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Landau levels in strained two-dimensional photonic crystals
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The principal use of photonic crystals is to engineer the photonic density of states, which controls light-
matter coupling. We theoretically show that strained two-dimensional photonic crystals can generate artificial
electric and magnetic fields that act on light and we show that particular strain patterns give rise to highly
degenerate Landau levels. Since photonic crystals are not in general described by tight-binding models, we
employ a multiscale expansion of the full continuum wave equation. Using numerical simulations, we observe
dispersive Landau levels which we show can be flattened by engineering a pseudoelectric field. Artificial fields
yield a design principle for aperiodic nanophotonic systems.
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I. INTRODUCTION

In the presence of strain, graphene exhibits a remarkable
effect: an inhomogeneous deformation of the lattice induces a
strong pseudomagnetic field governing the low-energy regime
[1–6]. If the strain is designed to produce a uniform pseu-
domagnetic field, highly degenerate Landau levels form at
energies near the Dirac points. In photonic systems, methods
for generating pseudomagnetic fields [7–10] are of signifi-
cant interest since photons are fundamentally uncharged and
therefore do not directly respond to real magnetic fields. If
Landau levels could be realized in the nanophotonic domain
using strained photonic crystals, the associated large density
of states could be used to enhance light-matter interactions
(e.g., the Purcell effect [11] or nonlinear phenomena [12]).

Strain-induced pseudomagnetic fields have been demon-
strated experimentally in photonic systems of coupled waveg-
uide arrays [13], exciton-polariton condensates based on
coupled cavities [14,15], and microwave systems of coupled
resonators [16]. Photonic Landau levels have also been dis-
cussed in the context of lasing models [17] and strain and
related ideas have been explored as a means for producing
pseudomagnetism in acoustic systems [18–20]. In the waveg-
uide arrays studied in [13], however, time is mapped to a
spatial dimension, and thus energy eigenvalues do not cor-
respond to mode frequencies but to propagation constants.
Hence, the Landau levels will not directly alter the photonic
density of states. Demonstrations based on coupled resonators
can be treated with the standard tight-binding framework often
used to study strained graphene. Photonic crystals, however,
are governed by the continuum Maxwell equations to which
tight-binding models do not generally apply [21].
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In this paper, we address the following question: Since
Dirac points generically emerge in the presence of certain
symmetries [22–24], and therefore occur also in photonic
crystals, can strain be used to generate pseudomagnetic
fields for light in the nanophotonic domain? To answer this
question, we use a two-scale expansion of solutions to the
full continuum wave equation to show that pseudomagnetic
and pseudoelectric fields are present in a class of deformed
two-dimensional (2D) photonic crystals. Our results, which
apply to wave equations in nondissipative media, require only
that the strain be slowly varying and that the unstrained peri-
odic structure exhibits Dirac points associated with a certain
set of symmetries. The effective equations contain no free
parameters. We make no assumptions about the magnitude of
the material (index) contrast and our results do not require an
effective tight-binding model.

We assess the validity of our effective theory by performing
full-wave numerical simulations in an experimentally realistic
strained photonic crystal of air holes embedded in silicon.
These simulations demonstrate high density of states at en-
ergies corresponding to the Landau levels of the effective
theory. However, the Landau levels are weakly dispersive and
we find that producing nearly flat (nondispersive) Landau
levels in such a photonic crystal can be achieved using a new
ingredient: a strain that, on the level of the effective equations,
generates a pseudoelectric field (in addition to the pseudomag-
netic field) and, on the level of the full wave equation, acts to
flatten the bands.

II. PHOTONIC CRYSTALS WITH DIRAC POINTS

We begin by considering light propagating in the plane of
a two-dimensional photonic crystal: a medium consisting of a
real, spatially varying scalar dielectric ε(x) that is uniform in
the x3 direction, so that we may take x = [x1, x2]. The solu-
tions can be classified as having either TE or TM polarization.
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For time-harmonic solutions with electric and magnetic fields
E(x, t ) = E(x)e−iωt and H(x, t ) = H(x)e−iωt , the modes are
governed by the scalar Helmholtz equation

−∇ · (ξ (x)∇)ψ (x) = (ω/c)2ρ(x)ψ (x), (1)

where c denotes the vacuum speed of light. For TE polariza-
tion, ξ (x) = 1/ε(x), ρ(x) = 1, and the scalar function ψ (x)
gives the magnetic field H(x) = ψ (x)ẑ. For TM polariza-
tion, ξ (x) = 1, ρ(x) = ε(x), and ψ (x) gives the electric field
E(x) = ψ (x)ẑ.

To obtain a structure possessing Dirac points, we require
that ε(x) is inversion symmetric, C3 rotation invariant, and
translation invariant with respect to the triangular lattice
ZR1 ⊕ ZR2, where R1 = a[1, 0] and R2 = a[1/2,

√
3/2] and

a denotes the lattice constant. It was proved in [22–24] for
continuum media that these conditions imply the existence of
Dirac points at the Brillouin-zone vertices K = (G1 − G2)/3,
K′ = −K, where G1 and G2 are the reciprocal-lattice vectors.
For a Dirac point occurring at quasimomentum kD and energy
ED, two consecutive bands E±(k) of the operator defined in
Eq. (1) (with E = ω2/c2) exhibit a conical intersection

E±(k) = ED ± vD |k − kD| [1 + O(|k − kD|)] (2)

for k near kD.
Since ω2 = c2E there are positive and negative branches

of frequencies, ω, obtained from (2). We focus on the positive
branch, yielding

ω±(k) = ωD ± [vDc2/(2ωD)] |k − kD| [1 + O(|k − kD|)].
(3)

We now focus on the Dirac point at kD = K; the case kD =
K′ = −K can be treated similarly (with a pseudomagnetic
field that points in the opposite direction; see the Appendix
D 3). We denote the two energy-degenerate states at the Dirac
point by �1(x),�2(x). These can be taken to satisfy �2(x) =
�1(−x), R[�1] = e2π i/3�1, and R[�2] = e−2π i/3�2, where
R[ f ](x) = f (R†x) and R is a 2 × 2 matrix of rotation by
2π/3. We use a normalization 〈�i|� j〉ρ = δi j . See the Ap-
pendix A 4 for more details and definitions of the two inner
products 〈 f |g〉 and 〈 f |g〉ρ used in the text.

There are two parameters in the effective theory, which
are computed from the eigenmodes, �i(x), of the unstrained
system, and which determine the behavior of the strained
system:

vD = 〈�1|{ p̂1, ξ̂}|�2〉, (4)

b
 = 〈�1| p̂1ξ̂ p̂1|�2〉. (5)

The Dirac velocity, vD, is associated with the slope of the
dispersion relation at the Dirac point of the periodic structure
[after including the factor of c2/(2ωD)—see Eq. (3)] and b


emerges in connection with the induced pseudomagnetic field:
the ratio b
/vD determines how strong the pseudomagnetic
field will be for a given amount of strain; see Eqs. (7) and (8)
below. The derivation that leads to these parameters is con-
tained in the Appendices A–E. Here, p̂1 = −i∂x1 , { p̂1, ξ̂} =
p̂1ξ̂ + ξ̂ p̂1, and ξ̂ is the operator that acts in position space via
multiplication by ξ (x). In the Appendix F, we show that both

vD and b
 can be made to be real and positive by an appropri-
ate choice of a coordinate system and a phase convention for
the eigenstates. We assume these choices have been made.

III. EFFECTIVE EQUATIONS FOR STRAINED MEDIA

We will now consider a class of dielectric functions ob-
tained by straining the dielectric ε(x). We note that, while
we will use the terminology of “strain” throughout this paper,
we do not intend for this to be understood in the sense of a
physical mechanical strain applied to a dielectric, but rather
as a mathematical prescription for how one constructs the
dielectric function ε′(x). Once this function has been speci-
fied, the dielectric ε′(x) can be directly realized without the
application of a mechanical strain (e.g., by directly etching
the strained pattern into silicon). A strained dielectric ε′(x) is
obtained by displacing each point x of the original dielectric to
a new location T (x) = x + u(x) giving ε′[x + u(x)] = ε(x),
where u(x) = (u1(x), u2(x)). The corresponding strain ma-
trix is denoted U (x) = 1

2 (Dxu + (Dxu)�) with entries Ui j =
1
2 ( ∂ui

∂x j
+ ∂u j

∂xi
) (here [Dxu]i j = ∂ui/∂x j). We assume that u(x)

is deformed on a scale which is large compared with the lattice
constant in the sense that u(x) = f (κx), where κ is a small
parameter, with units of length−1, that measures the length
scale over which the deformation varies. Hence, U (x) ∼ O(κ )
and one can think of κ as measuring the strain strength.

