown-Twiss setup [4,24]. Nonclassical
correlations of Stokes and anti-Stokes light manifest them-

selves in this type of experiment as an anomalously large
number of the simultaneously triggered Stokes and anti-
Stokes photon detectors [6–8,12–14]. This means that Stokes
and anti-Stokes photons are produced in pairs during spon-
taneous Raman scattering. The pair production of Stokes and
anti-Stokes photons during spontaneous Raman scattering can
be used in heralded light sources [15,25,26] as an alterna-
tive to spontaneous parametric down conversion [4,27]. Such
sources are used, for example, for ghost imaging [28–31].
The ability to generate photon pairs is also important for
other applications [32], such as heralded single photon sources
[33–40], increasing the visibility of two-photon interferome-
try [41,42], increasing the visibility of the Hong-Ou-Mandel
interference [43–45], increasing the visibility in measure-
ments of entanglement [46,47], and preparation of the Fock
states [15]. Note that correlation between different frequency
components arises when the electromagnetic (EM) field is
irradiated by the optically pumped gaseous medium in the
presence of magnetic field which creates Zeeman splitting
[48,49].

It should be emphasized that in the number of applications,
the interbeam second-order coherence function is important
by itself regardless of how large it is compared with the
multiplication of the single frequency second-order coherence
functions. For example, the increase of the visibility of inter-
ferometry depends on the absolute value of correlations of
Stokes and anti-Stokes light, i.e., on g(2)

St,aSt, while the non-
classicality of the cross correlations by itself is not significant
[41–45,50].

It is usually assumed that the value g(2)
St,aSt is determined

only by the properties of the substance and cannot be changed.
In this paper, we show that it is not so. We demonstrate that,
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in addition to the properties of a substance, the quantity g(2)
St,aSt

depends on the statistical properties of the incident light.
We show that an increase in the second-order autocorrelation
function of the incident light enhances the cross correlations
of the Stokes and anti-Stokes scattered light. To this end, we
develop an approach to the description of spontaneous Raman
scattering of light on molecules based on the Heisenberg-
Langevin equations. We find an approximate solution to these
equations and show how this solution reproduces the known
properties of spontaneous Raman scattering, namely, the spec-
trum of Stokes and anti-Stokes signals, as well as the statistics
of scattered light. Next, we show how the statistics of an
incident light influence the Stokes–anti-Stokes second-order
cross correlations. The obtained results pave the way to con-
trol the statistical properties of the photon pairs obtained in
the process of Raman scattering.

II. DESCRIPTION OF THE MODEL

We consider a molecule affected by an incident EM field.
To describe the dynamics of such a system, we will use the
model developed in [51,52]. Namely, we describe the elec-
tronic subsystem of the molecule as an effective two-level
system (TLS). We describe the vibrational subsystem of the
molecule as a harmonic oscillator and neglect the anhar-
monicity of the oscillations of the nuclei in the molecule.
We describe the interaction of the electronic and vibrational
subsystems of the molecule by the Fröhlich Hamiltonian [53].
For simplicity, we assume that the external field interacts only
with the electronic subsystem of the molecule and does not
interact directly with the nuclear subsystem. The Hamiltonian
of the system under consideration in the rotating wave approx-
imation has the form [54–60]

ĤS = h̄ω0σ̂
†σ̂ + h̄ωvb̂†b̂ + h̄gσ̂ †σ̂ (b̂† + b̂)

+ h̄�̂(t )(σ̂ †e−iω�t + σ̂eiω�t ), (1)

where ω�, ω0, and ωv are the central frequency of the ex-
ternal field, the transition frequency of the TLS, and the
eigenfrequency of vibration of the nuclei of the molecule,
respectively. Following the experimentally feasible parameter
range [12–16], we consider the nonresonant scattering on the
molecule, i.e., we suppose that |ω0 − ω�| � γ⊥, where γ⊥
is the rate of transverse relaxation of the TLS. The operators
σ̂ and σ̂ † are the operators of the TLS transition, the opera-
tors b̂ and b̂† are the raising and lowering operators for the
vibrational subsystem of the molecule, and g is the constant
of the interaction of the TLS and the vibrations of the nuclei
of the molecule. The operator of the TLS dipole moment d̂
and the amplitude operator of the vibrations of the nuclei
of the molecule x̂ are connected with the operators σ̂ and b̂
through the equalities d̂ = deg(σ̂ + σ̂ †) and x̂ = x0(b̂ + b̂†),
where deg is the dipole moment of the TLS transition and
x0 = √

h̄/2mωvib is the quantum of the molecule vibration
amplitude. Thus, the operators σ̂ and b̂ have the physical
meaning of dimensionless amplitudes of electric dipole mo-
ment and nuclei oscillations, respectively. The last term in
Hamiltonian (1) describes the interaction of an external field
with a molecule, �̂(t ) = −deg · Ê(t )/h̄ represents the Rabi
frequency of this interaction, and Ê(t ) is the amplitude of

the electric field of the incident light at the location of the
molecule.

