
PHYSICAL REVIEW A 103, 013509 (2021)

Knotted nodal lines in superpositions of Bessel-Gaussian light beams
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A simple analytical way of creating superpositions of Bessel-Gaussian light beams with knotted nodal lines
is proposed. It is based on the equivalence between the paraxial wave equation and the two-dimensional
Schrödinger equation for a free particle. The 2D Schrödinger propagator is expressed in terms of Bessel
functions, which allows to obtain directly superpositions of beams with the desired topology of nodal lines.
Four types of knots are constructed in an explicit way: the unknot, the Hopf link, the (3,3)-torus knot, and the
trefoil. It is also shown, using the example of the figure-eight knot, that more complex structures require a larger
number of constituent beams as well as high precision both from the numerical and the experimental sides. A
tiny change of beam’s intensity can lead to the knot “switching.” The figures refer to structures that can be called
nanoknots. However, they equally apply to larger knots of up to several tens of the wavelength, if the scaling
possibility provided by the presence of the parameter γ is used.
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I. INTRODUCTION

In recent decades, it has become possible to analytically
“design” and experimentally generate beams of light with
given topological properties. This marriage of optical phe-
nomena and topology has led to the birth of the so-called
topological optics. Topological effects have entered into light
propagation in several instances. One intensively studied fam-
ily constitute phase singularities of helical character. Such
waves, apart from spin, are also endowed with orbital angular
momentum. Particular interest of researchers was attracted
here by Laguerre-Gaussian [1–3] or Bessel [3–8] beams pos-
sessing a property of vorticity and an associated “charge” or
topological index.

An example that can also be classified as topological are
polarization singularities connected with the inability to fully
specify the polarization at certain places [9–13]. Yet another
idea is that of the “knotted” light. This primarily involves elec-
tric or magnetic field lines which can get entangled [14–22],
but also the nodal lines of wave intensity or, in other words,
optical vortex lines which can develop topologically nontriv-
ial structures both in exact and paraxial regimes [23–29].
This latter case covering some kind of doubly-topological
structures (i.e., knotted vortices, which per se are topological
entities mentioned above) is our main concern in this work.
From an experimental point of view, these types of beams can
be produced, which opens up many research and application
possibilities [30–33].

Quite paradoxically, while dealing with light beams it is
not bright regions but those of darkness, where the exact
destructive interference occurs, that are of main interest. They
are connected with the presence of phase singularities, as
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stated above, since the phase is undetermined for vanishing
field. Such areas of suppressed intensity can serve as traps for
both polarizable neutral particles with negative polarization
constant (such as far-off-resonance blue-detuned atoms, for
which the absorbing and scattering effects may be neglected)
[8,34–37], for charged particles like electrons through the
ponderomotive potential [7], and even for micrometer-sized
objects. In case of neutral atoms, the gradient forces arising
from the inhomogeneities of the electric field occur due to the
Stark effect [38] and for larger objects the trapping appears
via Mie scattering [39–42].

Generating nodal lines with highly nontrivial geometrical
properties and studying knotted structures as such can prove
useful for instance for manipulating particles using this mech-
anism of trapping and guiding or through implementations
into other physical systems. Many potential practical appli-
cations range from physics through chemistry to biology or
medicine [43–54].

The question of constructing a kind of a knotted trap for
silica spheres was undertaken in [32] and for neutral atoms
in [55]. In this latter work, we proposed a simple method to
design “arbitrary” traps of this sort from the superposition of
simple Gaussian beams. It was also shown in the numerical
way that the trajectories of neutral polarizable particles are
really confined on these knotted nodal lines. However, in prin-
ciple, this kind of traps can be made of more complex beams,
as for instance Laguerre-Gaussian (LG) beams or Bessel-
Gaussian (BG) beams for which some knotted nodal lines are
successfully obtained [23,31,56–58]. Therefore, in the present
work, we would like to extend to BG beams the method ad-
vocated in our previous paper [55]. From the experimentalist
point of view it seems essential that knots could be formed
of a variety of beam types. Contrary to some earlier attempts
the present approach should allow, in principle, to construct
in an easy and straightforward way any knots (composed of
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TOMASZ RADOŻYCKI PHYSICAL REVIEW A 103, 013509 (2021)

nodal lines) that can be obtained from the so-called Milnor
polynomial. Moreover, the BG beams are already routinely
achievable in experiments. The procedure leading to this result
will be discussed in detail in Sec. II.

When dealing with laser beams it has proved convenient to
introduce dimensionless coordinates through the relations

ξx = kx, ξy = ky, ξ =
√

ξ 2
x + ξ 2

y , ζ = kz. (1)

This corresponds to measuring distances in the units k−1 =
λ/2π and ensures that our formulas become as simple as
possible. It should be noted that for the third component the
symbol ζ instead of ξz is used. This is due to the fact that this
coordinate plays some special role in our considerations, i.e.,
that of the “time” in the corresponding Schrödinger equation.
Therefore, in what follows the bold mathematical symbols
stand for only two-dimensional vectors (i.e., ξ = [ξx, ξy] and
r = [x, y]).

A real wave close to the propagation axis satisfies the so
called paraxial equation which in the dimensionless coordi-
nates has the form

��(ξ, ζ ) + 2i∂ζ�(ξ, ζ ) = 0, (2)

with � representing the two-dimensional Laplace operator.
In order to construct superpositions of BG beams on one hand
satisfying Eq. (2) and on the other displaying a given topo-
logical structure the clear similarity of (2) to the Schrödinger
equation for a free particle in 2D will be exploited as in
Ref. [55]. The latter equation has the form

− h̄2

2m
��(r, t ) = ih̄∂t�(r, t ) (3)

and becomes identical to (2) upon the identification:

mc2 = h̄ω, ξ = kr, ζ = ωt . (4)

This allows the well-known Schrödinger propagator to be
made use of, as described in general terms in the next section.
In Sec. III, this general procedure is implemented in five sub-
sequent examples: the unknot, the Hopf link, the (3,3)-torus
knot, the trefoil, and the figure-eight knot. In a systematic way,
the concrete superpositions of coaxial BG beams are derived,
which yield these nodal structures.

