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Generic optical singularities in Brewster-reflected postparaxial beam fields
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Brewster reflection of a postparaxial optical beam at a plane dielectric interface unravels fundamentally sig-
nificant optical singularity dynamics. We express the simulated field-component profiles of a Brewster-reflected
postparaxial beam field via empirical functions, using which we demonstrate optical beam-shifts and formation
of phase singularities. These occurrences naturally reveal the presence and complex transitional dynamics of
generic polarization singularities, which we observe via simulation and experiments. A single reflection being
the core process, our method becomes a fundamentally appealing way to generate optical singularities and to
study their dynamics.
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I. INTRODUCTION

The strong influence of the optical fields carrying well-
defined phase and polarization singularities has revolutionized
the fundamental studies and applications of the wave fields
and their interactions with matter [1–20]. In addition to
their significant contribution towards the fundamental un-
derstanding of the electromagnetic characteristics of light,
optical singularities provide core concepts in many emerg-
ing areas of research, including Majorana and Poincarana
sphere formalisms [21–23], topological and non-Hermitian
photonics [24–30], optical Möbius strips [31–35], polariza-
tion knots [36–39], and superoscillations [40–43]. They are
also directly related to several interdisciplinary research ar-
eas, including crystal dislocation, trapping and rotation of
microparticles, classical and quantum communications, mi-
croscopy and imaging, etc. [1,44].

Generic optical singularities are broadly classified into two
fundamentally related but distinctly characterized categories
[1]: (1) phase singularity and (2) polarization singularity.
Generic phase singularities are points (in two dimensions)
or lines (in three dimensions) in space where both real and
imaginary parts of a complex field become zero, thus making
the phase of the field undefined [1–8]. Polarization singulari-
ties are regions where specific properties of the polarization
ellipse are undefined: orientation (for C-point), handedness
(for L-line), and both orientation and handedness (for V -point)
[1,6,7,9–19]. The polarization ellipses around these singular-
ities organize themselves into unique patterns such as lemon,
star, monstar, node, center, saddle, etc. (topological indices,
respectively, +1/2, −1/2, −1/2, +1, +1, −1) [1,6,7,9–19].
Standard methods of generating vortex beams with embedded
polarization singularities [1,17,45–54] thus involve, in some
form or the other, the inherent inhomogeneous polarization of
the considered beam field [55–61].
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A classic case of inhomogeneous polarization in the beam
cross section occurs for the reflection and transmission of a
composite optical wave, where the constituent plane waves
reflect and transmit differently due to differences in Fresnel
coefficients [62–64], thus generating complicated reflected
and transmitted field profiles [55–60,65–72]. This effect is
especially unique when a constituent wave with transverse
magnetic (TM) polarization is incident at Brewster angle (θB)
[62–64], because this constituent wave is not reflected at all.
Thus, a point of zero TM reflection is created in an otherwise
nonzero reflected field profile, indicating the existence of a
phase singularity at that zero point. Also, the strongly inho-
mogeneous polarization around that zero point indicates the
existence of polarization singularities.

The presence of phase singularity in a nonparaxial
Brewster-reflected beam field was recently observed by Bar-
czyk et al. [45]. However, they observed it in a specific
experiment and in a complex setup, thus, not explicitly
identifying this phase singularity as a generic occurrence ir-
respective of the used setup. On the other hand, in Ref. [73]
we have reported some initial simulation-based observations
of polarization singularities in a Brewster-reflected paraxial
beam field. But to our knowledge, a detailed analysis of the
polarization singularities and their complex transitional dy-
namics, appearing in a Brewster-reflected beam field, is not
currently present in literature.

We address the above-mentioned unexplored and funda-
mental electromagnetic-optical problems in the present work.
We first simulate a Brewster-reflected postparaxial optical
beam field. We then express this complete field in terms
of empirical functions and use them to demonstrate the oc-
currences of beam shifts and phase singularities. Then we
use the calculated information to perform a detailed analysis
of the polarization singularities and their various complex
transitional dynamics in the beam field. In particular, we
demonstrate effects such as merger of two C-point singu-
larities into a higher-order V -point singularity [1,14], pair
disappearance of singularities at infinity, and isolation of a C-
point singularity for off-Brewster-angle reflection. Finally, we
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FIG. 1. Schematic of the simulated optical system (description in
the text).

verify our analytical and simulated results via experimental
observations.