Using a general systematic perturbation theory in the small
parameter κ (see the Appendices B–E), we show that the
strained dielectric ε′(x) has modes with a two-scale spatial
structure in which two slowly varying amplitude functions αi,
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FIG. 1. (a) Illustration of a strain that produces a Landau gauge
vector potential for a uniform pseudomagnetic field. (b) Schematic
illustration of the effect of the strain on the spectrum. In a neighbor-
hood of ωD, the Dirac cone is transformed into a sequence of discrete
Landau levels.
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FIG. 2. (a) Full-wave band structure for TE polarized modes, showing the Dirac point of the unstrained honeycomb structure. (b) Band
structure in the presence of strain, showing the emergence of Landau levels. The dashed curve corresponds to a spurious mode supported at
the computational boundary. (c) Level spacing as a function of the pseudomagnetic field strength. Solid curves show the prediction of Eq. (7).
Red points show the spacings obtained numerically from the (full-wave) band structures at k2 = 0. (d) The strained dielectric used to generate
panel (b), with air holes shown in white, silicon shown in blue, and the unit cell highlighted in yellow. The strained structure is periodic under
translation by a distance of a′ = √

3a along the x2 direction.

with i = 1 or 2, modulate the Dirac point eigenmodes:

ψ (x) =
2∑

i=1

αi(T −1(x))�i(T −1(x)) + O(κ ). (6)

[As before, slowly varying is understood to mean αi(x) =
gi(κx)]. These modes have associated perturbed frequencies
ω = ωD + c2

2ωD
E1 + O(κ2). The amplitude functions αi(x)

and frequency perturbation E1 (of order κ) are determined by
an eigenvalue problem Heffα

′(x) = E1α
′(x), where α′(x) =

[α2(x), α1(x)]T and Heff is a 2D Dirac Hamiltonian:

Heff = vD[−i∇x − Aeff (x)] · σ + Weff (x) σ0, (7)

where σ = (σ1, σ2) with σ j denoting the Pauli matrices. The
effective magnetic vector potential Aeff (x) and electric poten-
tial Weff (x) are given by

Aeff (x) =
(

2b


vD

)[+tr(U (x)σ3)
−tr(U (x)σ1)

]
, (8)

Weff (x) = −
(ωD

c

)2
tr(U (x)σ0) = −

(ωD

c

)2 ∇ · u(x). (9)

We emphasize that Heff , Aeff , and Weff emerge from a first-
principles derivation and depend on vD and b
 which are
completely determined by the degenerate Dirac point eigen-
modes of the unstrained structure; see (4) and (5). In the
Appendix F, we show that the above quantities transform as
expected under rotations.

IV. STRAIN-INDUCED LANDAU LEVELS

We now focus on the case in which the strain produces a
constant pseudomagnetic field perpendicular to the plane of
the structure. As a concrete example, we consider a honey-
comb lattice of air holes (ε = 1) embedded in silicon (ε =
12.11) operating in TE polarization. We take the air holes to
have a triangular shape as in [25] to ensure that the frequency

ωD is not crossed by the same or other bands, i.e., the structure
is semimetallic at energy (ωD/c)2; see [26,27]. To improve
numerical convergence, we take the corners of the triangles to
be rounded. We take the triangle radius (center to corner) to
be r = 0.27a with a rounded corner radius of rc = 0.1a.

We numerically compute the modes of this structure us-
ing a plane-wave eigensolver (MPB) [28]. The system has a
Dirac point at ωD = 1.533ca−1, where the first and second TE
bands touch. The quantities in Eqs. (4) and (5) are given by
vD = 0.684a−1and b
 = 0.502a−2. We apply a strain gener-
ated by u(x) = a[0, (κx1)2], where κ determines the strength
of the strain. This deformation is illustrated schematically
in Fig. 1(a). Note that while the strain breaks translation
symmetry in the x1 direction the structure remains symmet-
ric under translation by a distance a′ = √

3a along the x2

direction. From Eq. (8), the vector potential is Aeff (x) =
−(4aκb
/vD)[0, κx1], which is a Landau gauge vector poten-
tial for a constant effective magnetic field Beff = ∇ × Aeff =
−κ2 B0ẑ with B0 = 4ab
/vD. Since ∇ · u = 0, the strain-
induced pseudoelectric potential vanishes: Weff (x) = 0.

For a constant pseudomagnetic field and zero pseudoelec-
tric potential, the eigenvalues of the Hamiltonian (7) are well
known to form a series of Landau levels consisting of discrete
eigenvalues, E1, of infinite multiplicity implying eigenvalues,
ω, of the Helmholtz equation (1):

ω = ωD ± vDc2

√
2ωD

√
n|Beff (κ )| + O(κ2), n = 0, 1, 2, . . . ,

(10)
where |Beff (κ )| = B0 κ2; see the Appendix D.

We compare this prediction to full numerical simulations
by directly solving Eq. (1) for the eigenmodes of the strained
structure, again using a numerical plane-wave eigensolver. We
impose Bloch boundary conditions in the x2 direction and
effectively apply exponentially decaying boundary conditions
in the nonperiodic x1 direction by padding the boundaries with
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FIG. 3. Numerically computed zeroth Landau-level eigenstates
for the band structure of Fig. 2(b). Eigenstates correspond to the
values of k2 (I, II, and III) shown in the zoomed inset. The modes
come in twofold degenerate pairs and are localized along the x1

direction, with centers that shift horizontally (left and right) as k2

is varied. For large enough k2, the states collide with the boundary
and become edge states (see III).

a structure that exhibits a TE band gap for ω ≈ ωD. Since
the strain preserves translation symmetry along x2, the Bloch
momentum k2 remains a good momentum. Since the supercell
used for this strain pattern is invariant under translations by√

3a (as opposed to a) along x2, both Dirac points (from K and
K′) reside at k2 = 0. The system size along the nonperiodic
direction is 2L with L = 39a [see Fig. 2(d)].

The numerically computed band structures are shown in
Fig. 2. Upon applying the strain, the Dirac point of Fig. 2(a)
splits into a sequence of discrete Landau levels shown in
Fig. 2(b), which was obtained using κ = 0.0548a−1. In
Fig. 2(c), we compare, as a function of strain strength, the
level spacings predicted by Eq. (10) to the numerically com-
puted level spacings obtained from the band structures at k2 =
0, with the results showing good agreement. Our multiscale
analysis, which approximates states by spectral components
near the Dirac point, is valid for |k2| � Cκ , for some constant
C and all κa 
 1. As the strain is reduced, the Landau-level
eigenstates become progressively more delocalized along the
x1 direction and eventually reach the boundary of the com-
putational domain. Hence, the series of simulation points in
Fig. 2(c) is terminated at weak strain.

In Fig. 3, we show representative numerically obtained
eigenstates. The Landau-level eigenstates are localized in the
x1 direction, and are centered on a value of x1 that varies
with k2. The eigenstates that arise from the two unique Dirac
points of the unstrained structure are displaced in opposite
directions as a function of k2 (see Fig. 3 and Appendix D 3
for more information). We note that, in general, at large x1,
the strain pattern used to generate a uniform pseudomagnetic
field can become strong enough to cause the effective theory
to break down in those regions. The use of a finite-width
system allows one to avoid these regions. Our asymptotic
analysis and full-wave numerical simulations indicate that our

FIG. 4. Band structure obtained by beginning with the strained
structure associated with Fig. 2(b) and applying an additional strain
along the x1 direction to flatten the Landau levels. The inset schemat-
ically illustrates the additional strain.

effective theory is valid for modes which arise from Landau
levels of the effective model which are well localized within
the finite structure.

As shown in Fig. 3, at large enough k2, the Landau-level
mode collides with the system boundary, causing it to be-
come localized on the edge and rise up in frequency, giving
it a nonzero group velocity. This is analogous to the way
chiral edge states result from Landau levels for a system
with a true magnetic field. However, in this case, the system
is time-reversal symmetric (exhibiting pseudomagnetic fields
that point in opposite directions at the K and K′ valleys), so
that both forward and backward propagating edge states exist
on each edge and can scatter into one another.

Although the effective theory predicts flat Landau levels,
the levels in Fig. 2(b) are weakly dispersive. This dispersion
arises from contributions of order κ2 which are neglected from
the effective theory. In the Appendix D 4, we motivate the
use of a deformation of the form u(x) = a[β(κx1)3, (κx1)2]

for mitigating this dispersion. On the level of the effective
equations, this yields B(x) = −(4aκ2b
/vD)ẑ as before, but
now with a quadratic potential Weff (x) = 3aβκ (ωD/c)2(κx1)2,
corresponding to a pseudoelectric (as opposed to pseudo-
magnetic) field, which can be used as a tool to compensate
for the dispersion. Note that this is not required in the
graphene picture of pseudomagnetism [2]. It is required in the
continuum photonic crystal setting because of a lack of an ac-
curate nearest-neighbor tight-binding model. The numerically
computed band structures that result from taking κ =
0.0548a−1 and β = 0.0380 are shown in Fig. 4, where we see
a clear flattening of the Landau levels.