II. GENERAL PROCEDURE

The two-dimensional free Schrödinger propagator may be
written in terms of Bessel functions Jn(x) with the use of our
dimensionless variables (1) as follows:

K (ξ, φ, ζ ; ξ ′, φ′, ζ ′)

= 1

2π

∞∑
n=−∞

ein(φ−φ′ )
∫ ∞

0
dt tJn(tξ )Jn(tξ ′)e−i(ζ−ζ ′ )t2/2. (5)

One can verify by a direct calculations that the paraxial equa-
tion (2) (or Schrödinger equation) is satisfied by the above
expression. It is inessential whether K (ξ, φ, ζ ; ξ ′, φ′, ζ ′) itself
meets the condition of the paraxial approximation, which for
certain function f (ξ, ζ ) in our units reads

∂2
ζ f (ξ, ζ ) � ∂ζ f (ξ, ζ ), (6)

since K is only a tool for obtaining a beam envelope �(ξ, ζ )
of the physical significance for our considerations. As we
will see in the following sections, this envelope is virtually
a superposition of BG paraxial modes.

When ζ → ζ ′, one obtains

lim
ζ→ζ ′

K (ξ, φ, ζ ; ξ ′, φ′, ζ ′) = δ(2)(ξ − ξ′), (7)

as it is expected. All one needs is to apply the identity

δ(φ − φ′) = 1

2π

∞∑
n=−∞

ein(φ−φ′ ) (8)

together with [59]

δ(x − x′) = x
∫ ∞

0
dt tJn(xt )Jn(x′t ), (9)

and then the exploiting of the property of the Dirac delta
function in two dimensions

1

ξ
δ(φ − φ′)δ(ξ − ξ ′) = δ(2)(ξ − ξ′) (10)

leads to (7).
Now we move on to the construction of a knot of a certain

required topology. In this work, we focus on four chosen
knotted structures: the unknot (or simple ring), the Hopf link,
the (3,3)-torus knot, and the trefoil, and at the end, it is
shown using the example of the figure-eight knot what kind of
complications occur for more complex windings. The details
of the construction are the subject of the knot theory to be
found elsewhere [26,57,60,61] and stay beyond the scope of
this work. The main steps are listed below.

A knot is in general a closed curve in R3 which constitutes
a homeomorphic image of S1. Contrary to our everyday’s
meaning of a knot, it forms a closed loop. Typically, this curve
is a nodal line of a certain complex-valued function of the
spatial variables x, y, z (or ξx, ξy, ζ in our case). If it is
composed of several disjoint loops, that are tangled up, it is
called a link, as the Hopf link for instance. The other example
of the same family are the Borromean rings or the (3,3)-torus
knot. Two of them, among others, will be dealt with in the
next section.

The construction under consideration proceeds as follows.
As a first step, one creates a polynomial q(u, v) of two com-
plex variables u and v which satisfy the condition for the
three-dimensional sphere: |u|2 + |v|2 = 1. The examples of
such polynomials are considered in the following section.
All the nodal points [i.e., those where where q(u, v) = 0]
represent an algebraic knot. For the first three cases dealt with
in the following section, these polynomials have the form

q(u, v) =
n−1∏
k=0

(
u − ε(k)

n v
)
, (11)

with ε(k)
n , k = 0, 1, 2, . . . , n − 1, denoting the subsequent nth

roots of unity. Such knots, however, would be located on S3,
which is important for their classification, but inappropriate
for our purposes. We are concerned about knots in R3, so the
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next step is to exploit the stereographic projection by means
of the relations:

u(ξ, ζ ) = ξ2 + ζ 2 − 1 + 2iζ

ξ2 + ζ 2 + 1
, (12a)

v(ξ, ζ ) = 2(ξx + iξy)

ξ2 + ζ 2 + 1
. (12b)

The obtained equation q(u(ξ, ζ ), v(ξ, ζ )) = 0 defines
a knot curve as an intersection of two surfaces in
three-dimensional space: Re q(u(ξ, ζ ), v(ξ, ζ )) = 0 and
Im q(u(ξ, ζ ), v(ξ, ζ )) = 0. Recalling that q(u, v) was a
polynomial, q(u(ξ, ζ ), v(ξ, ζ )) can again be treated as a
polynomial (the so called Milnor polynomial [62]), upon
removing the common denominator appearing in (12). The
appropriate Milnor polynomials will be below denoted
with qM (ξ, ζ ). These polynomials will constitute the basis for
obtaining superpositions of BG beams with identical topology
of nodal lines. The “initial” envelope �(ξ, 0) will be created
as a sum of such BG modes, that for small ξ exhibit the same
behaviour as qM (ξ, 0), i.e., the following replacement will be
made:

qM (ξ, 0) �→ �(ξ, 0) = e−κξ 2
∑
l,m

αlme2imφJm(χlmξ ), (13)

together with the appropriate choice of the coefficients αlm.
The summations with respect to l and m run over a range dic-
tated by the form of a given Milnor polynomial for ζ = 0, and
κ > 0. It is outlined in detail in the next section. The values
of coefficients αlm are chosen so as to exactly (but apart from
the Gaussian factor e−κξ 2

) reproduce the polynomial qM (ξ, 0)
as ξ � 1. On the other hand, the values of χlm can be set arbi-
trarily, dependent on the specific beams used in an experiment,
and are connected with half-aperture of the appropriate beam
cone [see formula (26b)]. Consequently αlm’s which can be
related to the beams’ intensities, are functions of χlm’s. Later,
when considering specific examples, we prefer to denote the
coefficients αlm with αl , βl , γl , and so on, in order to avoid too
many indices. Usually, at least for the simplest knots, m runs
from 1 to say 2, 3 or maximally 4, so the symbols αl , βl , γl ,
etc. are sufficient. For the same reason, the symbols χlm’s are
modified in an obvious way.

Finally the full beam is found according to the formula

�(ξ, ζ ) =
∫

d2ξ ′K (ξ, ζ ; ξ′, 0)�(ξ′, 0) (14)

and automatically satisfies the paraxial equation (2).

III. SPECIFIC KNOTTED BEAMS

In this section, five concrete examples of knotted beams
are dealt with. The suggested technique allows in principle
to create BG beams with any knotted topology derived from
a Milnor polynomial qM . Yet, more complex knots require
superpositions of larger number of mods, the structure of
the nodal lines becomes shallower, and the computer time
necessary to visualize them grows significantly. For this rea-
son, our analysis will be restricted to relatively simple knots,
although—apart from the first—far nontrivial ones.