Let us consider in more detail the properties of an external
light source. We consider a stationary external source with a
spectrum width �1, and a central frequency ω�. To describe
such a light source, we assume that the field amplitude of an
external source �̂(t ) is an operator with a average 〈�̂(t )〉 =
�(t ), and with the first-order two-time correlation function

〈�̂†(t )�̂(t + τ )〉 = I exp (−�1τ ), τ � 0, (2)

where I (t ) ≡ 〈�̂†(t )�(t )〉 is proportional to the intensity of
the external source. For the ideally coherent light source
|�(t )|2 = I and �1 = 0, while for incoherent light 〈�̂(t )〉 =
0. We assume that the autocorrelation function of an external
source g(2)

� (τ ) is

g(2)
� (τ ) = 〈�̂†(t )�̂†(t + τ )�̂(t + τ )�̂(t )〉

〈�̂†(t )�̂(t )〉〈�̂†(t + τ )�̂(t + τ )〉
= (

g(2)
� (0) − 1

)
e−�2|τ | + 1. (3)

This means that the equal-time second-order autocorrela-
tion function of an external source is equal to g(2)

� (0) and
drops to unity with a characteristic time �−1

2 . We assume
that the spectrum width of the external source is much
smaller than the detuning of the frequency of the exter-
nal field from the frequency of the electronic transition of
the molecule, |ω0 − ω�| � �1, �2. For the incident light
with finite linewidth and nonzero 〈�〉, Eq. (2) changes to
〈�̂†(t )�̂(t + τ )〉 = I exp(−�1τ ) + I0 with I0 = |〈�〉|2, but
Eq. (3) remains the same. As we will see below, this affects the
spectrum of scattered light (see Sec. III), but does not affect
its statistical properties.

The relaxation processes in a molecule are due to the inter-
action with reservoirs described by the Hamiltonian

ĤRes =
∑
k,μ

h̄ωkâ†
k,μâk,μ +

∑
k

h̄ωdpk ĉ†
dpk ĉdpk

+
∑

k

h̄ωmk ĉ†
mk ĉmk . (4)

The first term describes the reservoir of EM field of the empty
space, and â†

k,μ and âk,μ are photon creation and annihilation
operators with the wave vector k and polarization μ. The
second term corresponds to the dephasing reservoir that is
described by the operators ĉ†

dpk and ĉdpk . This reservoir is
responsible for the relaxation of phase of the electronic sub-
system. The third term is the reservoir which is responsible for
the relaxation of the vibron mode b̂ of the molecule [61–64].

The interaction of the system with the reservoirs is de-
scribed by the Hamiltonian

ĤSRes =
∑
k,μ

Ek,μ · deg(â†
k,μ + âk,μ)(σ̂ † + σ̂ )

+
∑

k

h̄κdpk (ĉ†
dpk + ĉdpk )σ̂ †σ̂

+
∑

k

h̄κmk (ĉ†
mk + ĉmk )(b̂† + b̂), (5)
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where κdpk and κmk are the respective interaction constants,
and Ek,μ is the quantum of the electric field of a photon with
the wave vector k and polarization μ.

In the Born-Markov approximation it is possible to elim-
inate reservoir degrees of freedom [5,65]. To do this it is
necessary to suppose that the reservoir is in the thermal equi-
librium at the fixed temperature and the interaction between
the system and the reservoirs is weak. From Hamiltonians (1),
(4), and (5) one can obtain the following Heisenberg-Langevin
operator equations [5,25] for the operator of the dipole mo-
ment of the TLS σ̂ and for the operator of the amplitude of
vibration of the nuclei of a molecule b̂ [51,52]:

d σ̂ /dt = (−iω0 − γ⊥)σ̂ + i(2σ̂ †σ̂ − 1)�̂(t )e−iω�t

− igσ̂ (b̂† + b̂) + F̂σ (t ), (6)

db̂/dt = (−iωv − γv)b̂ − igσ̂ †σ̂ + F̂b(t ), (7)

where γv is the damping rate of the vibrations of the nuclei
of the molecule, and F̂σ (t ) and F̂b(t ) are the thermal noise
acting on the vibrational degree of freedom of the molecule
and on the dipole moment of the electronic transition from
the environment. The value of dissipation constant γ⊥ is de-
termined by the processes of energy and phase relaxation, i.e.,
γ⊥ = γen + γph. We note that the dissipation rate of the dipole
moment γ⊥ for many molecules is mainly determined by the
dephasing processes [66], such that γ⊥ � γph. Thermal noises
are not arbitrary, but are associated with losses in the system
through the fluctuation-dissipation theorem [5,67]. Namely,
noises F̂b(t ) and F̂σ (t ) have the following correlation prop-
erties

〈F̂b(t )〉 = 0,

〈F̂σ (t )〉 = 0, (8)

〈F̂b(t1)F̂b(t2)〉 = 0,

〈F̂σ (t1)F̂σ (t2)〉 = 0, (9)

〈F̂ †
b (t1)F̂ †

b (t2)〉 = 0,

〈F̂ †
σ (t1)F̂ †

σ (t2)〉 = 0, (10)

〈F̂ †
b (t1)F̂b(t2)〉 = 2γvnvδ(t1 − t2), (11)

〈F̂ †
σ (t1)F̂σ (t2)〉 = γph〈σ̂ †σ̂ 〉δ(t1 − t2), (12)

where nv = [exp(h̄ωv/T ) − 1]−1 and T is the temperature of
the environment. We consider the case of a weak popula-
tion of the upper level of the electron subsystem, 〈σ̂ †σ̂ 〉 ∼
I/|ω − ω0|2 
 1, which is typical in experiments on nonres-
onant Raman scattering, therefore in Eq. (6) we neglect the
noise acting on the electron subsystem of the molecule. This
is valid for the moderate values of the amplitudes of the ex-
ternal pump: I � γvnv|ω� − ω0|2/γ⊥. For typical parameters
γv ∼ 10−4 eV, nv ∼ 10−4, |ω� − ω0| ∼ 1 eV, γ⊥ ∼ 10−2 eV
we obtain

√
I < 10−3 eV, which for the electronic transition

dipole moment |deg| ∼ 10 D results in the restriction to the
incident electric field amplitude |E(t )| < 106 V/m.