II. THE OPTICAL SYSTEM

To explore Brewster-reflected beam-field profiles, we have
simulated an optical system (Fig. 1) based on our formal-
ism developed in Ref. [60]. In a medium of refractive index
n1, an initial collimated Gaussian beam is converted to a
weakly diverging postparaxial Gaussian beam by passing it
through a concave lens L1 of focal length F1 = −OF OI . This
beam is incident on an isotropic dielectric interface of re-
fractive index n2. The central angle of incidence is θi0. The
reflected beam cross-sectional profile is observed at the screen
SR after collimating it through a convex lens L2 of focal
length F2 = OF OI + OI OS + OSO. By setting θi0 = θB, the
Brewster-reflected beam profile is observed.

III. ANALYSIS

We define global incident and reflected beam coordinate
systems I (x(I ), y(I ), z(I ) ) and R(x, y, z) with respect to the cen-
tral incident and reflected wave vectors ki0 and kr0 (Fig. 1).
We (1) define the initial input collimated beam (before the
lens L1) in the I coordinate system and (2) analyze the final
output collimated beam (after the lens L2) in the R coordinate
system. The incident diverging beam after L1 and the reflected
diverging beam before L2 are analyzed in the simulation [60]
(including the lens transformations), whose mathematical de-
tails are not required here. The mathematical forms of only
the (1) initial and (2) final collimated beams are relevant for
the purpose of the present paper. Both of these beams are
approximated via plane wavefronts, which are characterized
by conveniently omissible constant phase terms over the beam
cross sections. So, we analyze these plane-wave beam fields
only in terms of their complex field amplitude vectors, de-
noted by E .

In the I coordinate system, the Gaussian electric field am-
plitude profile of the initial collimated beam is given by

E (I )
0 = E (I )

0x + ei�EE (I )
0y = E (I )

0x x̂(I ) + ei�EE (I )
0y ŷ(I ), (1)

E (I )
0x = E00 e−ρ (I ) 2/w2

0 cos θE ; E (I )
0y = E00 e−ρ (I ) 2/w2

0 sin θE , (2)

where E00 is the electric field magnitude at the beam axis,
ρ (I ) = (x(I ) 2 + y(I ) 2)1/2, w0 is the half-beam width, and θE ,
�E are angle and relative-phase parameters which deter-

mine the exact polarization of E (I )
0 . After passing through

the lens L1, the beam divergence is obtained as 2θD =
−2 tan−1(w0/F1).

With respect to the plane of incidence, E (I )
0x is a TM polar-

ized field and E (I )
0y is a transverse electric (TE) polarized field.

The observed field E at the screen SR, though collimated by
the lens L2 to approximate a plane-wave beam field, is neither
TM nor TE, because, in the intermediate stage, the reflection
of the curved incident wavefront at the dielectric interface
fundamentally induces polarization-inhomogeneity across the
wavefront [55–61]. The final output field E at the screen SR is
obtained in the form

E = EX + ei�EEY , (3)

EX = EX
x x̂ + EX

y ŷ, EY = EY
x x̂ + EY

y ŷ, (4)

where EX and EY are the individual final output fields corre-
sponding to E (I )

0x and E (I )
0y , respectively.

Here onwards we set the following parameter values in
the simulation: free-space wavelength λ = 632.8 nm; refrac-
tive indices n1 = 1, n2 = 1.52 [θB = tan−1(n2/n1) ≈ 56.66◦];
incident beam power Pw = 1 mW; w0 = 0.6 mm; F1 =
−5 cm (thus, θD ≈ 0.7◦); propagation distances OI OS =
5 cm, OSO = 2.5 cm; and F2 = 12.5 cm. Using the above-
mentioned values of Pw and w0 in Eq. (A5), we obtain the
central field magnitude E00 ≈ 1.15430 × 103 V/m.