A. The unknot

The simplest knot, called the unknot is a simple ring. The
polynomial q(u, v), which yields such a ring, can be obtained
from (11) when setting n = 1:

q(u, v) = u − v. (15)

Upon substitution of u and v as given in (12), the Milnor
polynomial at ζ = 0 is found in the form

qM (ξ, 0) = −1 + ξ 2
x + ξ 2

y − 2(ξx + iξy), (16)

In order to preserve the capability of resizing the knot and
adjust its dimension to the conditions of the paraxial ap-
proximation, a parameter γ will be introduced, which can be
called a “scaling parameter,” thereby modifying the form of
the Milnor polynomial at ζ = 0 to

qM (ξ, 0) = −1 + γ 2
(
ξ 2

x + ξ 2
y

) − 2γ (ξx + iξy), (17)

without, however, altering the emerging-knot topology. Larger
values of γ lead to smaller knots. In the figures below, the
value of this parameter is set to 10, which results in typical
knot sizes to be small fractions of a wavelength. For optical
frequencies, they can be then called “nanoknots.” This value
is, however, at our disposal. When decreasing it, larger struc-
tures can be produced reaching the sizes of hundreds of λ/2π .
Therefore the units of axes of the subsequent figures should be
treated as exemplary only and large flexibility of our results
should be stressed. We will come back to this point later.

Let us now replace (17) with

qM (ξ, 0) �→ α1J0(χ1ξ ) + α2J0(χ2ξ ) + βeiφJ1(χξ ) (18)

according to the formula (13), where instead of Cartesian
ξx, ξy, the polar coordinates ξ, φ have been introduced and
with the aforementioned and appropriate renaming of con-
stants αlm and χlm. The expression (13) has the general form,
but in the case of elementary knots it is better to simplify
the notation. For example, in (18) only one φ-dependent term
occurs, so m = 0, 1 and this index can be omitted. Moreover,
the Milnor polynomial is merely of the second degree (in ξ ).
Therefore the symbols can be abbreviated by writing

αl0 �→ αl , l = 1, 2, (19a)

αl1 �→ β, l = 1, (19b)

χl0 �→ χl , l = 1, 2, (19c)

χl1 �→ χ, l = 1. (19d)

These latter values (i.e., χ ’s) will, in general, be small since
they define the aperture half-angles of the beam cones. The
similar substitutions are also made for subsequent knots.

Using now the well-known power expansion of the Bessel
functions:

Jn(z) =
( z

2

)n ∞∑
k=0

(−1)k (z/2)2k

k!(n + k)!
, (20)

it is easy to demonstrate that with the appropriate choice of the
coefficients, the first few terms of the Maclaurin expansion of
expression (18) in ξ accurately reproduce qM (ξ, 0) as given by
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the formula (17). This proper choice is as follows:

α1 = χ2
2 − 4γ 2

χ2
1 − χ2

2

, α2 = χ2
1 − 4γ 2

χ2
2 − χ2

1

, β = −4γ

χ
. (21)

Applying (14) together with (5) one obtains the paraxial
envelope in the form

�(ξ, ζ ) = 1

2π

∞∑
n=−∞

∫ ∞

0
dt t

∫ ∞

0
dξ ′ξ ′

∫ 2π

0
dφ′ein(φ−φ′ )e− iζ t2

2

× Jn(tξ )Jn(tξ ′)[α1J0(χ1ξ
′) + α2J0(χ2ξ

′)

+βeiφ′
J1(χξ ′)]e−κξ ′2

. (22)

Integral with respect to φ′ can be easily taken and leads to the
two Kronecker deltas: δn0 (the first two terms) and δn1 (the last
one), which reduces the infinite sum over n to two terms only:

�(ξ, ζ ) =
∫ ∞

0
dt te− iζ t2

2

∫ ∞

0
dξ ′ξ ′e−κξ ′2

[
J0(tξ )J0(tξ ′)

×
2∑

l=1

αl J0(χlξ
′) + βeiφJ1(tξ )J1(tξ ′)J1(χξ ′)

]
,

(23)

The remaining integrals with respect to ξ ′ and t are of similar
character and can be executed subsequently with the use of
the formulas [63]∫ ∞

0
dx x e−px2

Jn(ax)Jn(bx) = 1

2p
e− a2+b2

4p In

( ab

2p

)
for p ∈ R+, (24a)∫ ∞

0
dx x e−qx2

Jn(ax)In(bx) = 1

2q
e− a2−b2

4q Jn

(ab

2q

)
for Re q ∈ R+. (24b)

As a result of these two integrations, the complete paraxial
envelope, applicable for ζ �= 0, is found as a sum of three BG
modes:

�(ξ, ζ ) = 1

c(ζ )
e− κξ2

c(ζ )

[
2∑

l=1

αl e
−i

χ2
l ζ

2c(ζ ) J0

(
χlξ

c(ζ )

)

+βeiφe−i χ2ζ

2c(ζ ) J1

(
χξ

c(ζ )

)]
, (25)

where c(ζ ) = 1 + 2iκζ . These beams are coaxial, best super-
imposed with the use of a spatial light modulator [64].

The nodal line of �(ξ, ζ ), can now be easily drawn. It is
done in Fig. 1. As expected, it represents a ring. What should
be especially emphasized, it is entirely constructed of physical
beams of BG type.

The form of �(ξ, ζ ) as given in (25) may be somewhat
illegible to an optical physicist due to the notation used. This
notation is highly convenient for conducting calculations, as
many of the expressions greatly simplify, but below the result
is rewritten in a traditional form in which the standard coaxial

FIG. 1. The nodal line of �(ξ, ζ ) given by the formula (25).
Since the nodal line itself is mathematically a line of zero thick-
ness, for enhanced visibility the tube around it depicted. This tube
constitutes the region of lower beam intensity. According to (1),
the distances on the axes are dimensionless (they are measured in
k−1 = λ/2π ). The values of parameters are as follows: γ = 10,
κ = 0.01, χ = 0.01, χ1 = 0.009, and χ2 = 0.01.