V. CONCLUSION

In conclusion, we have shown that, for a class of
2D photonic crystals possessing Dirac points, strain pro-
duces pseudoelectric and pseudomagnetic fields for photons.
Explicit expressions for all parameters of the effective Hamil-
tonian are given in terms of the Bloch eigenmodes at the Dirac
point of the unstrained structure. There are no free parame-
ters. The modes of the strained structure are constructed as
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slow modulations of deformed Dirac point eigenmodes. The
modulations are governed by a Dirac equation with effec-
tive magnetic and electric potentials. Using a specific strain
pattern, we have demonstrated the emergence of Landau lev-
els in a photonic crystal that could be realized using standard
fabrication techniques in silicon photonics. We found that a
conventional strain (as in graphene) gives rise to dispersive
Landau levels, but that dispersion can be corrected for (i.e.,
the bands can be flattened) using a strain that induces an
additional pseudoelectric field that does not alter the original
pseudomagnetic field. As with other flat band systems, an
important challenge relevant to the experimental realization
of our structure will be the issue of increased sensitivity to
disorder, an issue that is well known to occur for slow-light
and flat band systems [29].

Multiscale analysis enables treatment of dielectric struc-
tures that cannot be treated with band theory. This technique
could be applied to general aperiodic media that arise as
slowly varying deformations of periodic media, including me-
dia not amenable to tight-binding methods. This approach
provides an analytical handle on and physical intuition for
such systems that, in many settings, require prohibitive
numerical simulations. We envision that strain-induced pseu-
domagnetic and pseudoelectric fields will be useful for
applications, particularly in the nanophotonic domain, such as
chip-scale nonlinear optics and coupling to quantum emitters,
where the high density of states associated with flat bands
implies strong enhancement of light-matter interaction.
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APPENDIX A: MEDIA WITH DIRAC POINTS

1. Overview and the relevant wave equations

In the following appendices, we give a detailed deriva-
tion of the results presented in the main text. Starting with
a general class of continuum partial differential equations,
which includes the single-particle Schrödinger equation and
the Maxwell equations for 2D photonic crystals (we treat both
TE and TM polarization), we apply a multiple scale perturba-
tion analysis to nonuniformly deformed honeycomb structures
to derive the effective equations governing wave packets that
are constructed from states with energies near ED (the energy
of the Dirac point in the undeformed structure). The resulting
effective Hamiltonian is a Dirac Hamiltonian with an effective
magnetic potential and an effective electric potential, both
generated by the prescribed deformation. We derive expres-
sions for all parameters of the effective theory in terms of the
bulk modes of the unstrained structure. The theory contains
no free parameters. Our arguments work for arbitrary finite

contrast and no tight-binding regime is required. The analysis
can be adapted to other wave equations, e.g., acoustics and
elasticity. We also provide details relating to the particular
deformations discussed in the main text, which are designed
to generate a flat Landau-level spectrum.

We consider wave equations which arise in quantum and
classical physics: the Schrödinger equation

i∂t� = H� = [−� + V (x)]� (A1)

and the classical wave equation

c−2 ρ(x) ∂2
t � − ∇x · ξ (x)∇x� = 0. (A2)

In the above equations, V (x) is real-valued, ρ(x) is real-valued
and strictly positive, and ξ (x) is a symmetric 2 × 2 matrix the
eigenvalues of which are bounded away from zero, uniformly
in x. For simplicity, ξ (x), ρ(x), and V (x) are taken to be
smooth in x.

Time-harmonic solutions, �(x, t ) = e−iωtψ (x), are deter-
mined by the solutions of the Helmholtz-Schrödinger spectral
problem:

[−∇x · ξ (x)∇x + V (x)]ψ = E ρ(x)ψ (A3)

where we have combined the Schrödinger and classical
cases to facilitate a unified treatment of Eqs. (A1) and
(A2). In particular, the time-independent equation (A3) in-
corporates several cases of interest: (1) Schrödinger—ξ (x) =
I2×2, ρ(x) ≡ 1, V (x) = potential, E = ω (with h̄ = 1); (2)
Maxwell TM—ξ (x) = I2×2, ρ(x) = ε(x), V (x) = 0, E =
(ω/c)2; and (3) Maxwell TE—ξ (x) = [ε(x)]−1, ρ(x) = 1,
V (x) = 0, E = (ω/c)2. We may write (A3) as

Lξ,ρ ψ = E ψ,

Lξ,ρ = 1

ρ(x)
[−∇x · ξ (x)∇x + V (x)]. (A4)

Consider the case where ξ (x), ρ(x), and V (x) are periodic
with respect to a lattice, � = Zv1 ⊕ Zv2 ⊂ R2

x, where vi are
the lattice vectors. We denote a choice of unit cell by �, the
dual lattice by �∗, and a dual unit cell in R2

k by B (Brillouin
zone). Lξ,ρ is self-adjoint with respect to the inner product1

〈 f , g〉ρ =
∫

�

f (x)g(x) ρ(x) dx

and has a (Bloch) band spectrum. We denote its bands by

E1(k) � E2(k) � · · · � Eb(k) � . . . , k ∈ B.

Remark 1. For Maxwell’s equations (V = 0), Lξ,ρ is a
non-negative self-adjoint operator and hence Eb(k) � 0 for
all b � 1. Since (ω/c)2 = E , there are two families of bands
given by ωb,±(k) = ±c

√
Eb(k). For simplicity, we focus on

the positive branch.

1Note that, in the main text, we use Dirac notation for inner prod-
ucts 〈 f |g〉 = 〈 f , g〉. Throughout the Appendices, we will use the
latter notation.
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FIG. 5. Illustration of the unstrained honeycomb photonic crystal discussed in the main text. (a) A portion of the periodic structure
consisting of triangular air holes embedded in silicon. Shown also are the lattice vectors R1 = a[1, 0] and R2 = a[1/2,

√
3/2]. (b) Enlarged

view of a single triangular air hole highlighting the values of the dielectric as well as the parameters r and rc discussed in the main text. (c) TE
bands of the structure, showing the Dirac point occurring between the first and second bands. The inset shows the Brillouin zone.

2. Bulk honeycomb media

Assume now that � denotes the equilateral triangular lat-
tice in R2. For each v ∈ � let Tv[ f ](x) = f (x + v). We say
that Lξ,ρ , defined in (A4), models a bulk honeycomb medium
if

[Tv,Lξ,ρ] = 0, for all v ∈ �,

[C,Lξ,ρ] = 0, [P,Lξ,ρ] = 0, [R,Lξ,ρ] = 0.

Here, C[ f ](x) = f (x), P[ f ](x) = f (−x), and R[ f ](x) =
f (R†x), where R is a 2 × 2 matrix of rotation by 2π/3. That is,
the coefficients of Lξ,ρ are � periodic, real-valued, and, with
respect to some origin of coordinates (taken to be x0 = 0),
inversion-symmetric and 2π/3-rotationally invariant. With re-
gard to ξ (x), we focus on the isotropic case:

ξ = ξ (x) I2×2, where R[ξ ](x) = ξ (R†x) = ξ (x). (A5)

Note that the above definition of bulk honeycomb media in-
cludes structures that are more general than just an ordinary
honeycomb lattice of discrete sites. Any structure that satisfies
the symmetries (e.g., a triangular lattice of pillars) is included
in the definition.

3. Dirac points

A Dirac point is an energy-quasimomentum pair,
(ED, KD), at which there is a conical intersection of consecu-
tive dispersion surfaces E−(k) � E+(k):

E±(k) − ED = ±vD |k − KD| [1 + O(|k − KD|)]
as |k − KD| → 0 (vD > 0). In Fig. 5, we show the honey-
comb photonic crystal discussed in the main text along with
its band structure, which exhibits a Dirac point between the
first and second TE bands.

Theorem 1. Generic bulk honeycomb operators of the
type Lξ,ρ [see (A4)] have Dirac points at the vertices of the
Brillouin zone.

We will use K
 to refer to any of the Bloch momenta
corresponding to the Brillouin zone vertices referred to in
Theorem 1. See [22,23] for the Schrödinger case and [24] for
the Maxwell case. In the following discussion, we shall follow
the mathematical formulations of these references.