For incidence around the Brewster angle, the Fresnel TM
reflection coefficient is much less than the Fresnel TE re-
flection coefficient [62–64]. So, if |E (I )

0x | ∼ |E (I )
0y |, then we get

|EY | � |EX |, and the subtle effects such as the ones reported
here become obscured due to the dominance of EY . It is
thus essential to have |EY | ∼ |EX |, which can be achieved
by appropriately choosing θE in Eq. (2). Here onwards, we
choose θE = 0.5◦ for most of our general observations for
θi0 = θB. We also choose θE = 0◦ in some cases to observe
only EX for Brewster reflection.

For θi0 = θB and θE = 0.5◦, the simulated field-component
profiles EX

x , EX
y , EY

x , and EY
y at the surface SR, as functions of

coordinates (x, y), are shown in Fig. 2. These profiles show
that the functions EX

x , EX
y , EY

x , and EY
y can be expressed in

empirical forms (2D Hermite-Gaussian functions [62,74]) as

EX
x = A1 f cos φ, EX

y = A2 f sin φ, (5)

EY
x = −A3 f sin φ, EY

y = −A4 g, (6)

where g = e−ρ2/w2
R , f = (ρ/wR)g, (7)

where (ρ, φ) are the plane polar coordinates correspond-
ing to (x, y), and A1, A2, A3, A4, wR are constants which
are determined numerically. For the specific example of
Fig. 2, these numerically determined values are A1 ≈ 3.42226
V/m, A2 ≈ 1.44286 V/m, A3 ≈ 1.25917 × 10−2 V/m, A4 ≈
1.59497 V/m, and wR ≈ 1.49603 mm, which give less than
0.02 fractional error in the maximum magnitudes of the con-
sidered functions as compared to the exact field-component
profiles obtained via simulation. For θE = 0◦, we automat-
ically get A3 = A4 = 0 V/m and numerically obtain A1 ≈
3.42239 V/m, A2 ≈ 1.44292 V/m, with wR ≈ 1.49603 mm
remaining unchanged.
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FIG. 2. Simulated field-component profiles [Eqs. (3, 4)] at the screen SR (Fig. 1): (a) EX
x , (b) EX

y , (c) EY
x , (d) EY

y for the chosen system
parameters and for θi0 = θB, θE = 0.5◦ [Eq. (2)]. The color bars express the concerned functions in V/m.

Physically, the constant wR is a half-beam-width term
corresponding to the profiles of Fig. 2, as understood from
the functional form of g [Eq. (7)]. The constants Aj ( j =
1, 2, 3, 4) are field magnitude terms. Each Aj can be expressed
in the form Aj = a j E00; where a j is a dimensionless quantity
giving the ratio Aj/E00. For example, as per the calculated
value of E00 and the numerically obtained values of Aj for
the case of Fig. 2, the ratios are a1 ≈ 2.96479 × 10−3, a2 ≈
1.24999 × 10−3, a3 ≈ 1.09085 × 10−5, and a4 ≈ 1.38176 ×
10−3. These ratios signify the fractional contributions of E00

in the formation of the field profiles EX
x , EX

y , EY
x , and EY

y

via Eqs. (5) and (6). The ratios are as small as ∼10−3 and
∼10−5, signifying the very small reflected beam intensity as
compared to the incident beam intensity under the concerned
Brewster-incidence and near-Brewster-incidence conditions.

For the purpose of the present paper, it is sufficient to pro-
ceed further by considering the empirical functions of Eqs. (5)
and (6). Our complete mathematical analysis of the exact
field E [Eq. (3)], based on the reflection and transmission
coefficient matrix formalism [60], will be reported elsewhere.