BG modes can be easily recognized. The connection will be
easily established if one observes that

c(ζ ) = 1 + i
z

zR
,

1

c(ζ )
= w0

w(z)
e−iψ (z), (26a)

χl = sin θl , χ = sin θ, (26b)

κ = 1

k2w2
0

, (26c)

where zR denotes the Rayleigh length, w0 is the beam waist,
w(z) = w0

√
1 + (z/zR)2 stands for the beam radius, R(z) =

z(1 + (zR/z)2) denotes the wave-front curvature, ψ (z) =
arctan(z/zR) is the Gouy phase and θl (and similarly θ ) de-
notes the angular half-aperture of the appropriate beam cone.
For small values of these latter quantities expressed in radians,
just as it is in this work, they are practically equal to the
parameters χ .

As can be seen from (25) and with the application of
the definitions (26), the desired nodal line of Fig. 1 can be
constructed as a result of the superposition of three standard
BG beams, readily obtainable in experiments, of the form

�n(r, z) = w0

w(z)
einφJn

( kr sin θ

1 + iz/zR

)
(27)

× exp

[
− r2

w(z)2
− i

kr2

2R(z)
− i

z/zR

1 + iz/zR
sin2 θ − iψ (z)

]
,

with n = 0 or n = 1 and different values of the aperture angles
θ1, θ2 and θ , and with intensities determined by the coeffi-
cients αl and β. Since only relative values matter, α1 may be
by definition set to 1 and then, for the data of Fig. 1 one gets
α2 = −1, β ≈ −0.00019. It is interesting to note that the φ-
dependent contribution is much weaker than the principal ones
containing Bessel functions of the zeroth order. It is, however,
necessary to ensure the correct shape of the nodal line, close
to which the contributions from the “large” terms strongly
decrease. This means that creating a knotted line through
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FIG. 2. The phases of the light beam created as a superposition
(25) in four planes: ζ = −0.013, −0.004, 0.004, and 0.013. The
value of the phase is represented continuously by means of the
grayscale from −π (black color) to π (white color).

the mechanism of the destructive interference is a delicate
matter requiring some precision and the nodal line itself is a
rather shallow structure. This observation is confirmed by our
further examples. The values of the wavelength, beam waist
and Rayleigh length are identical for all three beams and can
be adapted to the experimental requirements.

Now we would like to analyze the influence of the pa-
rameter γ on the obtained results. First, it should be noted
that if the value of this parameter is rescaled with a factor ε,
i.e. γ �→ ε · γ , the spatial size of the knot is modified in the
following way:

ξ �−→ 1

ε
ξ, ζ �−→ 1

ε2
ζ , (28)

which stems from the formula (17) [and similarly (31), (37),
and (45)] together with (5) and (14). This means that by
choosing ε = 0.1 or even ε = 0.01, the knots can be made
relatively large, reaching sizes of several tens or hundreds of
the wavelength [55].

Then let us observe that Eqs. (21), and later (33), (39),
(46), (51)–(54) allow for identical scaling of all quantities
χ with the factor ε (naturally together with γ ), which ac-
cording to the formula (26b) represent aperture angles of the
individual beams. As a result, it is possible to make these
angles extremely small, with the consequence that longitudi-
nal components of the fields that are omitted in the paraxial
approximation, practically do not contribute to the beams
intensities. This is essential, since, as argued later, the creation
of complicated knots is a subtle issue. For example, it can
be estimated that for χ = 0.01 the relative correction to the
intensity originating from longitudinal components is about
10−5. This is enough for simple knots, but it may be a bit too

much for delicate knots like the (3,3)-torus knot or the trefoil.
However, scaling now the parameters γ and χ with a small ε

weakens the effect of longitudinal components proportionally
to ε2. This means that by the proper choice of parameters the
longitudinal components can be made insignificant.

It should be emphasized as well, that this scaling procedure
does not change the values of parameters α, β, γ , and δ

obtained from the aforementioned equations, so the transverse
intensities are not altered, and our conclusions and figures (up
to units on axes) remain unchanged.

In Fig. 2, the phases of the outgoing light beam (25) (i.e.
omitting the factor eiζ ) are depicted in four selected planes
ζ = const. In particular, one can see the phase change from
the value of −π (black color) to the value of π (white
color) when walking around the nodal line (which is—roughly
speaking—perpendicular to the plane at that point) as shown
in the figure. This is typical for vortex lines from which a knot
is formed. The same observation can be made in the following
figures.

B. The Hopf link

The Hopf link is the first nontrivial knot and represents two
rings linked to each other. It can again be obtained from (11)
upon setting n = 2:

q(u, v) = (u − v)(u + v). (29)

The corresponding Milnor polynomial, obtained by substitut-
ing u and v as defined by (12), and next reduced to the plane
ζ = 0, takes the form

qM (ξ, 0) = (
1 − ξ 2

x − ξ 2
y

)2 − 4(ξx + iξy)2 (30)

and that with the scaling factor

qM (ξ, 0) = [
1 − γ 2

(
ξ 2

x + ξ 2
y

)]2 − 4γ 2(ξx + iξy)2. (31)

Analyzing the presence of the factors eimφ in the expression
above (where ξx + iξy �→ ξeiφ) one easily notices, that now
Bessel functions of two orders (m = 0 and m = 2) are re-
quired. On the other hand even for J0 one needs to fix terms
up to ξ 4. Since J0 in an even function, this means that the sum
with respect to l in (13) now extends to l = 3. Therefore one
can replace qM (ξ, 0) with

qM (ξ, 0) �→
3∑

l=1

αl J0(χlξ ) + βe2iφJ2(χξ ). (32)

The values of coefficients are established similarly as it was
done in the former subsection. They turn out to be

αl =
3∏

j=1
j �=l

χ2
j − 8γ 2

χ2
l − χ2

j

, β = −32γ 2

χ2
. (33)
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FIG. 3. The nodal lines of �(ξ, ζ ) given by the formula (35).
Units on axes as well as values of γ and κ are identical as in Fig. 1.
The values of other parameters are as follows: χ = 0.01, χ1 = 0.008,
χ2 = 0.009, and χ3 = 0.01.

Following the procedure outlined in the case of the unknot,
one now finds

�(ξ, ζ ) = 1

2π

∞∑
n=−∞

∫ ∞

0
dt t

∫ ∞

0
dξ ′ξ ′

∫ 2π

0
dφ′ein(φ−φ′ )e− iζ t2

2

× Jn(tξ )Jn(tξ ′)

[
3∑

l=1

αl J0(χlξ
′) + βe2iφ′

J2(χξ ′)

]
e−κξ ′2

.