4. Characterization of Dirac points

Consider a bulk honeycomb medium and let

L2
k =

{
f : f (x + v) = eik·v f (x),

∫
�

| f (x)|2 ρ(x) dx < ∞
}

(A6)

where � = unit cell. The inner product on L2
k is given by

〈 f , g〉ρ =
∫

�

f (x)g(x) ρ(x) dx. (A7)

It will also be useful to introduce the standard L2 inner product
on a unit cell, which we denote by

〈 f , g〉 =
∫

�

f (x)g(x) dx. (A8)

Introduce the subspaces L2
K
,σ

for σ = 1, τ, τ̄ given by

L2
K
,σ

= {
f : f ∈ L2

K

, R[ f ] = σ f

}
. (A9)

These are the three subspaces associated with the three distinct
eigenvalues of 2π/3 rotations. Then, we have an orthogonal
decomposition of L2

K

:

L2
K


= L2
K
,1 ⊕ L2

K
,τ
⊕ L2

K
,τ
.

For any vertex K
 of the Brillouin zone, [R,Lξ,ρ] acts
in L2

K

and vanishes. Hence, we may study the bulk hon-

eycomb operator, Lξ,ρ , on each summand subspace (i.e., its
eigenstates may be chosen to reside within the subspaces
introduced above). We have the following characterization of
Dirac points.

Proposition 1. Let Lξ,ρ be as defined in (A4). Let K
 = K
or K′, the two independent high-symmetry vertex quasimo-
menta of B. The energy-quasimomentum pair (ED, K
) is a
Dirac point (conical point) of Lξ,ρ if: (1) ED is a simple
L2

K
,τ
eigenvalue of Lξ,ρ with corresponding eigenstate �1(x)

satisfying Lξ,ρ�1 = ED�1, R[�1] = τ �1; (2) ED is a simple
L2

K
,τ
eigenvalue of Lξ,ρ with corresponding eigenstate �2(x)

satisfying Lξ,ρ�2 = ED�2, R[�2] = τ �2; (3) �1 and �2

are related by

�2(x) = (PC)[�1](x) = �1(−x) and 〈� j,�l〉ρ = δ jl ;

(A10)
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and (4) ED is not a L2
K
,1

eigenvalue of Lξ,ρ .
Furthermore, when the above conditions hold, we have the

following: Let �K
j , j = 1, 2 denote the pair of eigensolutions

at K. Then, for some constant, vD, we have

〈
�K

1 ,A�K
2

〉 = vD

(
1
i

)
, (A11)

where A is given by

A = 1

i
∇y(ξ (y) · ) + ξ (y)

1

i
∇y. (A12)

See Theorem 4.1 of [22], Theorem 2 of [24], and Sec. 3.1
of [27].

Remark 2. Note that if �1 and �2 are a choice of Bloch
modes for the Dirac point (ED, K
) satisfying all conditions
of Proposition 1, then so are eiφ�1 and e−iφ�2 for any φ ∈ R.
We shall take advantage of this degree of freedom in the proof
of Proposition 2, where we choose a phase convention and
coordinate system in which our effective equations take on a
simplified form. We note that, in the remainder of this paper,
unless otherwise specified, � j should be understood to refer
to the states �K

j associated with the K-point.
Proposition 2. There is a coordinate system and a phase

convention for the states �K
1 and �K

2 such that

vD = 〈�K
1 ,A1�

K
2 〉 � 0, (A13)

b
 ≡ 〈
∂x1�

K
1 , ξ ∂x1�

K
2

〉
� 0. (A14)

The proof of Proposition 2 is given in Appendix F. It is
dependent on Proposition 5 in Appendix C, where the expres-
sion b
 arises in the derivation of the effective Hamiltonian.
Henceforth, we shall assume throughout that vD > 0 and b
 >

0. We note that in [22,24] it is shown that vD is generically
nonzero. We believe that the same techniques can be used to
show that both vD and b
 are generically nonzero. We also
note that, for the structure studied numerically in the main
text, the choice of coordinate system illustrated in Fig. 5(a)
(paired with an appropriate choice of phase convention) was
found from numerical simulations to produce a real-valued vD

and b
.

APPENDIX B: THE DEFORMED BULK HONEYCOMB
MEDIUM

We start with a bulk honeycomb (unstrained) medium, the
modes of which are solutions to the eigenvalue problem:

[−∇x · ξ (x)∇x + V (x)]ψ = Eρ(x)ψ. (B1)

We subject the medium to a strain which is nonuniform on a
length scale which is large compared with the lattice constant
of the structure, denoted a:

x �→ T (x) ≡ x + u(κx), κa 
 1,

where u(X) = (u1(X), u2(X)) and X = (X1, X2).2 The Jaco-

bian of T is given by DxT (x) = I2×2 + κDXu(X)|X=κx, where

[DXu(X)] jl ≡
(

∂u j (X1, X2)

∂Xl

)
j,l=1,2

≡ (u j,l ) j,l=1,2 (B2)

is the 2 × 2 Jacobian matrix. If ‖DXu(X)‖ is bounded, then T
is invertible for κ small.

We note that the deformation that we choose later on (cor-
responding to a constant pseudomagnetic field) arises from a
strain that grows linearly: |(DXu(X)) jl | ∼ a|X|. In this case,
our asymptotic analysis is, strictly speaking, no longer valid
at large distances: |X| � (κa)−1. However, near the center
of the band at kya′ = 0 [see Fig. 2(b) of the main text], the
Landau-level wave functions are localized near X = 0, and
thus are supported only where the strain is weak. We therefore
expect the O(κ ) asymptotic analysis to be accurate up to
O(κ2) corrections in this regime (i.e., for X ≈ 0 and kya′ close
to zero).3

The deformed medium is defined by primed material
relations:

ξ ′(T (x)) = ξ (x),

V ′(T (x)) = V (x),

ρ ′(T (x)) = ρ(x).

Assuming that T is invertible, we have

ξ ′(x) = ξ (T −1(x)),

V ′(x) = V (T −1(x)),

ρ ′(x) = ρ(T −1(x)).

The spectral problem governing modes of the deformed
medium is then

[−∇x · ξ ′(x)∇x + V ′(x)]ψ = Eρ ′(x)ψ. (B3)

Introducing the change of variables and definitions

y = T −1(x), (B4)

J (y) ≡ DxT −1(x)
∣∣
x=T (y) = [∂yT (y)]−1, (B5)

|J (y)| ≡ det J (y) (B6)

2Here we take the deformation to be of the form u(κx) instead of
u(x) (compare with the main text). In doing so we are explicitly in-
troducing the small parameter measuring the size of the deformation
in order to facilitate our systematic perturbation theory.

3We conjecture that a physical regularization of the structure (one
in which the structure is undeformed for |x1| sufficiently large) will
yield high density of states near the degenerate Landau levels of the
present asymptotic theory. A mathematically rigorous treatment is
work in progress.
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we obtain an equivalent equation to (B3) in terms of the
undeformed material functions:

−
[
|J (y)|∇y · J (y)ξ (y)J�(y)

|J (y)| ∇y

]
ψ + V (y) ψ = Eρ(y)ψ.

(B7)

For the undeformed problem, κ = 0, (B7) reduces to (B1).
We next expand Eq. (B7) in the small parameter κ and drop

terms of order κ2 and higher order. Since T (y) = y + u(κy),

we have DyT (y) = I2×2 + κDYu(Y)|Y=κy. Therefore,

J (y) = I2×2 − κDYu(Y)|Y=κy + O(κ2)

=
(

1 − κu1,1 −κu1,2

−κu2,1 1 − κu2,2

)∣∣∣
Y=κy

+ O(κ2) (B8)

and

|J (y)| = 1 − κ ∇Y · u(Y)|Y=κy + O(κ2). (B9)

We next expand (B7) using

|J|∇y · JξJ�

|J| ∇y = ∇y · JξJ� ∇y + |J|(∇y|J|−1)

· (JξJ� ∇y)

= ∇y · JξJ� ∇y + O(κ2) (B10)

and

JξJ� = (I2×2 − κDYu) ξ (I2×2 − κ (DYu)�) + O(κ2)

= ξ − 2 κ ξ U + O(κ2), (B11)

where U = (Ui j ) is the strain matrix, with entries4

Ui j (Y) = 1

2

(
∂ui

∂Yj
+ ∂u j

∂Yi

)

= 1

2
[DYu(Y) + DYu(Y)�]i j . (B12)

Using (B10)–(B12) in (B7) yields

[−∇y · ξ (y) ∇y + V (y)]ψ + 2 κ ∇y · ξ (y) U (κy) ∇y ψ

= E ρ(y) ψ + O(κ2). (B13)

APPENDIX C: EFFECTIVE EQUATIONS VIA
MULTISCALE ANALYSIS

1. Multiscale solutions

The form of the expanded Helmholtz-Schrödinger operator
on the left-hand side of (B13) reflects the assumptions on our
slowly deformed bulk structure; it depends on the two spatial
scales: y (fast) and Y = κy (slow). To capture the κ−1

length scale effect of the nonuniform deformation, we seek
solutions which explicitly incorporate both of these scales:

ψκ (y) = �κ (y, Y)|Y=κy, (C1)

4Since, in these appendices, we have explicitly introduced the small
parameter κ , the κ dependence of the strain matrix has been made
explicit and is factored out of U as defined above. The strain matrix
defined in the main text thus differs from that defined here by a factor
of κ and is given by κU .

where y and Y are to be treated as independent variables.
Reflecting this, the solutions of (B13) that we shall construct
are approximate wave packets consisting of bulk Bloch mode
components with energies near the Dirac point |E − ED| �
Cκ . The expansion procedure we present has been made
mathematically rigorous in many settings; in the context of
perturbed honeycomb structures, see, for example, [24,26,27].