We use Eqs. (4)–(6) in Eq. (3) to find the empirical form of
the field E ; and then express it in terms of the σ̂± spin states
as

E = E+σ̂+ + E−σ̂−, where E± = a± + ib±, (8)

a± = g√
2

[(
A1

x

wR
− A3

y

wR
cos �E

)
∓ A4 sin �E

]
, (9)

b± = g√
2

[
− A3

y

wR
sin �E ∓

(
A2

y

wR
− A4 cos �E

)]
,

(10)

where x = ρ cos φ, y = ρ sin φ are used. The intensities
I , I± of the fields E , E±σ̂± are then obtained in the form
I = (n1/2μ0c)|E|2 as

I = n1

2μ0c
g2

[
A2

1
x2

w2
R

+ (
A2

2 + A2
3

) y2

w2
R

−2

(
A1A3

xy

w2
R

+ A2A4
y

wR

)
cos �E + A2

4

]
, (11)

I± = I

2
∓ n1

2μ0c
g2

(
A1A4

x

wR
− A2A3

y2

w2
R

)
sin �E . (12)

Thus, the fields E±σ̂± have different intensities I± but satisfy
energy conservation I+ + I− = I . Equations (8)–(12) are the
primary corollaries of our central assumptions [Eq. (5)–(7)].
Based on these, the secondary corollaries such as the total

powers, centroid positions, and singularity positions are
derived.

Powers: From I , I±, we obtain the corresponding powers
P, P± in the form P = ∫ ∞

−∞
∫ ∞
−∞ I dx dy as

P = n1

2μ0c

πw2
R

8
A2

0, (13)

P± = P

2
± n1

2μ0c

πw2
R

8
A2A3 sin �E , (14)

where A0 = (
A2

1 + A2
2 + A2

3 + 4A2
4

) 1
2 . (15)

Here P+ 	= P− because I+ 	= I− [Eq. (12)]. However, as per the
numerically obtained constant values, A3 
 A0. So the power
difference is very small.

Centroids and beam shifts: The centroid positions (xC, yC ),
(xC±, yC±) of the intensity profiles I , I± are obtained in the
form

xC = 1

P

∫ ∞

−∞

∫ ∞

−∞
xI dx dy; yC = 1

P

∫ ∞

−∞

∫ ∞

−∞
yI dx dy.

We thus get

xC = 0; yC = −2wR
A2A4

A2
0

cos �E , (16)

xC± = ∓ 2wRA1A4 sin �E

A2
0 ± 2A2A3 sin �E

, (17)

yC± = − 2wRA2A4 cos �E

A2
0 ± 2A2A3 sin �E

. (18)

Zero xC [Eq. (16)] implies zero GH shift [55–59,65,66] of
the field E [75]. However, nonzero IF shift [55–59,67–69] yC

[Eq. (16)] of E and longitudinal and transverse spin shifts
xC± [Eq. (17)] and yC± [Eq. (18)] (i.e., x-shifts and y-shifts
of E±σ̂±) are observed.

Since A2, A4 ∼ A0, Eq. (16) shows that |yC | ∼ wR for
appropriate ranges of �E . Thus, for such �E ranges, a giant
IF shift of the order of the half-beam-width wR is observed.
This result has been experimentally demonstrated by Götte
et al. [76].

A graphical description of the origin of IF shift is obtained
from the profiles of Fig. 2. The EY

y profile is negative every-
where, whereas the EX

y profile is positive in the y > 0 region
and negative in the y < 0 region. So, for −π/2 < �E < π/2,
these two fields undergo destructive interference in the y > 0
region and constructive interference in the y < 0 region. The
opposite happens for −π < �E < −π/2 and π/2 < �E �
π . This gives rise to an asymmetry in the total intensity profile
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FIG. 3. (a), (b) Simulated �± phase profiles [Eq. (22)] of the fields E±σ̂± [Eq. (8)] for θi0 = θB, θE = 0.5◦, �E = π/2, showing l∓ phase
singularities at (xS±, yS±) [Eqs. (23–26)]. (c), (d) Similar �± profiles for θi0 = θB, θE = 0◦, with phase-singularity coordinates xS± = yS± = 0.

I about the x axis, thus resulting in the IF shift. Though we
have demonstrated this effect in the specific case of Brewster
reflection, we have verified via simulation that this behavior
and explanation are valid for any angle of incidence.