III. DYNAMICS OF THE DIPOLE MOMENT OF A
MOLECULE AND STATISTICAL PROPERTIES OF

SCATTERED LIGHT

The system (6), (7) cannot be solved exactly. Therefore,
we construct a solution to the system of equations (6), (7)
according to perturbation theory. There are two small pa-
rameters in the system. The first small parameter ε1 is the
ratio of the mean value of modulus of the Rabi frequency√

〈�̂†(t )�̂(t )〉 = √
I [see Eq. (2)] to the detuning of the fre-

quency of the external field from the transition frequency of
the TLS

ε1 =
√

I

|ω� − ω0| 
 1. (13)

The second small parameter ε2 is the ratio of the constant of
the interaction between the electrons and the vibrons of the
molecule and the frequency detuning of the incident light from
the electronic transition frequency,

ε2 = g

|ω� − ω0| 
 1. (14)

To solve the system of Eqs. (6), (7) according to perturbation
theory, we expand the operator of the dipole moment of the
electronic subsystem of the molecule σ̂ (t ) and the operator
of the amplitude of vibration of the nuclei of the molecule
b̂(t ) in a series in small parameters ε1 and ε2. In each order
of perturbation theory, we obtain a linear system of operator
equation with quantum noise. This linear system can be solved
exactly. The solution of the system of Eqs. (6),(7) for the
operator of the dipole moment of the electronic subsystem of
the molecule σ̂ (t ) up to the order ε1 · ε2 has the form (see
Appendix A)

σ̂ (t ) ≈ σ̂R(t ) + σ̂St (t ) + σ̂aSt (t ). (15)

The operator σ̂R(t ) represents the contribution to the dipole
moment of the molecule which is responsible for Rayleigh
scattering

σ̂R(t ) = �̂(t )

ω� − ω0
e−iω�t . (16)

The operators σ̂St (t ) and σ̂aSt (t ) are the contributions to the
dipole moment of the molecule which are responsible for
Stokes and anti-Stokes scattering, respectively,

σ̂St (t ) = g

ω� − ωv − ω0
σ̂R(t )b̂†

th(t ), (17)

σ̂aSt (t ) = g

ω� + ωv − ω0
σ̂R(t )b̂th(t ). (18)

The operator b̂th(t ) is the operator of the amplitude of vi-
bration of the nuclei of the molecule under the influence of
thermal fluctuations of the environment and has the form

b̂th(t ) =
∫ t

0
dt ′Gb(t − t ′)F̂b(t ′), (19)

where we have denoted the Green’s function for the lin-
earized equation (7) Gb(τ ) = exp[(−iωv − γv)τ ]. Since the
vibrations of the nuclei of the molecule (19) occur due to
thermal fluctuations of the environment, the average vibra-
tion intensity is described by the Bose-Einstein distribution.
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Indeed, it follows from the expression for the operator of the
vibration amplitude of the nuclei of the molecule (19) and the
correlation (11) that

〈b̂†
th(t )b̂th(t )〉 = nv = 1

eh̄ωv/T − 1
. (20)

The expression for the operator of the dipole moment of the
molecule (15) allows us to calculate the spectrum of scat-
tered light S(ω), according to the quantum regression theorem
[5,67],

S(ω) = ∣∣deg

∣∣2
Re

∫ +∞

0
〈σ̂ †(t + τ )σ̂ (t )〉e−iωτ dτ . (21)

Due to the properties of the correlations of thermal
noise acting on the nuclei of the molecule, Eqs. (8)–
(10), the correlations 〈σ̂ †

R(t + τ )σ̂St (t )〉, 〈σ̂ †
R(t + τ )σ̂aSt (t )〉,

and 〈σ̂ †
St (t + τ )σ̂aSt (t )〉 are identically equal to zero. Conse-

quently, the spectrum (21) splits into Rayleigh [SR(ω)], Stokes
[SSt (ω)], and anti-Stokes [SaSt (ω)] components,

S(ω) = SR(ω) + SSt (ω) + SaSt (ω), (22)

where

SR(ω) = |deg|2Re
∫ +∞

0
〈σ̂ †

R(t + τ )σ̂R(t )〉e−iωτ dτ , (23)

SSt (ω) = |deg|2Re
∫ +∞

0
〈σ̂ †

St (t + τ )σ̂St (t )〉e−iωτ dτ , (24)

SaSt (ω) = |deg|2Re
∫ +∞

0
〈σ̂ †

aSt (t + τ )σ̂aSt (t )〉e−iωτ dτ . (25)

Using Eqs. (16) and (2) we find the spectrum of Rayleigh
scattering,

SR(ω) = S0
�1

(ω� − ω)2 + �2
1

, (26)

where S0 = I|deg|2/(ω� − ω0)2. Note that for ideally co-
herent light �1 = 0 and Eq. (26) takes the form SR(ω) =
S0πδ(ω� − ω) which reproduces the well-known result of
coherent nature of Rayleigh scattered light [5]. Similarly to
(26), one can find the spectrum of Stokes and anti-Stokes
scattered light from Eqs. (17), (18), (11), (12), and (2),

SSt (ω) = S0
g2

(ωSt − ω0)2

�1 + γv

(ωSt − ω)2 + (�1 + γv)2 (1 + nv),

(27)

SaSt (ω) = S0
g2

(ωaSt − ω0)2

�1 + γv

(ωaSt − ω)2 + (�1 + γv)2 nv,

(28)

where ωSt = ω� − ωv and ωaSt = ω� + ωv. For the incident
light with 〈�̂†(t )�̂(t + τ )〉 = I exp(−�1τ ) + I0 Eqs. (16)–
(18) do not change. However the spectra of Rayleigh, Stokes,
and anti-Stokes scattered light (26)–(28) for such a source
have a slightly different form. The explicit expressions for
these spectra can be obtained straightforwardly and are not
presented here.