First, we reexpress (B13) in terms of this extended set of
variables: (y, Y). Thus we replace ∇y by ∇y + κ∇Y in (B13).
Keeping terms of order κ0 and κ1, we find that (B13) becomes

(L0 + κL1) �κ (y, Y) = E ρ �κ (y, Y) + O(κ2)

where

L0 = −∇y · ξ (y) ∇y + V (y), (C2)

L1 = −[∇y · ξ (y)∇Y + ∇Y · ξ (y)∇y]

+ 2 ∇y · ξ (y) U (Y) ∇y. (C3)

For each fixed Y ∈ R2, the operators L0 and L1 are self-
adjoint operators in L2

K.
We study the [O(κ ) approximate] eigenvalue problem5

(L0 + κL1)�κ = E ρ �κ, (C4)

�κ (y + v, Y) = eiK·v �κ (y, Y), (C5)

with specified boundary conditions for

�κ (y, Y) with respect to Y. (C6)

Note that by imposing the condition (C5), we have chosen to
focus on the Dirac point at K
 = K. See Appendix D 3 for a
discussion of the Dirac point at K
 = K′. Seek a solution of
(C4)–(C6) as an expansion:

�κ (y, Y) = ψ0(y, Y) + κψ1(y, Y) + . . . , (C7)

Eκ = E0 + κE1 + . . . (C8)

where each ψ j (y, Y) satisfies the boundary conditions (C5)
and (C6). Substitution and equating like powers of κ yields a
hierarchy of equations. The first two of these are

O(κ0) : [−∇y · ξ (y) ∇y + V (y) − E0 ρ(y)]ψ0 = 0, (C9)

O(κ1) : [−∇y · ξ (y) ∇y + V (y) − E0 ρ(y)]ψ1

= −L1ψ0 + E1 ρ(y) ψ0. (C10)

The general solution, ψ0, of (C9) with boundary conditions
(C5) and (C6) is

ψ0(y, Y) =
2∑

j=1

α j (Y)� j (y), E0 = ED (C11)

5At this stage we do not specify boundary conditions with respect to
Y = (Y1,Y2). These are specified below and depend on our choice of
deformation. Specifically, for deformations giving rise to a Landau-
gauge vector potential with constant effective magnetic field we shall
choose ψ to be pseudoperiodic with respect to Y2 and decaying as
|Y1| → ∞. See Appendix D.
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where (1) � j (y), j = 1, 2 span the two-dimensional
K-pseudoperiodic eigenspace of 1

ρ(y)L0 with eigenvalue E0 =
ED (see Theorem 1); and (2) α j (Y) are functions to be de-
termined, which vary on the slow scale, Y, and are chosen to
satisfy the condition (C6) in Y.

Using (C11), we have that (C10) becomes the nonhomoge-
neous equation:

[−∇y · ξ (y) ∇y + V (y) − ED ρ(y)]ψ1

=
2∑

j=1

(−L1) [α j (Y)� j (y)] + E1

2∑
j=1

α j (Y) ρ(y)� j (y)

(C12)

where ψ1 satisfies the boundary conditions (C5) and (C6).
Next, introduce the self-adjoint first-order vector-operator

A = 1

i
∇y(ξ (y) · ) + ξ (y)

1

i
∇y, or

A = (A1,A2), where Al ≡ 1

i
∂yl (ξ (y) · ) + ξ (y)

1

i
∂yl .

(C13)

Then, the equation for ψ1 may be rewritten as

[−∇y · ξ (y) ∇y + V (y) − ED ρ(y)]ψ1

= i
2∑

j=1

A� j (y) · ∇Yα j (Y)

− 2
2∑

j=1

∇y · ξ (y) U (Y) ∇y� j (y) α j (Y)

+ E1 ρ(y)
2∑

j=1

� j (y)α j (Y). (C14)

The nonhomogeneous equation (C14) is viewed as an
equation for y �→ ψ1(y, Y) satisfying the pseudoperiodic
boundary condition (C5). A necessary and sufficient condi-
tion for solvability is that the right-hand side of (C14) be L2

orthogonal to the Dirac subspace of L0 = −∇y · ξ (y) ∇y +
V (y) at energy ED, which is spanned by {�1,�2}. Thus we
have Proposition 3.

Proposition 3. Equation (C14) for ψ1(y, Y) with boundary
conditions (C5) and (C6) has a solution if and only if α(Y) =
(α1(Y), α2(Y))� satisfy the following eigenvalue problem for
(α(Y), E1) subject to the boundary condition imposed in (C6):

− i
2∑

j=1

〈�l ,A� j〉 · ∇Yα j (Y)

+ 2
2∑

j=1

〈�l ,∇y · ξ U (Y) ∇y� j〉 α j (Y)

= E1 αl (Y), for l = 1, 2, (C15)

where we have used the normalization 〈�l , ρ � j〉 = δl j ; see
(A10).

We next write out explicitly the second term in (C15):

2 〈�l ,∇y · ξ U (Y) ∇y� j〉

= −2 〈∇y�l , ξ U (Y) ∇y� j〉

= −2
∑

m

〈
∂ym�l , ξ

∑
n

Umn(Y) ∂yn� j

〉

= −2
∑
m,n

Umn(Y)
〈
∂ym�l , ξ ∂yn� j

〉
. (C16)

2. Simplification of the system (C15)
via application of symmetries

Honeycomb symmetry enables simplification of the eigen-
value problem (C15) for the pair (α, E1). The coefficients in
(C15) are inner products of the form

〈�l , ζ · A� j〉 and

Al j
αβ = 〈∂yα

�l , ξ ∂yβ
� j〉, j, l, α, β = 1, 2. (C17)

We next discuss their simplification using symmetry argu-
ments. These results are then applied in Appendix D to obtain
our effective equations.

The first type of inner product in (C17) is evaluated using
Proposition 4.

Proposition 4. For ζ = (ζ (1), ζ (2) ) ∈ C2, we have (1)
〈�1, ζ · A�1〉 = 〈�2, ζ · A�2〉 = 0 and (2) 〈�1, ζ · A�2〉 =
〈�2, ζ · A�1〉 = vD (ζ (1) + iζ (2) ), where vD = 1

2 〈�1,A�2〉 ·
(1,−i); see (A11).

Proposition 4 follows from Proposition 1; see also
[22,24,27]. The second type of inner product in (C17) is
evaluated using the following proposition which is proved in
Appendix E.

Proposition 5. Let Al j , with entries Al j
αβ , be as defined in

(C17):

Al j
αβ = 〈∂yα

�l , ξ ∂yβ
� j〉, j, l, α, β = 1, 2.

Then, we have the following.
(1) For l = j,

Aj j = a
 I2×2 + ã j j

(
0 1

−1 0

)

= a
 σ0 + i ã j j σ2, (C18)

where ã j j are constants and a
 � 0 and is given by

a
 = 〈∂y1�1, ξ ∂y1�1〉
= 〈∂y2�1, ξ ∂y2�1〉, (C19)

a
 = 〈∂y1�2, ξ ∂y1�2〉
= 〈∂y2�2, ξ ∂y2�2〉. (C20)

Moreover,

a
 = 1

2
ED − 1

2

∫
�

V (y)|� j (y)|2 dy

with j = 1 or 2. (C21)

(2) For l �= j,

A12 = b


(
1 −i

−i −1

)

= b
 (σ3 − i σ1)
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where b
 = 〈∂y1�1, ξ ∂y1�2〉, (C22)

A21 = A12 = b


(
1 i
i −1

)

= b
 (σ3 + i σ1). (C23)

Recall that by Proposition 2 a coordinate system and
eigenstate phase convention can always be chosen for which
vD � 0 and b
 � 0. The proof of Proposition 5 is given in
Appendix E.

APPENDIX D: PSEUDOMAGNETIC FIELD AND THE
EFFECTIVE EQUATIONS

1. The general effective equations

Using Propositions 4 and 5 we may greatly simplify the
left-hand side of (C15). The detailed calculations are pre-
sented in Appendix D 5; see, in particular, (D21), (D22),
(D27), and (D28). This gives our main result.