Now, with the approximation A3 
 A0, we rewrite
(xC±, yC±) [Eqs. (17, 18)] as

xC± = 2wR
A1A4

A2
0

sin �E

(
2

A2A3

A2
0

sin �E ∓ 1

)
, (19)

yC± = yC + δ±, (20)

where δ± = ±4wR
A2

2A3A4

A4
0

cos �E sin �E . (21)

The first term in the parentheses of Eq. (19) is small, since
A3 
 A0. So, for appropriate ranges of �E , the xC± shifts are
large (i.e., comparable to wR) and are approximately opposite
to each other. Thus, while Qin et al. [77] report wavelength
order in-plane spin-shifts for non-Brewster-reflection cases,
the present Brewster-reflection case shows “giant” (beam-
size-order) longitudinal spin shifts.

The transverse spin shifts yC± [Eq. (20)] are the IF shift yC

[Eq. (16)] with added correction terms δ± [Eq. (21)]. These
δ± terms are the spin Hall shifts [55,70,71,78,79]. The effect
that the spin Hall shifts in Brewster reflection appear on both
sides of IF shift has been demonstrated by Xie et al. [79].

Phase singularities: From Eq. (8) we obtain the phases of
E±σ̂± as

�± = tan−1(b±/a±). (22)

The phase singularities of E±σ̂± appear where a± = b± = 0.
Applying this condition to the expressions of a±, b± [Eqs. (9,
10)], we obtain the singularity coordinates (xS±, yS±) as

xS± = wRA4(A3 ± A2 sin �E )

A1(A2 ± A3 sin �E )
, (23)

yS± = wRA4 cos �E

A2 ± A3 sin �E
, (24)

which we rewrite by using the approximation A3 
 A1, A2, A4

as

xS± = wR
A3A4

A1A2
cos2 �E ± wR

A4

A1
sin �E , (25)

yS± = wR
A4

A2
cos �E ∓ wR

A3A4

A2
2

cos �E sin �E . (26)

The first term in xS± [Eq. (25)] is small, since A3 is small. So
the second term dominates for appropriate ranges of �E , and,
hence, for those �E ranges, xS+ and xS− are almost opposite

to each other and |xS±| ∼ wR. However, for other appropriate
�E ranges, the first term in yS± [Eq. (26)] dominates while
the second term is small due to the presence of A3. Thus, the
difference between yS+ and yS− is small as compared to yS±.

The simulated �+ profile [Eq. (22)] for θi0 = θB, θE =
0.5◦, �E = π/2 [Fig. 3(a)] shows an l− (i.e., l = −1) phase
singularity at (xS+, yS+). The �− profile for the same sim-
ulation parameters [Fig. 3(b)] shows an l+ (i.e., l = +1)
phase singularity at (xS−, yS−). These singularities show the
l∓ orbital angular momenta (OAM) of the E±σ̂± fields. The
total angular momenta of the l∓σ̂± combinations and of the
total field E are zero, implying conservation of total angular
momentum.

Special case: For the special case of θE = 0◦, we get E (I )
0 =

E (I )
0x [Eqs. (1) and (2)], and hence E = EX [Eq. (3)]. All A3

and A4 terms in Eqs. (6)–(26) are zero in this case, and hence
several simplified symmetries in the fields are observed: I+ =
I− = I/2 [Eqs. (11) and (12)]; P+ = P− = P/2 [Eqs. (13) and
(14)]; yC = 0 [Eq. (16)], implying zero IF shift of the E field;
xC± = yC± = 0 [Eqs. (19) and (20)], implying zero spin shifts
of both E±σ̂± fields; and xS± = yS± = 0 [Eqs. (25) and (26)],
implying singularity positions at the screen center OR (Fig. 1)
for both E±σ̂± fields [Figs. 3(c) and 3(d)].