The Raman scattering spectra reflect the thermal nature of
the vibrations of the nuclei of the molecules. Indeed, it follows
from Eqs. (27) and (28) that SSt (ω) ∝ 〈b̂thb̂†

th〉 = 1 + nv and
SaSt (ω) ∝ 〈b̂†

thb̂th〉 = nv. Moreover, the calculated spectra of

the Stokes and anti-Stokes scattered light (27) and (28) obey
the relation

SaSt (ω� + �ω)

SSt (ω� − �ω)
=

(
ωSt − ω0

ωaSt − ω0

)2

× nv

(1 + nv)

∼ exp (−h̄ωv/kT ) (29)

for any frequency shift �ω. We use nv = [exp(h̄ωv/T ) − 1]−1

in the last step in Eq. (29). Thus, as it takes place in Raman
scattering, the intensity of the anti-Stokes component is inhib-
ited compared with the intensity of the Stokes component by
the factor exp(−h̄ωv/kT ).

IV. STATISTICAL PROPERTIES OF SCATTERED LIGHT

We now consider the question of how the statistical prop-
erties of thermal vibrations of the nuclei of a molecule and
the statistical properties of an external light source manifest
themselves in the statistical properties of Stokes and anti-
Stokes light. The interaction between TLS and free space
modes leads to the energy dissipation through the radiation
emission. To find the irradiated electric field, we obtain the
equations on the field amplitude of the free space mode âk,μ

that follows from the Hamiltonians (4), (5)

dâk,μ

dt
= −iωkâk,μ − i

Ek,μ · deg

h̄
σ̂ (t ). (30)

The solution of the Eq. (30) is

âk,μ(t ) = âk,μ(0) exp (−iωkt ) − i
Ek,μ · deg

h̄

×
∫ t

0
dt ′σ̂ (t ′)e−iωk (t−t ′ ). (31)

The first part represents the vacuum field amplitude while the
second one corresponds to the field irradiated by the molecule.

We are interested not in the separate amplitude âk,μ, but in
the total electric field, Ê(r, t ) = ∑

k,μ Ek,μâk,μ(t ), irradiated
by the molecule, detected by the detector located at point r
[65]. To calculate this total electric field, we assume that the
molecule is at the point r = 0 and use Eq. (31). As a result,
we obtain

Ê(r, t ) =
∑
k,μ

Ek,μâk,μ(0) exp (−iωkt ) + ÊR(r, t )

+ ÊSt (r, t ) + ÊaSt (r, t ), (32)

where the Rayleigh, ÊR(r, t ), Stokes, ÊSt (r, t ), and anti-
Stokes, ÊaSt (r, t ), components of the scattered electric field
are given by

Ê j (r, t ) =
∑
k,μ

Ek,μ(Ek,μ · deg/h̄)eik·re−iω j t

×
∫ t

0
dt ′[σ̂ j (t

′)eiω j t ′
]ei(ωk−ω j )(t ′−t ), (33)

where j = R, St, aSt and ωR = ω�. We assume that the
detectors for Rayleigh, Stokes, and anti-Stokes, scattered
field are placed at rR, rSt, and raSt, such that |rR| =
|rSt| = |raSt| = r. We also assume that the detectors are
not polarization sensitive. Summation in (33) can be per-
formed by using density of vacuum EM field states:

∑
k →
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V (2π )−3c−3
∫ +∞

0 dωω2
∫ π

0 dθ sin θ
∫ 2π

0 dϕ. Integration over
ω of the fast oscillating function ei(ωk−ω j )(t−t ′ ) in expressions
for ÊR(t ), ÊSt (t ), and ÊaSt (t ) gives (for details of calculations
see [65])

Ê j (t ) ∝ σ̂ j (t − r/c), (34)

where j = R, St, aSt. Using the connection between the
operators of the molecular dipole moment and the field
amplitude, Eq. (34), one can express the second-order auto-
correlation function of scattered light as

g(2)
j, j (τ ) = 〈Ê†

j (t )Ê†
j (t + τ )Ê j (t + τ )Ê j (t )〉

〈Ê†
j (t )Ê j (t )〉〈Ê†

j (t + τ )Ê j (t + τ )〉

= 〈σ̂ †
j (tr )σ̂ †

j (tr + τ )σ̂ j (tr + τ )σ̂ j (tr )〉
〈σ̂ †

j (tr )σ̂ j (tr )〉〈σ̂ †
j (tr + τ )σ̂ j (tr + τ )〉 , (35)

where j = R, St, aSt and tr = t−r/c. Substituting the
dipole moment operators of the molecule (16)–(18) into the
expression for the autocorrelation function (35) and using the
correlations (11), (12) and (2), (3), we obtain

g(2)
R,R(τ ) = g(2)

� (τ ), (36)

g(2)
St,St (τ ) = g(2)

� (τ ) × g(2)
v (τ ), (37)

g(2)
aSt,aSt (τ ) = g(2)

� (τ ) × g(2)
v (τ ). (38)

Thus, the statistical properties of Rayleigh scattered light
are determined only by the statistical properties of an ex-
ternal source. In particular, in the case of ideally coherent
field, g(2)

� (τ ) = 1, the Rayleigh scattered light has g(2)
R,R(τ ) = 1

which is confirmed by the previous theoretical result [68]. At
the same time, the statistical properties of Stokes and anti-
Stokes scattered light are determined by both the statistical
properties of an external source and the statistical properties
of thermal vibrations of the nuclei of a molecule.