(34)

Performing the trivial integration over φ′ together with the n
summation and next those with respect to ξ ′ and t according
to (24), one finally finds

�(ξ, ζ ) = 1

c(ζ )
e− κξ2

c(ζ )

[
3∑

l=1

αl e
−i

χ2
l ζ

2c(ζ ) J0

(
χlξ

c(ζ )

)

+βe2iφe−i χ2ζ

2c(ζ ) J2

(
χξ

c(ζ )

)]
. (35)

The obtained envelope turns out to be a superposition of four
BG modes defined with (27) with n = 0 and n = 2. The nodal
lines are depicted in Fig. 3 and clearly constitute the Hopf
link.

The normalized (i.e., after having set α1 = 1) values of co-
efficients are: α2 ≈ −1.89, α3 ≈ 0.89, β ≈ −2.82 × 10−8,
and allow to establish the relative intensity of the combined
beams. Again, a very tiny value of the coefficient of the
angle-dependent term is worth noting. Obviously, it can be
modified within certain limits by a suitable choice of χ ’s, but
this coefficient is invariably significantly smaller. In turn, the
negative values account for the relative phases of the modes.

It is noteworthy that the knot lines produced by this method
turn out to be pretty smooth (cf., e.g., Ref. [26]), which may
have practical significance.

The phases of �(ξ, ζ ) are drawn in Fig. 4. Again the
change of the phase by 2π can be observed, when encircling
the vortex line.

FIG. 4. The phases of the light beam created as a superposition
(35) in four planes: ζ = −0.007, −0.002, 0.002, and 0.007.

C. The (3,3)-torus knot

Proceeding further towards the higher complexity of con-
sidered knots, we will now examine that composed of three
loops, each of which is linked to both others. Such a knotted
construction bears the name of the (3,3)-torus knot, and is
again obtainable from (11) when setting n = 3:

q(u, v) = (u − v)(u − e2π i/3v)(u − e4π i/3v). (36)

In consequence, upon applying the outlined procedure the
corresponding Milnor polynomial if found to be

qM (ξ, 0) = ( − 1 + γ 2
(
ξ 2

x + ξ 2
y

))3 − 8γ 3(ξx + iξy)3, (37)

where the scaling factor has already been introduced. Upon
the expansion, this expression contains the following pow-
ers of ξ : ξ 0, ξ 2, ξ 4, and ξ 6, as well as the term with the
factor e3iφ . This indicates that four zero-order Bessel functions
together with J3 will be needed:

qM (ξ, 0) �→
4∑

l=1

αl J0(χlξ ) + βe3iφJ3(χξ ), (38)

where coefficients can be calculated according to the follow-
ing formulas:

αl =
∏4

j=1
j �=l

(
χ2

j − 12γ 2
) + 48γ 4

(∑4
j=1
j �=l

χ2
j − 12γ 2

)
∏4

j=1
j �=l

(
χ2

l − χ2
j

) ,

β = −384γ 3

χ3
. (39)
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FIG. 5. Same as in Fig. 1 but for the nodal lines of �(ξ, ζ ) given
by the formula (41). The values of parameters are as follows: χ =
0.001, χ1 = 0.05, χ2 = 0.1, χ3 = 0.15, and χ4 = 0.2.

This allows to write the integral form of the envelope:

�(ξ, ζ ) = 1

2π

∞∑
n=−∞

∫ ∞

0
dt t

∫ ∞

0
dξ ′ξ ′

∫ 2π

0
dφ′ein(φ−φ′ )e− iζ t2

2

×Jn(tξ )Jn(tξ ′)

[
4∑

l=1

αl J0(χlξ
′) + βe3iφ′

J3(χξ ′)

]
e−κξ ′2

.

(40)

Executing the integrals and the sum as in the previous
cases, one arrives at

�(ξ, ζ ) = 1

c(ζ )
e− κξ2

c(ζ )

[
4∑

l=1

αl e
−i

χ2
l ζ

2c(ζ ) J0

(
χlξ

c(ζ )

)

+βe3iφe−i χ2ζ

2c(ζ ) J3

(
χξ

c(ζ )

)]
(41)

The nodal lines of �(ξ, ζ ) are demonstrated in Fig. 5.
Obviously, they represent a system of three linked loops, i.e.,
the (3,3)-torus knot. The superposition yielding such a rather
sophisticated knot consists of five BG mods (41), each defined
by the formula (27).

It is quite a challenge to produce these lines because in
places of their close passing, the calculations require great
precision. It is related to the earlier observation that the factor
β is much smaller than αl ’s, which applies in the present case.
This means again that generating such a structure needs a
precise adjustment of the intensity of the beam bearing orbital
angular momentum. For better visualization, the values of
χ1,2,3,4 in Fig. 5 have been increased and that of χ decreased.
This makes all coefficients comparable in size and the graphic
representation is easier to obtain in a numerical manner. Large
differences between the coefficient values, reaching many or-
ders of magnitude, require very high calculation accuracy.

FIG. 6. Same as in Fig. 4 but for formula (41).

The normalized values of the coefficients are now as fol-
lows:

α2 ≈ −2.00001, α3 ≈ 1.28574, (42a)

α4 ≈ −0.285723, β ≈ −0.937557. (42b)

They are recorded with the accuracy of a few significant
digits to illustrate how crucial is the precision for obtaining
a particular knot. This is related to our discussion concerning
the trefoil knot, so we will reconsider these values later.

When decreasing values of χi’s in the beams, β (to put
it precisely, the normalized value of β, i.e. β/α1) becomes
extremely small, as in previous cases which reflects the com-
plicated nodal structure close to the passing points.

In Fig. 6, the phases of (41) are drawn in four planes. The
same effects as before are observed.

D. The trefoil

In order to obtain the knot called the trefoil one has to start
with the polynomial

q(u, v) = u2 − v3. (43)

which does not belong to the class described with the formula
(11) but falls into a wide family of knots that can be derived
from the expressions of the type

q(u, v) = u2 − vn, (44)

with n ∈ N [57]. The same family includes for example the
cinquefoil knot (for n = 5) or the septafoil knot (for n = 7),
etc. Setting n = 3 the following Milnor polynomial (with the
scaling factor γ included) is found:

qM (ξ, 0) = [
1 + γ 2

(
ξ 2

x + ξ 2
y

)][
1 − γ 2

(
ξ 2

x + ξ 2
y

)]2

− 8γ 3(ξx + iξy)3, (45)
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FIG. 7. Same as in Fig. 5 but for the nodal lines of �(ξ, ζ ) given
by the formula (41) with the coefficients (46). All the values of
parameters are identical.