Theorem 2. (1) The eigenvalue problem (C15) for (α, E1)
reduces to the eigenvalue problem, Hα = E1α, where H is
a Dirac Hamiltonian with effective magnetic and electric
potentials:

H = vD [(−i∂Y1 − A1)σ1 − (−i∂Y2 − A2)σ2]

+ Weff σ0. (D1)

The effective electric potential, Weff , and effective magnetic
potential, Aeff = (A1, A2), are given by

Weff (Y) = −2a
 tr(U (Y)σ0)

= −2a
(∂Y1 u1 + ∂Y2 u2), (D2)

A1(Y) = +2b


vD
tr(U (Y)σ3)

= +2b


vD
(∂Y1 u1 − ∂Y2 u2), (D3)

A2(Y) = −2b


vD
tr(U (Y)σ1)

= −2b


vD
(∂Y1 u2 + ∂Y2 u1) (D4)

where vD > 0, a
 � 0, and b
 > 0 are constants given in terms
of Bloch modes �1, �2:

vD = 〈�1,A1�2〉 > 0,

a
 = 1

2
ED − 1

2

∫
�

V (y) |� j (y)|2 dy

= 〈∂y1� j, ξ ∂y1� j〉 � 0, j = 1 or 2,

b
 = 〈∂y1�1, ξ ∂y1�2〉 > 0.

(2) Equivalently, the eigenvalue problem (D1) may be
expressed in terms of α′ ≡ σ1α = (α2, α1)� and Heff ≡
σ1Hσ−1

1 as Heffα
′ = E1α

′, where

Heff = vD(−i∇Y − Aeff ) · σ + Weff σ0. (D5)

Remark 3. Note that for 2D electromagnetics (V (x) ≡ 0)
we have

a
 = 1

2
ED = 1

2

(ωD

c

)2
.

Remark 4. Part 2 of Theorem 2 follows from part 1 and the
observation that σ1σ2σ

−1
1 = −σ2, which implies that

Heff = σ1
{
vD

[( − i∂Y1 − A1
)
σ1

− ( − i∂Y2 − A2
)
σ2

] + Weffσ0
}
σ−1

1

= vD
[( − i∂Y1 − A1

)
σ1 + (−i∂Y2 − A2

)
σ2

] + Weffσ0

= vD(−i∇Y − Aeff ) · σ + Weffσ0.

This is equivalent to a relabeling of the pair of eigenmodes at
the Dirac point: �1 �→ �2 and �2 �→ �1.

2. Divergence-free deformations and Landau-level spectrum

Suppose that we constrain the deformation u(Y) by
tr(σ0U ) = ∇Y · u = 0. Hence, Weff (Y) = 0 and Heff takes the
simpler form

Heff = vD
[( − i∂Y1 − A1

)
σ1 + ( − i∂Y2 − A2

)
σ2

]
. (D6)

Defining p̂ = ( p̂1, p̂2) = (−i∂Y1 ,−i∂Y2 ), we observe that H2
eff

is a diagonal operator. Indeed,

H2
eff = v2

D[( p̂1 − A1)σ1 + ( p̂2 − A2)σ2]2

= v2
D[( p̂1 − A1)2 + ( p̂2 − A2)2

+ ( p̂1 − A1)( p̂2 − A2)σ1σ2

+ (p2 − A2)(p1 − A1)σ2σ1]

= v2
D

[
(p̂ − Aeff )2 σ0 + (

∂Y2 A1 − ∂Y1 A2
)
σ3

]
.

Hence,

H2
eff = v2

D [(p̂ − Aeff )2 σ0 + Veff σ3], where (D7)

Veff = −[∇Y × Aeff ] · ẑ = ∂Y2 A1 − ∂Y1 A2. (D8)

Now take Aeff to be a Landau gauge vector potential for a con-
stant magnetic field: Aeff = −B0 (0,Y1). Then, ∇ × Aeff =
−B0ẑ. By (D3) and (D4), we must have

A1 = +2b


vD
(u1,1 − u2,2) = 0,

A2 = −2b


vD
(u1,2 + u2,1) = −B0 Y1. (D9)

We solve equations (D9) by taking

u(Y) = (u1(Y), u2(Y)) = vD B0

4b


(
0,Y 2

1

)
. (D10)

From the above results, we have

H2
eff = v2

D

[
p2

1σ0 + (p2 + B0Y1)2σ0 + B0σ3
]
. (D11)

This yields two decoupled copies of the Landau gauge Hamil-
tonian for a particle in a magnetic field, with the copies,
respectively, shifted in energy by ±B0. The spectrum of H2

eff
thus follows from the spectrum of a particle in a magnetic
field [30] which, in Landau gauge, consists of a series of
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discretely spaced Landau levels en(k2), where the eigenval-
ues en(k2) are independent of k2 (k2 being the momentum
associated with translation symmetry along Y2) and are thus
infinitely degenerate. At a fixed value of k2, the spectrum of
H2

eff therefore consists of a collection of discretely spaced
eigenvalues v2

D[2B0(n + 1/2) ± B0] with n = 0, 1, 2, . . . , and
corresponding eigenstates with centering ∝ k2. This is equiv-
alent to a spectrum (at a fixed k2) consisting of eigenvalues
2v2

DB0n, with n = 0, 1, 2, . . . , where each eigenvalue other
than the n = 0 eigenvalue is twofold degenerate (n = 0 having
no degeneracy). Upon taking the square root, the twofold
degenerate pairs split into distinct positive and negative eigen-
values, yielding for the spectrum of Heff

(E1)n = ±
√

2v2
DB0n with n ∈ {0, 1, 2, . . . }. (D12)

For the photonic crystal case, we can map the eigenvalue cor-
rections (E1)n to mode frequencies ωn using (ω/c)2 = E =
ED + κE1 + O(κ2), and ED = (ωD/c)2. This yields

ωn = ωD ± c2vD√
2ωD

√
n |Beff (κ )| + O(κ2) (D13)

with n ∈ {0, 1, 2, . . . } and where |Beff (κ )| = B0 κ2; see also
the main text.

3. Relation between modes at K and K′

For K
 = K, K′, denote by HK


eff the effective Hamiltonian
[see (D6) for HK

eff ] arising from the mode expansion applied to
the Dirac point at K
. Our analysis shows that a deformation
(D10) induces an effective vector potential, AK

eff = (AK
1 , AK

2 ),
for which HK

eff has Landau levels E1 with corresponding
modes (αK

2 , αK
1 ) determined by

vK
D

[(−i∂Y1 − AK
1

)
σ1 + (−i∂Y2 − AK

2

)
σ2

](αK
2

αK
1

)

= E1

(
αK

2

αK
1

)
. (D14)

A Landau level obtained by solving (D14) seeds the
expansion of a mode: ψK ≈ αK

1 �K
1 + αK

2 �K
2 + O(κ ) with

eigenvalue E = ED + κE1 + O(κ2). This mode is formed
from the degenerate pair of states associated with the Dirac
point (K, ED). In addition to this mode, there is a correspond-
ing mode associated with the Dirac point (K′, ED), and this
mode similarly has an expansion: ψK′ ≈ αK′

1 �K′
1 + αK′

2 �K′
2 +

O(κ ). Note that the modes �K
i are related to the modes �K′

i

by complex conjugation: (�K′
1 ,�K′

2 ) = (�K
2 ,�K

1 ). (The sub-
scripts are interchanged because the τ and τ̄ subspaces are
interchanged upon complex conjugation. The index 1 is asso-
ciated with τ and the index 2 is associated with τ̄ .) The modes
ψK and ψK′

are in fact related by time-reversal symmetry
and hence we can get one from the other by via complex
conjugation. Taking the complex conjugate of ψK gives

ψK ≈ αK
1 �K

1 + αK
2 �K

2

= αK
1 �K′

2 + αK
2 �K′

1

= αK′
2 �K′

2 + αK′
1 �K′

1 . (D15)

Comparing the last two lines, we have that (αK′
1 , αK′

2 ) =
(αK

2 , αK
1 ). Hence, to obtain the effective Hamiltonian govern-

ing the modes (αK′
1 , αK′

2 ), we can simply take the complex
conjugate of (D14), yielding (after using σ2 = −σ2)

vK
D

[ − ( − i∂Y1 + AK
1

)
σ1 + ( − i∂Y2 + AK

2

)
σ2

](αK′
1

αK′
2

)

= E1

(
αK′

1
αK′

2

)
. (D16)