We note that the value of the second-order coherence func-
tion strongly depends on the width of the filter frequency
region, which cuts off from the scattered signal. This problem
recently has attracted considerable attention [68,69]. More-
over, in the paper [68] it was shown that, in nonresonant
scattering of coherent light on a TLS, filtering all the scattered
spectrum except for Rayleigh signal leads to unity autocorre-
lation function. Expression (36) is consistent with this result.

The second-order autocorrelation function g(2)
v (τ ) of the

vibrations of the nuclei of the molecule can be found by
substituting Eq. (19) to the general expression for g(2)

v (τ ):

g(2)
v (τ ) = 〈b̂†

th(t )b̂†
th(t + τ )b̂th(t + τ )b̂th(t )〉

〈b̂†
th(t )b̂th(t )〉〈b̂†

th(t + τ )b̂th(t + τ )〉 . (39)

Using Eqs. (9)–(12), we obtain

g(2)
v (τ ) = 1 + e−2γv|τ |. (40)

Note that in the case of a coherent external source g(2)
� (τ ) = 1

the autocorrelation function of Rayleigh scattered light co-
incides with the autocorrelation function of coherent light,
g(2)

R,R(τ ) = 1, and the autocorrelation functions of Stokes and
anti-Stokes light at τ = 0 are equal to the autocorrelation

FIG. 1. The cross-correlation function of the second order of
the Stokes and anti-Stokes signals referred to the autocorrelation
functions of the second order of these signals, depending on the
ratio of the vibration frequency of the nuclei of the molecule to
the ambient temperature of the molecule. The blue solid curve is
the cross-correlation function calculated by Eq. (42), the red dashed
line is the classic restriction for this quantity. The red shaded area
is the classically allowed range of values for the cross-second-order
autocorrelation function of the Stokes and anti-Stokes lights.

function of a thermal light, g(2)
St,St (0) = 2 and g(2)

aSt,aSt (0) = 2,
and tend to unity with characteristic time γ −1

v .
We now consider the question of how the statistical prop-

erties of an external source (3) and the statistical properties
of thermal vibrations of the nuclei of molecules (40) affect
the cross correlations between Stokes and anti-Stokes scat-
tered light. Cross correlations between Stokes and anti-Stokes
light will be characterized by a second-order cross-correlation
function [4,32],

g(2)
St,aSt (τ ) = 〈Ê†

St (t )Ê†
aSt (t + τ )ÊaSt (t + τ )ÊSt (t )〉

〈Ê†
St (t )ÊSt (t )〉〈Ê†

aSt (t + τ )ÊaSt (t + τ )〉

= 〈σ̂ †
St (tr )σ̂ †

aSt (tr + τ )σ̂aSt (tr + τ )σ̂St (tr )〉
〈σ̂ †

St (tr )σ̂St (tr )〉〈σ̂ †
aSt (tr + τ )σ̂aSt (tr + τ )〉 . (41)

Substituting the dipole moment operators of the molecule
(17), (18) into the expression for the second-order cross-
correlation function (41) and using the correlations (11), (12)
and (2), (3) we obtain

g(2)
St,aSt (τ ) = g(2)

� (τ ) ×
(

1 + 1 + nv

nv
e−2γv|τ |

)
. (42)

It follows from this relation that the second-order cross-
correlation function for Stokes and anti-Stokes light is
determined by both the statistical properties of the external
source g(2)

� (τ ) and the average number of vibrational quanta
of the nuclei of the molecule nv under the influence of thermal
fluctuations of the environment.

The classical restriction of the magnitude of the cross-
correlation function of the second order (42) can be written in

the form of inequality |g(2)
St,aSt (0)| �

√
g(2)

St,St (0)g(2)
aSt,aSt (0) [4].

Figure 1 shows the ratio |g(2)
St,aSt (0)|/

√
g(2)

St,St (0)g(2)
aSt,aSt (0) as

a function of the ratio the vibration frequency of the nuclei
of the molecule to the ambient temperature of the molecule,
h̄ωv/T . It is seen that the cross-correlation function of the
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Stokes and anti-Stokes scattered light exceeds the classical
limit for any relations between the oscillation frequency ωv

and temperature T . Note that from expressions (37), (38) and

(42) it follows that the ratio |g(2)
St,aSt (0)|/

√
g(2)

St,St (0)g(2)
aSt,aSt (0)

does not depend on the statistics of an external source �̂(t ).
In this sense, the statistics of an external source does not
change the “nonclassicality” of the correlations between the
Stokes and anti-Stokes light. In Appendix B, we also examine
the question of the cross correlation of Stokes photons and
vibrations of the nuclei of a molecule.

V. PROBABILITY OF SIMULTANEOUS DETECTION OF
STOKES AND ANTI-STOKES PHOTONS

As we showed in the previous section, the statis-
tics of an external source do not affect the fulfillment
of the criterion for the classicality of cross correlations

|g(2)
St,aSt (0)| �

√
g(2)

St,St (0)g(2)
aSt,aSt (0), nevertheless, the statistics

of an external field does affect the magnitude of the second-
order cross-correlation function g(2)

St,aSt (τ ). As mentioned in
the Introduction, in some applications this characteristic is
important on its own, e.g., it may improve the properties of
heralded photon sources. Below we consider this question in
more detail.