The wave envelope can now be constructed from qM (ξ, 0)
following the steps of the previous subsections. Again the
expression (41) is obtained, since qM (ξ, 0) contains the same
terms (apart from the multiplicative constants) as in the case
of the (3,3)-torus knot. Only the values of the coefficients alter
(i.e., the relative intensities of the beams involved) and they
are currently expressed as follows:

αl = −
∏4

j=1
j �=l

(
χ2

j − 4γ 2
) + 48γ 4

(∑4
j=1
j �=l

χ2
j + 48γ 2

) + 64γ 6

∏4
j=1
j �=l

(
χ2

l − χ2
j

) ,

β = −384γ 3

χ3
, (46)

where minuses are obviously inessential.
The nodal line obtained now from (41) has really the form

of a trefoil and is depicted in Fig. 7. The values of parameters
(i.e., the beams used) are identical as in the case of the (3,3)-
torus knot. Only their relative intensities differ. This means
that by setting up experimentally an identical combination of
BG beams, various knots of entirely different topology can
be obtained by simply modifying their relative intensities.
Formulas (46) yield now the following values of the ratios:

α2 ≈ −1.99999583, α3 ≈ 1.28571, (47a)

α4 ≈ −0.285711, β ≈ −0.937481. (47b)

They should be compared to (42). The differences between
these values apparently seem negligible, being of order of
0.001%, but the topology of the knots is completely distinct.
Tiny changes in the relative intensities of the beams may lead
to a different reconnection of nodal lines passing very close to
one another and to a completely different knot. This property
seems to be general: for any knot with a more complex struc-
ture, there may happen a kind of “switching” of nodal lines.
This extreme situation corresponds to 50 dB, but it is still

FIG. 8. Same as in Fig. 4 but for the trefoil.

realizable for present-day lasers and stays above the typical
noise level. For simpler knots, the precision requirements can
be relaxed.

Figure 8 presents the phases in the planes of constant ζ for
the trefoil knot. The similarities to the (3,3)-torus knot case
should be noted.

E. More complicated knots

We now move on to more complex knots which are si-
multaneously more challenging to generate numerically and
experimentally using BG light beams. As an example let
us consider the figure-eight knot as its shape—if open, as
usually is in climbing or sailing—with the appropriate line
arrangement in space, resembles number 8. Contrary to that,
the mathematical knot is closed, according to the definition
provided in Sec. II. The polynomial q(u, v) is in this case con-
siderably more complicated, and in addition to the complex
variables u and v depends as well on the conjugated quantity
v̄ [26,61]:

q(u, v) = 64u3 − 12u[2(v2 − v̄2) + 3] − 14(v2 + v̄2)

− (v4 − v̄4). (48)

The Minor polynomial contains now many terms, which
means that in order to create the beam of this topology,
relatively many BG modes have to be superimposed. When
rewritten in polar variables it contains expressions up to ξ 8

and also angular factors e±2iφ and e±4iφ:

qM (ξ, 0) = 28
[
γ 8(ξ 2

x + ξ 2
y )4 − 1

]
−200γ 2

(
ξ 2

x + ξ 2
y

)[
γ 4

(
ξ 2

x + ξ 2
y

)2 − 1
]

+γ 2
(
ξ 2

x + ξ 2
y

)[ − 152γ 4
(
ξ 2

x + ξ 2
y

)2

−112γ 2
(
ξ 2

x + ξ 2
y

) + 40
]
e2iφ
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+γ 2
(
ξ 2

x + ξ 2
y

)[
40γ 4

(
ξ 2

x + ξ 2
y

)2

−112γ 2
(
ξ 2

x + ξ 2
y

) − 152
]
e−2iφ

−16γ 4
(
ξ 2

x + ξ 2
y

)2
e4iφ + 16γ 4

(
ξ 2

x + ξ 2
y

)2
e−4iφ.

(49)

It may be checked by the Taylor expansion of Bessel functions
that the field envelope has to be written in the form

�(ξ, ζ ) = 1

2π

∞∑
n=−∞

∫ ∞

0
dt t

∫ ∞

0
dξ ′ξ ′

∫ 2π

0
dφ′ein(φ−φ′ )

× e− iζ t2

2 Jn(tξ )Jn(tξ ′)

[
5∑

l=1

αl J0(χlξ
′)

+
3∑

l=1

βl e
2iφ′

J2(χ ′
l ξ

′) +
3∑

l=1

γl e
−2iφ′

J−2(χ ′′
l ξ ′)

+ δ1e4iφ′
J4(χξ ′) + δ2e−4iφ′

J−4(χ ′ξ ′)

]
e−κξ ′2

,

(50)

where the coefficients have to satisfy the sets of equations
listed below. The first one for αl ’s comprises the following
five equations:

α1 + α2 + α3 + α4 + α5 = 28, (51a)

α1χ
2
1 + α2χ

2
2 + α3χ

2
3 + α4χ

2
4 + α5χ

2
5 = 800γ 2, (51b)

α1χ
4
1 + α2χ

4
2 + α3χ

4
3 + α4χ

4
4 + α5χ

4
5 = 0, (51c)

α1χ
6
1 + α2χ

6
2 + α3χ

6
3 + α4χ

6
4 + α5χ

6
5 = −460800γ 6,

(51d)

α1χ
8
1 + α2χ

8
2 + α3χ

8
3 + α4χ

8
4 + α5χ

8
5 = −4128768γ 8.