IV. POLARIZATION SINGULARITIES

Equations (19) and (25) show that xC± and xS± are in direc-
tions opposite to each other. For example, for �E = π/2, we
get xC+, xS− ∼ −wR and xC−, xS+ ∼ wR. Thus, in the x < 0
region, the E+σ̂+ field with an almost constant phase profile
is superposed on the relatively weak E−σ̂− field with an l+
phase singularity, whereas, in the x > 0 region, the E−σ̂− field
with an almost constant phase profile is superposed on the
relatively weak E+σ̂+ field with an l− phase singularity. These
(l±σ̂∓ + l0σ̂±) superpositions around the phase singularities
generate lemon polarization patterns in the complete field E
[17]. The resulting E field profile for �E = π/2 is shown in
Fig. 4(a), where two opposite lemon patterns around C-point
singularities, symmetrically separated by an L-line singular-
ity, are observed.

The other fundamental polarization pattern around a C-
point singularity is the star pattern, which is obtained via
(l±σ̂± + l0σ̂∓) superpositions [17]. Due to conservation of to-
tal angular momentum, the l±σ̂± combinations do not appear
automatically in the E field, and hence the automatic appear-
ance of the star pattern in Brewster reflection is fundamentally
prohibited. However, by passing the E beam field through a
half-wave plate (HWP), its (l±σ̂∓ + l0σ̂±) superpositions can
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FIG. 4. Simulated profiles: (a) complete field E [Eq. (3)] for θi0 = θB, θE = 0.5◦, �E = π/2, showing two C-point singularities (double
lemon pattern) separated by an L-line singularity. (b) Field EX [Eq. (4)], obtained from the field E of Fig. 4(a) by reducing θE to 0◦. The field
EX contains a node singularity. (c) Complete field E for 	θi0 = −2.0◦, θE = 3.2◦, �E = π/2, showing an isolated C-singularity (single lemon
pattern). (d) The double star pattern, (e) the saddle singularity, and (f) the single star pattern, created by passing the fields of Figs. 4(a), 4(b),
and 4(c), respectively through a HWP (fast axis along x̂ or ŷ). The field-representation color codes are light green: LEP; dark orange: REP;
light blue: linear polarization; white dot: the tip of the field vector E , originated at the ellipse center, at time t = 0 (the complete description
of this color-code representation is given in Ref. [60]). The intensity profile I [Eq. (11)] of the field E is shown at the background of each E
profile.

be converted to (l±σ̂± + l0σ̂∓) superpositions, thus creating
star patterns. The double lemon pattern of Fig. 4(a) is thus
converted to the double star pattern of Fig. 4(d) with either x̂
or ŷ orientation of the HWP’s fast axis.

The simulated EX field profile, obtained for θE = 0◦, is
shown in Fig. 4(b). It contains a node singularity, whose
formation can be described in terms of a singularity-merger
phenomenon [1,14]. As the angle θE [Eq. (2)] is gradually
changed from a nonzero value to 0◦, the contribution of EY in
the total field E [Eq. (3)] is gradually reduced. Consequently,
|xS±| and |yS±| [Eqs. (25) and (26)] gradually reduce to zero.
The phase profiles of Figs. 3(a) and 3(b) thus gradually trans-
form to the phase profiles of Figs. 3(c) and 3(d), respectively;
and correspondingly, the two lemon C-points of Fig. 4(a)
approach each other to eventually merge at the screen center
OR. This explains the formation of the node singularity of
Fig. 4(b) for θE = 0◦. The streamlines in Fig. 4(b) are not
radial because of the complicated nature of the exact contri-
butions of EX

x x̂ and EX
y ŷ [Eqs. (4) and (5)] in the field EX , as

understood from Figs. 2(a) and 2(b).
Observed through a HWP (fast axis along x̂ or ŷ), the

above-mentioned merger phenomenon is equivalent to the
merger of the two star C-points of Fig. 4(d) to form the saddle
singularity [1,14] of Fig. 4(e).

Though we emphasize on considering small θE values giv-
ing |EY | ∼ |EX |, it is also essential to observe that, as θE is
gradually increased to 90◦, the total field E gradually trans-
forms to only EY [Eqs. (1)–(3)], a nonsingular field [Figs. 2(c)

and 2(d)]. Correspondingly, in terms of polarization singular-
ities, |xS±| and |yS±| [Eqs. (25) and (26)] gradually increase
(depending on �E ). The two C-lemons of Fig. 4(a) thus gradu-
ally move farther apart and eventually disappear at infinity for
θE = 90◦. This process, though not equivalent, is comparable
to the disappearance of phase vortices at infinity due to free-
space propagation [1,4].