One can either leave this equation in the form shown in
(D16) (i.e., with an extra sign multiplying the σ1 term) or
one can further simplify the equation to a form analogous to
(D14). In particular, multiplying both sides of (D16) by σ1

allows us to rewrite the equation as an eigenvalue problem
for σ1(αK′

1 , αK′
2 )T = (αK′

2 , αK′
1 )T , yielding (after using σ1σ2 =

−σ2σ1)

− vK
D

[( − i∂Y1 + AK
1

)
σ1 + ( − i∂Y2 + AK

2

)
σ2

](αK′
2

αK′
1

)

= E1

(
αK′

2
αK′

1

)
. (D17)

Using vK′
D = −vK

D , we then have

vK′
D

[(−i∂Y1 + AK
1

)
σ1 + (−i∂Y2 + AK

2

)
σ2

](αK′
2

αK′
1

)

= E1

(
αK′

2
αK′

1

)
(D18)

which is in a form analogous to (D14). Thus, we have the
eigenvalue problem

HK′
eff

(
αK′

2
αK′

1

)
= E1

(
αK′

2
αK′

1

)
(D19)

where the effective Hamiltonian is given by

HK′
eff = vK′

D

(−i∇Y − AK′
eff

) · σ (D20)

and the effective vector potential AK′
eff ≡ (AK′

1 , AK′
2 ) is given

by AK′
eff = −AK

eff . Since the effective vector potential in the K′
valley is opposite in sign to that in the K valley, the associated
pseudomagnetic field likewise differs by a sign:

∇ × AK′
eff = +B0ẑ = −∇ × AK

eff .

Note that, for the Landau gauge used in (D10), the Gaussian-
decaying modes are centered at x̃K
 ∼ B−1

0 k2. Since the
effective magnetic fields for the K and K′ modes are of op-
posite sign, we have

x̃K′ = −x̃K.

4. Flattening weakly dispersive Landau levels
using a modified strain

The effective theory predicts perfectly flat Landau levels.
However, the Landau levels in Fig. 2 of the main text have
dispersion arising from terms that are higher order in κ . To
mitigate this dispersion, we note that the effective theory indi-
cates that adding a quadratic strain-induced potential will tend
to give the Landau-levels curvature. Heuristically, this can be
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seen by recalling, for the standard Landau gauge Hamiltonian
for a particle in a uniform magnetic field, that the eigenstate
at a given k2 in a given Landau level is localized in the
x1 direction and centered on x̃, where x̃ ∝ k2. Based on the
k2-dependent centering of these eigenstates, one would expect
that introducing an x1-dependent onsite effective electric po-
tential would add a k2-dependent shift to the band frequencies
since an eigenstate at k2 should only be sensitive to the value
of the potential over the finite region within which the state is
localized.

Can the introduction of such an additional strain be used
to counter the curvature arising from higher-order terms?
Answering this question requires going beyond our effective
equations. We therefore use full numerical simulations to
compute the effect of adding the heuristically motivated strain
and find that the unwanted dispersion can indeed be mitigated.
As discussed in the main text, we modify the displacement
to be u(κx) = a[β(κx1)3, (κx1)2], yielding a pseudomagnetic

field B(x) = −(4aκ2b
/vD)ẑ as well as a quadratic potential
Weff (x) = 3aβκ (ωD/c)2(κx1)2. Taking κ = 0.0548a−1 and
β = 0.0380 yields the band structures shown in Fig. 4 of the
main text, where we see a clear flattening of the Landau levels.

5. Proof of Theorem 2 by simplification of (C15)

We next evaluate the terms in (C15), one at a time, using
Propositions 4 and 5.

Term 1 of (C15), l = 1:

−i
2∑

j=1

〈�1,A� j〉 · ∇Yα j = −i〈�1,A�2〉 · ∇Yα2

= vD (−i∂Y1 + ∂Y2 ) α2. (D21)

Term 1 of (C15), l = 2:

−i
2∑

j=1

〈�2,A� j〉 · ∇Yα j = −i〈�2,A�1〉 · ∇Yα1

= vD (−i∂Y1 − ∂Y2 ) α1. (D22)

Term 2 of (C15), l = 1:

− 2 〈�1,∇y · ξ U (Y) ∇y� j〉
= 2

∑
m,n

Umn(Y)
〈
∂ym�1, ξ ∂yn� j

〉
(D23)

= 2
∑
m,n

Umn(Y) A1 j
mn (D24)

where we have used (C16) and the definition of Al j
mn in (C17).

Therefore,

2
∑

j

〈�1,∇y · ξ U (Y) ∇y� j〉 α j (Y)

= −2
∑
m,n

Umn(Y)
∑

j

A1 j
mn α j (Y). (D25)

Consider now the sum over j:
∑

j A1 j
mn α j (Y) = A11

mnα1(Y) +
A12

mnα2(Y). By Proposition 5,

A11
mn = (a
 σ0 + ã11 iσ2)mn and

A12
mn = b
(σ3 − i σ1)mn.

Therefore,∑
j

A1 j
mn α j (Y) = (a
 σ0 + ã11 iσ2)mn α1(Y)

+ b
(σ3 − i σ1)mn α2(Y) (D26)

and finally we have the following.
Term 2 of (C15), l = 1:

2
∑

j

〈�1,∇y · ξ U (Y) ∇y� j〉 α j (Y)

= −2
∑
m,n

Umn(Y)
∑

j

A1 j
mn α j (Y)

= −2
∑
m,n

Umn(a
 σ0 + ã11 iσ2)mn α1

− 2 b


∑
m,n

Umn (σ3 − i σ1)mn α2

= −2 a
 tr(U ) α1

− 2 b
 [tr(σ3U ) − i tr(σ1U ) ]α2, (D27)

where we have used σ�
2 = −σ2, U � = U , and finally

tr(V �U ) = ∑
m,n VmnUmn. Similarly, we have the following.

Term 2 of (C15), l = 2:

2
∑

j

〈�2,∇y · ξ U (Y) ∇y� j〉 α j (Y)

= −2
∑
m,n

Umn(Y)
∑

j

A2 j
mn α j (Y)

= −2 a
 tr(U ) α2

− 2 b
 [tr(σ3U ) + i tr(σ1U ) ]α1. (D28)

We now complete the proof of Theorem 2. Substitution of
(D21) and (D27) into (C15) for l = 1, and (D22) and (D28)
into (C15) for l = 2, yields the system

{vD(−i∂Y1 + ∂Y2 ) − 2b
[tr(σ3U ) − itr(σ1U )]}α2

− 2a
tr(U )α1 = E1α1,

{vD(−i∂Y1 − ∂Y2 ) − 2b
[tr(σ3U ) + itr(σ1U )]}α1

− 2a
tr(U )α2 = E1α2, (D29)

where we recall from Proposition 2 that vD = vD and b
 = b
.
Using Pauli matrices, σi, the system (D29) can be expressed
as (D1).

APPENDIX E: MATRIX ELEMENTS VIA SYMMETRY:
PROOF OF PROPOSITION 5

Let x �→ Rx denote a rotation on R2 by 2π/3,

R =
( − 1

2

√
3

2

−
√

3
2 − 1

2

)
,

and recall the rotation operator R[ f ](x) = f (R†x). Recall
from Proposition 1 that

R[� j](x) = τ j� j (x), j = 1, 2, where τ = e2π i/3.
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Proposition 6. Let Ai j (i, j = 1, 2) denote the matrices
given in (C17). Then, (1) for any i, j, Ai j = τ j−i R�Ai jR; (2)
for i = j, Aj j = R�Aj jR; and (3) for i �= j, A12 = τ R�A12R
and A21 = τ R�A21R.

Proof of Proposition 6. Fix κ = (κ1, κ2) ∈ R2. Then, with
summation over repeated indices implied,

κ� Ai j κ = 〈
∂yα

�i, ξ ∂yβ
� j

〉
κακβ

= 〈
R ∂yα

�i, ξ R ∂yβ
� j

〉
κακβ

= 〈
Rnα∂yn R[�i], ξ Rqβ∂yq R[� j]

〉
κακβ

= 〈
Rnα∂yn τ i�i, ξ Rqβ∂yq τ j� j

〉
κακβ

= τ j−i
〈
Rnα∂yn �i, ξ Rqβ∂yq � j

〉
κακβ

= τ j−i
〈
∂yn �i, ξ ∂yq � j

〉
Rnακα Rqβκβ

= τ j−i
〈
∂yn �i, ξ ∂yq � j

〉
(Rκ )n (Rκ )q

= τ j−i (Rκ )� Ai j (Rκ )

= τ j−i κ� (R�Ai jR)κ.

Since κ is arbitrary, we conclude

Ai j = τ j−i R�Ai jR, i, j = 1, 2.