(51e)

That for βl ’s is composed of three equations:

β1χ
′2
1 + β2χ

′2
2 + β3χ

′2
3 = 320γ 2, (52a)

β1χ
′4
1 + β2χ

′4
2 + β3χ

′4
3 = 10752γ 4, (52b)

β1χ
′6
1 + β2χ

′6
2 + β3χ

′6
3 = −466944γ 6, (52c)

and is similar to the set for γl ’s:

γ1χ
′′2

1 + γ2χ
′′2

2 + γ3χ
′′2

3 = −1216γ 2, (53a)

γ1χ
′′4

1 + γ2χ
′′4

2 + γ3χ
′′4

3 = 10752γ 4, (53b)

γ1χ
′′6

1 + γ2χ
′′6

2 + γ3χ
′′6

3 = 122880γ 6. (53c)

Solutions to all of these equations can be found in an obvi-
ous way. We do not write them out explicitly in order to avoid
listing lengthy expressions. Unlike, the last two parameters
can directly be found:

δ1 = −6144γ 4

χ4
, δ2 = 6144γ 4

χ ′4 . (54)

Now, we are in the position to present the result for the
envelope:

�(ξ, ζ ) = 1

c(ζ )
e− κξ2

c(ζ )

[
5∑

l=1

αl e
−i

χ2
l ζ

2c(ζ ) J0

(
χlξ

c(ζ )

)

+
3∑

l=1

βl e
−i

χ ′2
l ζ

2c(ζ ) e2iφJ2

(
χ ′

l ξ

c(ζ )

)

+
3∑

l=1

γl e
−i

χ ′′2
l ζ

2c(ζ ) e−2iφJ−2

(
χ ′′

l ξ

c(ζ )

)

+ δ1e−i χ2ζ

2c(ζ ) e4iφJ4

(
χξ

c(ζ )

)

+ δ2e−i χ ′2ζ

2c(ζ ) e−4iφJ−4

(
χ ′ξ
c(ζ )

)]
. (55)

As one can see, the procedure can formally be continued
in a systematic way. It should be noted, however, that the
complexity of this expression has significantly increased. In
order to generate such a knot, 13 BG beams are now needed!
Unlike this, for the trefoil or the (3,3)-torus knot, 5 beams
were sufficient. Thus, producing more and more complicated
knots proves to be quite a challenge. It is a problem from the
numerical point of view as well, since with many nodal lines
passing close to one another, extremely high precision of cal-
culations is required, which, combined with the large number
of terms in the formula, results in long computer runtime.

IV. SUMMARY

The creation of knotted vortex lines in light beams is
one of the most interesting challenges in topological optics.
The current paper presents a systematic method of obtaining
superpositions of Bessel-Gaussian mods such that the nodal
lines (where field intensity drops to zero) form given knot
structures. We have selected five geometries as examples: the
unknot, the Hopf link, the (3,3)-torus knot, the trefoil and the
figure-eight knot. It is quite a wide spectrum of choice which
indicates a certain universality of the approach. However, with
the increasing complexity of a knot, a growing number of BG
wave components were required. In the case of the unknot, 3
of them were sufficient; for the most complex knot (figure-
eight), 13 were needed. However, because of the fact that BG
beams are relatively easy to obtain in experiments, one can
imagine entangled traps for particles obtained by means of
these waves.

The influence of the eventual scattering forces on the
trap can be reduced by using far-off-resonance blue detuned
beams. The absorption and scattering of the wave by trapped
atoms becomes, in these conditions, negligible. Similarly the
appropriate choice of the parameter γ allows to suppress the
longitudinal components of the fields to a marginal level that
does not affect the functioning of the considered paraxial
knotted traps.

The proposed method is systematic: in principle, it can
be relatively easily applied to increasingly complex struc-
tures. Yet, it must be understood that these superpositions will
comprise a very large number of component waves. This is
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reflected in the numerical calculations such as those presented
in this paper, where computer time dramatically increases
for complex superpositions. There is also another reason for
this increase: for complex knots several nodal lines are pass-
ing close to one another, which requires high accuracy. This
was demonstrated by comparing the (3,3)-torus knot and the
trefoil.

Using a different representation of the Schrödinger prop-
agator than that given in formula (5), the proposed method

can readily be applied to other types of beams. Moreover,
it seems that the nodal lines obtained from this method are
much smoother and contain fewer “fringes” (naturally with
identical topology) than those formerly produced with other
methods. This may be of practical importance, as keeping
the particles in such traps or guiding them along knot-
ted lines presents some kind of a real challenge, and the
smoother the trapping-potential valley is, the easier is to
achieve it.
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[8] T. Radożycki, Phys. Rev. A 100, 063412 (2019).
[9] J. F. Nye, Proc. Roy. Soc. Lond. A 389, 279 (1983).

[10] J. F. Nye and J. V. Hajnal, Proc. Roy. Soc. Lond. A 409, 21
(1987).

[11] I. Freund, Opt. Commun. 201, 251 (2002).
[12] M. R. Dennis, K. O’Holleran, and M. J. Padgett, Prog. Opt. 53,

293 (2009).
[13] F. Cardano, E. Karimi, L. Marrucci, C. de Lisio, and E.

Santamato, Opt. Express 21, 8815 (2013).
[14] A. F. Rañada, Lett. Math. Phys. 18, 97 (1989).
[15] W. T. M. Irvine and D. Bouwmeester, Nat. Phys. 4, 716 (2008).
[16] I. M. Besieris and A. M. Shaarawi, Opt. Lett. 34, 3887 (2009).
[17] J. W. Dalhuisen and D. Bouwmeester, J. Phys. A 45, 135201

(2010).
[18] H. Kedia, I. Białynicki-Birula, D. Peralta-Salas, and W. T. M.

Irvine, Phys. Rev. Lett. 111, 150404 (2013).
[19] M. Arrayás and J. L. Trueba, J. Phys. A 48, 025203 (2014).
[20] C. Hoyos, N. Sircar, and J. Sonnenschein, J. Phys. A 48, 255204

(2015).
[21] M. Arrayás, D. Bouwmeester, and J. L. Trueba, Phys. Rep. 667,

1 (2017).
[22] H. Kedia, D. Peralta-Salas, and W. T. M. Irvine, J. Phys. A 51,

025204 (2018).
[23] M. V. Berry and M. R. Dennis, Proc. Roy. Soc. Lond. A 457,

2251 (2001).
[24] M. R. Dennis, New J. Phys. 5, 134 (2003).
[25] M. V. Berry and M. R. Dennis, J. Phys. A 40, 65 (2007).
[26] M. R. Dennis, R. P. King, B. Jack, K. O’Holleran, and M. J.

Padgett, Nat. Phys. 6, 118 (2010).
[27] D. Kleckner and W. T. M. Irvine, Nat. Phys. 9, 253 (2013).
[28] A. J. J. M. de Klerk, R. I. van der Veen, J. W. Dalhuisen, and D.