The probability of detecting a Stokes photon at time t + τ

at detector 2 provided that the anti-Stokes photon was detected
at time t at detector 1 is related to the value of the second-order
cross-correlation function g(2)

St,aSt (τ ) [7,25] as follows. If we
designate �aSt (t ) the event at which the anti-Stokes photon is
detected on the first detector from the moment of time t , and
�St (t + τ ) the event at which the Stokes photon is detected at
the second detector at the time t + τ , then we can write the
relation [7,25]

P[�St (t + τ )|�aSt (t )] = g(2)
St,aSt (τ )P[�St (t + τ )], (43)

where P[�St (t + τ )|�aSt (t )] is the probability of the event
�St (t + τ ) provided that the �aSt (t + τ ) has occurred,
P[�St (t + τ )] is the probability of the event �St (t + τ ), and
g(2)

St,aSt (τ ) is the cross-correlation function of the second order
for the Stokes and anti-Stokes signals, defined by expression
(41). Thus, a large value g(2)

St,aSt (τ ) increases the probability of
the simultaneous arrival of Stokes and anti-Stokes photons at
the first and second detectors.

The obtained expressions (42) and (43) show how one
can improve the properties of the heralded light source based
on the spontaneous Raman scattering with an external light
source. The first way to improve the properties of the heralded
light source based on the spontaneous Raman scattering is
the use of an external source with a large autocorrelation
function g(2)

� (0). Indeed, according to expression (42) an in-
crease in the autocorrelation function of the second order
of the external source g(2)

� (0) leads to an increase in cross
correlations between Stokes and anti-Stokes light g(2)

St,aSt (0) ∝
g(2)

� (0). This, in turn, according to expression (43), leads to
an increase in the probability of detecting a Stokes photon
P[�aSt (t )|�St (t )] at the time of detection of an anti-Stokes
photon. For example, ceteris paribus, the relation between
probability Pcoh[�aSt (t )|�St (t )] when using a coherent light

source with g(2)
� (0) = 1 and probability when using a light

source with an autocorrelation function g(2)
� (0) > 1 is equal

to

P[�St (t )|�aSt (t )] = g(2)
� (0)Pcoh[�St (t )|�aSt (t )]. (44)

That is, the probability P[�St (t )|�aSt (t )] increases by a factor
of g(2)

� (0) compared with the probability Pcoh[�St (t )|�aSt (t )].
The second way to improve the properties of the heralded

light source based on the spontaneous Raman scattering is
to use a source with the autocorrelation function rapidly de-
creasing over time g(2)

� (τ ). According to the expressions (42)
and (3) at the initial instant of time, the cross correlations
between Stokes and anti-Stokes light g(2)

St,aSt (τ ) decrease for

large g(2)
� (0) and small nv approximately as

g(2)
St,aSt (τ ) ≈ g(2)

� (0)

nv
e−(�2+2γv )|τ |. (45)

Thus, according to (45) and (43) we can obtain

P[�St (t + τ )|�aSt (t )] ≈ P[�St (t )|�aSt (t )]e−(�2+2γv )|τ |.
(46)

In other words, by increasing the decay rate of the
second-order autocorrelation function �2 one can increase
the “simultaneity” of the radiation of Stokes and anti-
Stokes photons. This may reduce the accidental coincidence
rate that originates from uncorrelated photons [12]. Usage
of the photon pair sources with fast decaying probabil-
ity P[�St (t + τ )|�aSt (t )] suppresses the photons and noise
counts [70].

VI. DISCUSSION AND CONCLUSION

In this work, we examined the statistical properties of
Raman radiation upon scattering by thermalized phonons.
We obtained analytical expression (42) for the second-order
cross-correlation function of the Stokes and anti-Stokes
scattered radiation g(2)

St,aSt (τ ). An analysis of this expres-
sion shows that the intensity cross correlations of the
Stokes and anti-Stokes radiation during scattering by thermal
phonons always have a nonclassical character, which mani-
fests itself in the fulfillment of the inequality |g(2)

St,aSt (0)| >√
g(2)

St,St (0)g(2)
aSt,aSt (0). The higher the ratio of the natural fre-

quency of nuclear vibrations to temperature the greater the

ratio |g(2)
St,aSt (0)|/

√
g(2)

St,St (0)g(2)
aSt,aSt (0).

The experimental values for the second-order correlation
function of the Stokes and anti-Stokes scattered light [6–8,12–
14,17] turn out to be lower than those calculated by the for-
mula (42). This is due to the presence of spurious signals
at the Stokes and anti-Stokes scattering frequencies from the
external pump, as well as the fact that the high intensity of an
external source can lead to the removal of phonons from the
thermal state. Therefore, expression (42) should be considered
as the upper limit for the second-order correlation function of
the Stokes and anti-Stokes scattered light.

Note that a large value g(2)
St,aSt (0) can be used to im-

prove the properties of single-photon sources. For example,
in the scheme of a conventional single-photon source,
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presented, for example, in [33], the second-order autocorre-
lation function g2(0) is approximately equal to g(2)

cond(0) ≈
g(2)

St,St (0)g(2)
aSt,aSt (0)/g(2)

aSt,St (0) [33]. Thus, from (42) we obtain

that g(2)
cond(0) ≈ 4g(2)

� (0)nv/(1 + 2nv), and for nv 
 1 one can
obtain conditional single-photon sources with a low autocor-
relation function g(2)

cond(0).
From the expression for the second-order correlation

function of the Stokes and anti-Stokes scattered light, the
following estimation takes place: g(2)

St,aSt (0) ∼ 1/nv. A simi-

lar estimate for the value g(2)
St,aSt (0) was previously obtained

in [14] from an analysis of the probabilities of detecting
Stokes and anti-Stokes photons. Computer modeling of the
second-order correlation function of the Stokes and anti-
Stokes scattered light was also carried out in [12–14,71] based
on the solution of the Lindblad equation.