Manipulation of our setup based on the above understand-
ing enables us to generate various other polarization-singular
patterns. For instance, the symmetry of Brewster reflection
can be broken by taking θi0 away from θB. For θi0 = θB +
	θi0, where |	θi0| � θD and |	θi0| 
 θB, the E field profile
takes the form of either the right or the left lemon pattern of
Fig. 4(a). Such a lemon pattern for 	θi0 = −2.0◦, θE = 3.2◦,
�E = π/2 is shown in Fig. 4(c). This single lemon pattern is
converted to the single star pattern of Fig. 4(f) by passing the
beam field through a HWP (fast axis along x̂ or ŷ).

V. EXPERIMENTAL OBSERVATIONS

The fundamental phase and polarization (lemons, node)
singularity patterns, simulated based on our formalism of
Ref. [60] applied to a Brewster-reflected postparaxial optical
beam, are also experimentally observed [80]. The schematic
of the experimental setup is shown in Fig. 5. A He-Ne
laser beam (λ = 632.8 nm) is first collimated using a lens
pair. The desired polarization ellipticity of this collimated
beam is then realized by using a half-wave-plate–Glan-
Thompson-polarizer–quarter-wave-plate (HWP-GTP-QWP)
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FIG. 5. The experimental setup. Here LL: He-Ne laser; LP: col-
limating lens pair; H : half-wave plate; G1, G2: Glan-Thompson
polarizers; Q1, Q2: quarter-wave plates; L1: concave lens of focal
length F1 = −5 cm (Fig. 1); L2: convex lens of focal length F2 =
12.5 cm (Fig. 1); GP: glass plate, whose −ẑ(S)-facing surface is used
as the concerned dielectric interface (Fig. 1); and CC : CCD camera,
used as the screen SR (Fig. 1).

combination. The resultant elliptically polarized plane-wave
beam is then used as the input ki0–E (I )

0 beam in a schematic
identical to Fig. 1, with identical parameter values used in
the simulations (as given in Sec. III). A surface of a glass
plate is used as the concerned dielectric interface. A CCD
camera is used as the screen SR to observe the collimated
beam field E after the lens L2. The state of polarization of this
final beam field is measured via Stokes parameters method
[81] using a QWP-GTP combination positioned in front of the
camera.

The experimentally generated E profile [Eqs. (3) and (8)]
for θi0 = θB, θE = 0.5◦, �E = π/2 is shown in Fig. 6(a),
which transforms to the profile of Fig. 6(b) for θE = 0◦, i.e.,
for the E = EX case [Eq. (3)]. The total field profile for the
off-Brewster-incidence case of 	θi0 = −2◦, θE = 3.2◦, �E =
π/2 is shown in Fig. 6(c). The experimentally obtained field
profiles of Figs. 6(a)–6(c) match well with the corresponding
simulation-generated profiles of Figs. 4(a)–4(c), respectively,
thus verifying the formation of generic optical singularities in
the Brewster-reflected postparaxial beam field.

To observe the underlying OAM structure in the E±σ̂±

fields [Eq. (8)] for the θE = 0◦ case, we first pass the output
beam through an appropriately oriented QWP to transform the
E beam field to

EQ = E+ d̂+ + E− d̂−, (27)

where d̂± = (x̂ ± ŷ)/
√

2. The constituent E± d̂± beam fields
are then independently extracted by using a GTP with

FIG. 7. Experimental single-slit diffraction patterns of the fields
(a) E+d̂+ and (b) E−d̂− [Eq. (27)], showing l∓ OAM.

appropriate orientations. The individual E± d̂± beams are then
passed through a single vertical slit (width = 0.55 mm),
placed along x = 0. The far-field diffraction patterns given
by E+ d̂+ and E− d̂− are shown in Figs. 7(a) and 7(b), re-
spectively. These patterns are the characteristic single-slit
diffraction patterns of beams with l∓ OAM [82]. Hence, these
patterns directly show the existence of l∓ OAM in the E± d̂±
fields and hence in the E±σ̂± component beam fields.