Bouwmeester, Phys. Rev. A 95, 053820 (2017).

[29] D. Sugic and M. R. Dennis, J. Opt. Soc. Am. A 35, 1987
(2018).

[30] J. Leach, M. R. Dennis, J. Courtial, and M. J. Padgett, Nature
(London) 432, 165 (2004).

[31] J. Leach, M. R. Dennis, J. Courtial, and M. J. Padgett, New J.
Phys. 7, 55 (2005).

[32] E. R. Shanblatt and D. G. Grier, Opt. Express 19, 5833
(2011).

[33] S. J. Tempone-Wiltshire, S. P. Johnstone, and K. Helmerson,
Sci. Rep. 6, 24463 (2016).

[34] N. Davidson, H. J. Lee, C. S. Adams, M. Kasevich, and S. Chu,
Phys. Rev. Lett. 74, 1311 (1995).

[35] R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov, Adv.
Atom. Mol. Opt. Phys. 42, 95 (2000).

[36] D. Sheng, J. Zhang, and L. A. Orozco, Phys. Rev. A 87, 063412
(2013).

[37] N. Friedman, A. Kaplan, and N. Davidson, Adv. At. Mol. Opt.
Phys. 48, 99 (2002).

[38] N. B. Delone and V. P. Krainov, Phys.-Usp. 42, 669 (1999).
[39] G. Mie, Ann. Phys. 330, 377 (1908).
[40] K. C. Neuman and S. M. Block, Rev. Sci. Instrum. 75, 2787

(2004).
[41] K. Dholakia, P. Reece, and M. Gu, Chem. Soc. Rev. 37, 42

(2008).
[42] M. Dienerowitz, M. Mazilu, and K. Dholakia, J. Nanophoton.

2, 021875 (2008).
[43] L. F. Liu, J. L. Davis, and R. Calendar, Nucleic Acids Res. 9,

3979 (1981).
[44] D. J. Stevenson, F. J. Gunn-Moore, and K. Dholakia, J. Biomed.

Opt. 15, 041503 (2010).
[45] F. M. Fazal and S. M. Block, Nat. Photon. 5, 318 (2011).
[46] Optical Tweezers: Methods and Applications, edited by M.

Padgett, J. Molloy, and D. McGloin, Series in Optics and
Optoelectronics (CRC Press, Taylor and Francis, Boca Raton,
London, New York, 2010).

[47] M. Woerdemann, Structured Light Fields: Applications in
Optical Trapping, Manipulation, and Organisation (Springer,
Berlin, Heidelberg, 2012).

[48] R. W. Bowman and M. J. Padgett, Rep. Prog. Phys. 76, 026401
(2013).

[49] D. G. Grier, Nature (London) 424, 810 (2003).
[50] U. Tkalec, M. Ravnik, S. Copar, S. Žumer, and I. Muševic,

Science 333, 62 (2011).
[51] A. Martinez, M. Ravnik, B. Lucero, R. Visvanathan, S. Z˘umer,

and I. I. Smalyukh, Nat. Mater. 13, 258 (2014).
[52] D. S. Hall, M. W. Ray, K. Tiurev, E. Ruokokoski, A. H.

Gheorghe, and M. Möttönen, Nat. Phys. 12, 478 (2016).

013509-10

https://doi.org/10.1103/PhysRevA.45.8185
https://doi.org/10.1007/s003400000376
https://doi.org/10.1364/JOSAA.4.000651
https://doi.org/10.1103/PhysRevLett.58.1499
https://doi.org/10.1088/1464-4266/4/2/373
https://doi.org/10.1103/PhysRevA.100.063412
https://doi.org/10.1098/rspa.1983.0109
https://doi.org/10.1098/rspa.1987.0002
https://doi.org/10.1016/S0030-4018(01)01725-4
https://doi.org/10.1016/S0079-6638(08)00205-9
https://doi.org/10.1364/OE.21.008815
https://doi.org/10.1007/BF00401864
https://doi.org/10.1038/nphys1056
https://doi.org/10.1364/OL.34.003887
https://doi.org/10.1088/1751-8113/45/13/135201
https://doi.org/10.1103/PhysRevLett.111.150404
https://doi.org/10.1088/1751-8113/48/2/025203
https://doi.org/10.1088/1751-8113/48/25/255204
https://doi.org/10.1016/j.physrep.2016.11.001
https://doi.org/10.1088/1751-8121/aa9749
https://doi.org/10.1098/rspa.2001.0826
https://doi.org/10.1088/1367-2630/5/1/134
https://doi.org/10.1088/1751-8113/40/1/004
https://doi.org/10.1038/nphys1504
https://doi.org/10.1038/nphys2560
https://doi.org/10.1103/PhysRevA.95.053820
https://doi.org/10.1364/JOSAA.35.001987
https://doi.org/10.1038/432165a
https://doi.org/10.1088/1367-2630/7/1/055
https://doi.org/10.1364/OE.19.005833
https://doi.org/10.1038/srep24463
https://doi.org/10.1103/PhysRevLett.74.1311
https://doi.org/10.1016/S1049-250X(08)60186-X
https://doi.org/10.1103/PhysRevA.87.063412
https://doi.org/10.1016/S1049-250X(02)80007-6
https://doi.org/10.1070/PU1999v042n07ABEH000557
https://doi.org/10.1002/andp.19083300302
https://doi.org/10.1063/1.1785844
https://doi.org/10.1039/B512471A
https://doi.org/10.1117/1.2992045
https://doi.org/10.1093/nar/9.16.3979
https://doi.org/10.1117/1.3475958
https://doi.org/10.1038/nphoton.2011.100
https://doi.org/10.1088/0034-4885/76/2/026401
https://doi.org/10.1038/nature01935
https://doi.org/10.1126/science.1205705
https://doi.org/10.1038/nmat3840
https://doi.org/10.1038/nphys3624


KNOTTED NODAL LINES IN SUPERPOSITIONS OF … PHYSICAL REVIEW A 103, 013509 (2021)

[53] D. S. Bradshaw and D. L. Andrews, Eur. J. Phys. 38, 034008
(2017).

[54] J. J. Danon, A. Krüger, D. A. Leigh, J.-F. Lemonnier, A. J.
Stephens, I. J. Vitorica-Yrezabal, and S. L. Woltering, Science
355, 159 (2017).
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