In this work, we considered the possibility of controlling
the second-order correlation function of the Stokes and anti-
Stokes scattered light g(2)

St,aSt (τ ) using the photon statistics of
an external light source. We have shown that an increase in
the second-order autocorrelation function of an incident light
source g(2)

� (0) leads to an increase in the correlations between
Stokes and anti-Stokes light g(2)

St,aSt (0). The results presented
in this work may be useful for improving the properties of
sources of paired photons based on spontaneous Raman scat-
tering.
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APPENDIX A: SOLUTION OF THE EQUATIONS (6), (7) IN
PERTURBATION THEORY

In this appendix we construct a solution to the operator sys-
tem of equations (6),(7) using perturbation theory with the two
small parameters ε1 = √

I/|ω� − ω0| and ε2 = g/|ω� − ω0|.
In each order of perturbation theory, we obtain the exactly
solvable linear system of operator equation with quantum
noise. In the first order of perturbation theory we obtain
Rayleigh response on the frequency of the external field ω�.
The higher orders of the perturbation theory describe the
response of the system on the side frequencies.

In the zeroth order of perturbation theory, the system of
equations (6), (7) takes the form

db̂0/dt + (iωv + γv)b̂0 = F̂b(t ), (A1)

d σ̂0/dt + (iω0 + γ⊥)σ̂0 = 0. (A2)

The solution to the system of equations (A1), (A2) at times
t � γ −1

⊥ , γ −1
v has the form

b̂0(t ) =
∫ t

0
Gb(t − t ′)F̂b(t ′)dt ′, (A3)

σ̂0 = 0. (A4)

In the first order of perturbation theory, the system of equa-
tions (6), (7) takes the form

db̂1/dt + (iωv + γv)b̂1 = 0, (A5)

d σ̂1/dt + (iω0 + γ⊥)σ̂1 = −i�̂(t )e−iω�t . (A6)

The solution to the system of equations (A5), (A6) at times
t � γ −1

⊥ , γ −1
v has the form

b̂1 = 0, (A7)

σ̂1(t ) = �̂(t )

ω� − ω0
e−iω�t . (A8)

The solution (A8) is a driven solution; the dipole moment
follows the external electric field oscillating with its frequency
ω�.

In the second order of perturbation theory, Eq. (6) takes the
form

d σ̂2/dt + (iω0 + γ⊥)σ̂2 = −igσ̂1(t )
(
b̂†

0(t ) + b̂0(t )
)
. (A9)

We use that σ̂1(t ) ∝ e−iω�t and b̂0(t ) ∝ e−iωvt , then the solu-
tion of Eq. (A9) can be approximately written in the form

σ̂2(t ) = g

ω�+ωv − ω0
σ̂1(t )b̂0(t )+ g

ω� − ωv − ω0
σ̂1(t )b̂†

0(t ).

(A10)
The first term of the right-hand side of Eq. (A10) oscillates
with the frequency ωaSt = ω� + ωv and the second term os-
cillates with the frequency ωSt = ω� − ωv. The emerging of
the new frequencies ωaSt and ωSt is due to the nonlinear pro-
cess: the oscillations of the nuclei in the molecule modulate
the induced electronic dipole moment of the molecule. The
frequency of the nuclei oscillations ωv determines the shift
of the side frequencies with respect to the frequency of the
incident light ω�.

Thus, the solution for the electronic dipole moment of the
molecule in the first nonvanishing order in the small parame-
ters ε1 and ε2 has the form σ̂ (t ) ≈ σ̂0(t ) + σ̂1(t ) + σ̂2(t ),

σ̂ (t ) = �̂(t )

ω� − ω0
e−iω�t + g

ω� − ωv − ω0
σ̂1(t )b̂†

0(t )

+ g

ω� + ωv − ω0
σ̂1(t )b̂0(t ). (A11)

We denote

σ̂R(t ) = �̂(t )

ω� − ω0
e−iω�t , (A12)

b̂th(t ) = b̂0(t ) =
∫ t

0
Gb(t − t ′)F̂b(t ′)dt ′, (A13)

σ̂St (t ) = g

ω� − ωv − ω0
σ̂R(t )b̂†

th(t ), (A14)

σ̂aSt (t ) = g

ω� + ωv − ω0
σ̂R(t )b̂th(t ), (A15)

and arrive at expression (15).
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APPENDIX B: CORRELATIONS BETWEEN STOKES
SCATTERED LIGHT AND VIBRATIONS OF

MOLECULAR NUCLEI

In this appendix, we will consider the question of the corre-
lation of Stokes scattered light and vibrations of the nuclei of
a molecule. Interest in these correlations arose in connection
with a recent experiment [23], where nonclassical correlations
between Stokes light and phonons were demonstrated during
Raman scattering in a silicon waveguide.