VI. CONCLUSION

Even if standard methods [1,17,19,45–54] utilize special
optical elements and setups to generate well-refined optical
singularities, the singularity generation itself is a remarkably
fundamental phenomenon. We have demonstrated the forma-
tion of generic optical singularities due to Brewster reflection
of a postparaxial beam field. The core process in this sin-
gularity generation is a single reflection at a plane dielectric
interface, one of the most elementary field transformations in
optics. The complex transitional dynamics of these singular-
ities are demonstrated via simple modifications of the input
beam parameters. The formation and transitional dynamics of
these generic optical singularities are thus clear demonstra-
tions of the significant polarization inhomogeneity [55–61]
of the Brewster-reflected postparaxial beam field. Hence, the
present work serves the purpose of initiating a potential se-
ries of research works exploring the polarization patterns in
a reflected beam field under Brewster-incidence and near-
Brewster-incidence conditions. Our subsequent works in this
direction will be reported elsewhere.

From a practical perspective, the simplicity of our
singularity-generation process comes at the cost of losing
most of the beam intensity in the transmitted beam (Figs. 1

FIG. 6. (a), (b), (c) Experimental field profiles corresponding to the simulated profiles of Figs. 4(a), 4(b), and 4(c), respectively. The
intensity profiles in the background are expressed in normalized form, I/Imax.
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and 5), as understood from the numerically obtained ratios
a j = Aj/E00 (Sec. III). Also, the generated beam is not in
a pure LG mode [1,7,62]. However, our clear aim here is
to explore the optical singularities in a Brewster-reflected
postparaxial beam field, rather than to use the process as
a singularity-generation technique. The above-mentioned in-
conveniences do not impact at all in analyzing the generic
properties of the generated singularities, because, as long as
the singularities exist, their generic properties also exist irre-
spective of the beam intensity and exact mode composition
[1]. Nevertheless, due to the simplicity of the process, one can
also use it to readily generate optical singularities within any
optical setup as necessary.
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APPENDIX: DETERMINATION OF THE CENTRAL FIELD
MAGNITUDE OF THE INITIAL INPUT BEAM

In this Appendix we determine the central field magnitude
E00 of the initial input beam field E (I )

0 [Eq. (1)] from the total
beam power Pw. By using Eqs. (1) and (2), we express the
field E (I )

0 as

E (I )
0 = E00 e−ρ (I ) 2/w2

0
(

cos θE x̂(I ) + ei�E sin θE ŷ(I )). (A1)

The corresponding magnetic field is

H(I )
0 = (

ki0 × E (I )
0

)
/ωμ0

= n1

μ0c
E00 e−ρ (I ) 2/w2

0
( − ei�E sin θE x̂(I ) + cos θE ŷ(I )

)
,

(A2)

where μ0 = magnetic permeability of free space and c =
speed of light in free space. The time-averaged Poynting vec-
tor is then given by

〈S〉 = 1

2
Re

(
E (I ) ∗

0 × H(I )
0

) = n1

2μ0c
E2

00 e−2ρ (I ) 2/w2
0 ẑ(I ). (A3)

Then the time-averaged beam power passing through the
z(I ) = 0 plane is obtained as

Pw =
∫ ∞

−∞

∫ ∞

−∞
〈S〉 · ẑ(I ) dx(I ) dy(I ) = n1

2μ0c
E2

00
πw2

0

2
. (A4)

Thus, the power Pw of the initial input Gaussian beam is
equivalent to the power of a hypothetical plane-wave beam
having a wave vector ki0 and a uniform field magnitude E00

over a circular cross section of radius w0/
√

2.
In an actual experiment, the power Pw and the half-beam

width w0 of the input Gaussian beam are known. Using these
known quantities, the central field magnitude E00 is obtained
by rearranging Eq. (A4) as

E00 = 2

w0

(
μ0c

n1π
Pw

) 1
2

. (A5)
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