The cross-correlation function of the Stokes light and the
vibrations of the nuclei of molecules g(2)

St,v(τ ) can be deter-
mined by analogy with the expression (41)

g(2)
St,v(τ ) = 〈Ê†

St (t )b̂†
th(tr + τ )b̂th(tr + τ )ÊSt (t )〉

〈Ê†
St (t )ÊSt (t )〉〈b̂†

th(tr + τ )b̂th(tr + τ )〉

= 〈σ̂ †
St (tr )b̂†

th(t + τ )b̂th(tr + τ )σ̂St (tr )〉
〈σ̂ †

St (tr )σ̂St (tr )〉〈b̂†
th(tr + τ )b̂th(tr + τ )〉 , (B1)

where tr = t−r/c and r is the distance between the emitter of
the Stokes light and the detector. Here we used the proportion-
ality of the operator of the amplitude of the Stokes radiation
and the operator of the corresponding component of the dipole
moment of the molecule (34). Substitution of expression (17)
into (B1) leads to

g(2)
St,v(τ ) = 1 + 1 + nv

nv
e−2γv|τ |. (B2)

Expression (B2) up to the autocorrelation function of an ex-
ternal source g(2)

� (τ ) coincides with expression (42) for the
cross-correlation function of the second order of Stokes and
anti-Stokes light g(2)

St,aSt (τ ). As a consequence, all arguments
about the nonclassical character of the correlation function
g(2)

St,aSt (τ ) remain valid for the quantity g(2)
St,v(τ ). This con-

clusion is in agreement with the experiment from the work
[23] where nonclassical correlations between the phonons and
Stokes photons have been demonstrated.
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F. Henneberger, and Y. Arakawa (International Society for Op-
tics and Photonics, San Francisco, California, 2015), p. 372.

[57] N. L. Naumann et al., Solid-state-based analog of optomechan-
ics, J. Opt. Soc. Am. B 33, 1492 (2016).

[58] J. Kabuss et al., Optically Driven Quantum Dots as Source
of Coherent Cavity Phonons: A Proposal for a Phonon Laser
Scheme, Phys. Rev. Lett. 109, 054301 (2012).

[59] R. Merlin, Generating coherent THz phonons with light pulses,
Solid State Commun. 102, 207 (1997).

[60] J. Kabuss, A. Carmele, and A. Knorr, Threshold behavior and
operating regimes of an optically driven phonon laser: Semi-
classical theory, Phys. Rev. B 88, 064305 (2013).

[61] Q. Shi and E. Geva, On the calculation of vibrational energy
relaxation rate constants from centroid molecular dynamics
simulations, J. Chem. Phys. 119, 9030 (2003).

[62] A. Nitzan, S. Mukamel, and J. Jortner, Some features of vibra-
tional relaxation of a diatomic molecule in a dense medium, J.
Chem. Phys. 60, 3929 (1974).

[63] Q. Shi and E. Geva, Semiclassical theory of vibrational energy
relaxation in the condensed phase, J. Phys. Chem. A 107, 9059
(2003).

[64] B. J. Ka, Q. Shi, and E. Geva, Vibrational energy relaxation
rates via the linearized semiclassical approximation: Appli-
cations to neat diatomic liquids and atomic−diatomic liquid
mixtures, J. Phys. Chem. A 109, 5527 (2005).

[65] H. J. Carmichael, An Open Systems Approach to Quantum
Optics (Springer-Verlag, Berlin, 1993).

[66] C. M. Liebig and W. Dennis, Optical dephasing in saturable-
absorbing organic dye IR140, Appl. Opt. 45, 2072 (2006).

[67] H. Risken, Fokker-planck equation, in The Fokker-Planck
Equation (Springer-Verlag, Berlin, 1996), pp. 63–95.

[68] A. Gonzalez-Tudela et al., Two-photon spectra of quantum
emitters, New J. Phys. 15, 033036 (2013).

[69] E. del Valle et al., Theory of Frequency-Filtered and Time-
Resolved N-Photon Correlations, Phys. Rev. Lett. 109, 183601
(2012).

[70] M. M. Hayat, S. N. Torres, and L. M. Pedrotti, Theory of
photon coincidence statistics in photon-correlated beams, Opt.
Commun. 169, 275 (1999).

[71] C. A. Parra-Murillo et al., Stokes–anti-Stokes correlation in
the inelastic scattering of light by matter and generalization of
the bose-einstein population function, Phys. Rev. B 93, 125141
(2016).

013514-9

https://doi.org/10.1103/PhysRevA.82.053803
https://doi.org/10.1038/nature20154
https://doi.org/10.1103/RevModPhys.83.33
https://doi.org/10.1103/PhysRevLett.92.213601
https://doi.org/10.1103/PhysRevLett.97.173004
https://doi.org/10.1364/OE.14.006912
https://doi.org/10.1103/PhysRevLett.97.013601
https://doi.org/10.1103/PhysRevA.78.013844
https://doi.org/10.1364/OE.17.023589
https://doi.org/10.1126/science.1127676
https://doi.org/10.1364/OE.22.006535
https://doi.org/10.1103/PhysRevLett.97.113603
https://doi.org/10.1103/PhysRevLett.99.180505
https://doi.org/10.1038/nphys450
https://doi.org/10.1103/PhysRevLett.98.180503
https://doi.org/10.1364/OPTICA.6.000955
https://doi.org/10.1103/PhysRevLett.99.180504
https://doi.org/10.1103/PhysRevA.101.032312
https://doi.org/10.1364/JOSAB.30.000362
https://doi.org/10.1103/PhysRevLett.122.153905
https://doi.org/10.1103/PhysRevLett.122.203602
https://doi.org/10.1007/s10825-016-0856-8
https://doi.org/10.1364/JOSAB.33.001492
https://doi.org/10.1103/PhysRevLett.109.054301
https://doi.org/10.1016/S0038-1098(96)00721-1
https://doi.org/10.1103/PhysRevB.88.064305
https://doi.org/10.1063/1.1613636
https://doi.org/10.1063/1.1680840
https://doi.org/10.1021/jp030497+
https://doi.org/10.1021/jp051223k
https://doi.org/10.1364/AO.45.002072
https://doi.org/10.1088/1367-2630/15/3/033036
https://doi.org/10.1103/PhysRevLett.109.183601
https://doi.org/10.1016/S0030-4018(99)00384-3
https://doi.org/10.1103/PhysRevB.93.125141