We have three cases:

i = j : Aj j = R�Aj jR, j = 1, 2
(i, j) = (1, 2) : A12 = τ R�A12R
(i, j) = (2, 1) : A21 = τ R�A21R

. (E1)

This completes the proof of Proposition 6.
We now deduce Proposition 5 using Proposition 6.
Proof of Proposition 5. The 2π/3 rotation matrix is given

by

R =
( − 1

2

√
3

2

−
√

3
2 − 1

2

)
. (E2)

Case 1, i = j. By (E1) we have( − 1
2

√
3

2

−
√

3
2 − 1

2

)(
a b
c d

)
=

(
a b
c d

) ( − 1
2

√
3

2

−
√

3
2 − 1

2

)
,

where a, b, c, and d are to be determined. Equating entries
yields that c = −b and a = d . Hence,

Aj j = a j j I2×2 + ã j j

(
0 1

−1 0

)
, j = 1, 2.

We claim further that a11 = a22. Indeed, we have

a11 =
∫

�

∂�1(x)

∂x1
ξ (x)

∂�1(x)

∂x1
dx

=
∫

�

∂�1(−y)

∂y1
ξ (−y)

∂�1(−y)

∂y1
dy

=
∫

�

∂�1(−y)

∂y1
ξ (−y)

∂�1(−y)

∂y1
dy

=
∫

�

∂�2(y)

∂y1
ξ (y)

∂�2(y)

∂y1
dy = a22.

We therefore set a
 ≡ a11 = a22. Finally, taking the inner
product of the equation (−∇ · ξ∇ + V )� j = E ρ � j with
� j and using that 〈�i,� j〉ρ = δi j gives∫

�

ξ (y) |∇� j (y)|2 dy +
∫

�

V (y) |� j (y)|2 dy = ED (E3)

with j = 1, 2. Hence,

a
 = 1

2
ED − 1

2

∫
�

V (y) |� j (y)|2 dy, j = 1, 2. (E4)

This proves (C19)–(C21), and in conclusion we have

Aj j = a
 I2×2 + ã j j

(
0 1

−1 0

)
, j = 1, 2,

where ã22 = −ã11. This proves part 1 of Proposition 5.
Case 2, (i,j) = (1,2). By (E1) we have( − 1

2

√
3

2

−
√

3
2 − 1

2

)(
a b
c d

)
= τ

(
a b
c d

) ( − 1
2

√
3

2

−
√

3
2 − 1

2

)
.

Equating entries, we obtain a system of four homogeneous
linear equations, Mz = 0, for the unknowns z = (a, b, c, d )�.
The matrix M has rank 3 and its null space is spanned by the
vector (1,−i,−i,−1)�. Thus,

A12 = b


(
1 −i

−i −1

)
, where b
 = 〈∂y1�1, ξ ∂y1�2〉.

Furthermore, since Al j
αβ = Ajl

βα , we find

A21 = b


(
1 i
i −1

)
.

This proves part (2) of Proposition 5.

APPENDIX F: vD � 0 AND b� � 0:
PROOF OF PROPOSITION 2

We begin by recalling the expressions for vD and b
 in
(A13) and (A14):

vD = 〈�1,A1�2〉, b
 = 〈∂x1�1, ξ ∂x1�2〉.
We will consider two coordinate systems (with coordinates
denoted by x and x′) that differ by a rotation. We define vD

and b
 as the quantities in the x coordinate system and v′
D

and b′

 as the quantities in the x′ coordinate system. We will

assume that v′
D and b′


 are complex and then demonstrate that,
by rotating the unprimed coordinate system relative to the
primed coordinate system (as well as making an appropriate
phase choice for the eigenstates), vD and b
 can be made to be
real.

Introduce a rotation of coordinates from x = (x1, x2) to
x′ = (x′

1, x′
2) related by

x′ =
(

x′
1

x′
2

)
=

(
cos θ − sin θ

sin θ cos θ

) (
x1

x2

)
= Rθ x.
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We therefore have

∂

∂x1
= ∂x′

1

∂x1

∂

∂x′
1

+ ∂x′
2

∂x1

∂

∂x′
2

= cos θ
∂

∂x′
1

+ sin θ
∂

∂x′
2

= ζ · ∇x′ , ζ = (cos θ, sin θ ). (F1)

Now given any function f (x), we define

f ′(x′) = Rθ [ f ](x′) = f
(
R†

θx′),
and introduce the rotated Bloch eigenfunctions:

�′
j (x

′) = Rθ [� j](x′), j = 1, 2.

These satisfy the equations for the structure defined by ξ ′ =
Rθ [ξ ], ρ ′ = Rθ [ρ], and V ′ = Rθ [V ]:

[−∇x′ · ξ ′ ∇x′ + V ′]�′
j = ED ρ ′ �′

j .

Using the notation

A′
m = 1

i
ξ ′∂x′

m
+ 1

i
∂x′

m
(ξ ′ ·)

and the identities [Eq. (A11)] 〈�′
1, A′

1�
′
2〉 = v′

D, 〈�′
1,

A′
2�

′
2〉 = iv′

D, we have

vD ≡ 〈�1, A1�2〉
= 〈�′

1, ζ · A′�′
2〉

= cos θ 〈�′
1, A′

1�
′
2〉 + sin θ 〈�′

1, A′
2�

′
2〉

= v′
D eiθ . (F2)

We now turn to considering b
 in a rotated coordinate
system. Recalling the notation

Al j
αβ = 〈∂yα

�l , ξ ∂yβ
� j〉, j, l, α, β = 1, 2,

we have

b
 = 〈∂x1�1, ξ ∂x1�2〉
= 〈(ζ · ∇x′ )�′

1, ξ ′ (ζ · ∇x′ )�′
2〉

= cos2 θ
〈
∂x′

1
�′

1, ξ ′ ∂x′
1
�′

2

〉
+ sin2 θ

〈
∂x′

2
�′

1, ξ ′ ∂x′
2
�′

2

〉 + sin θ cos θ

× (〈
∂x′

2
�′

1, ξ ′ ∂x′
1
�′

2

〉 + 〈
∂x′

1
�′

1, ξ ′ ∂x′
2
�′

2

〉)
= cos2 θ (A′)12

11 + sin2 θ (A′)12
22

+ sin θ cos θ
[
(A′)12

21 + (A′)12
12

]
.

The previous expression may be simplified using Proposition
5, yielding

b
 = (cos2 θ − sin2 θ )b′

 − 2i sin θ cos θb′


 = e−2iθ b′

. (F3)

Explicitly, (F2) and (F3) state

〈�1, A1�2〉 = eiθ 〈�′
1, A′

1�
′
2〉,

〈∂x1�1, ξ ∂x1�2〉 = e−2iθ
〈
∂x′

1
�′

1, ξ ′ ∂x′
1
�′

2

〉
, (F4)

where θ is to be chosen. Here, �′
1(x) ∈ L2

K,τ and �′
2(x) =

�′
1(−x) ∈ L2

K,τ are any choice of Bloch states in the primed
coordinate system.

We next exploit the phase degree of freedom in the choice
of these states. In particular, replace �′

1 by eiφ�′
1 ∈ L2

K,τ and
hence �′

2 by e−iφ�′
2 ∈ L2

K,τ , where now both θ and φ are to
be determined. Therefore, (F4) becomes

vD ≡ 〈�1, A1�2〉
= ei(θ−2φ) 〈�′

1, A′
1�

′
2〉

= ei(θ−2φ) v′
D,

b
 ≡ 〈∂x1�1, ξ ∂x1�2〉
= e−2i(θ+φ)

〈
∂x′

1
�′

1, ξ ′ ∂x′
1
�′

2

〉
= e−2i(θ+φ) b′


. (F5)

Hence, if we choose

θ = − 1
3 arg v′

D + 1
3 arg b′


,

φ = 1
3 arg v′

D + 1
6 arg b′




then we obtain vD � 0 and b
 � 0. This completes the proof
of Proposition 2.

We now confirm that the effective Hamiltonian transforms
as expected under a rotation of coordinates. Let Heff and
H′

eff be the effective Hamiltonians written in the x and x′
coordinate systems, respectively. We choose the x coordinates
so that vD and b
 are real (as shown above, this is always
possible). As before, we take the two coordinate systems to
be related by x′ = Rθ x with

Rθ =
(

cos θ − sin θ

sin θ cos θ

)
. (F6)

In the primed coordinate system, v′
D and b′


 are in general
complex. Let U and U ′ be the strain matrices computed in
the x and x′ coordinate systems, respectively, and denote
p = −i∇x and p′ = −i∇x′ . From Eq. (D29) [combined with
the convention for the eigenvalue problem in Eq. (D5)], we
have

H′
eff =

(
0 v′

D (p′
1 − ip′

2)
v′

D (p′
1 + ip′

2) 0

)

− 2

(
0 b′


[tr(σ3U ′) + i tr(σ1U ′)]
b′


[tr(σ3U ′) − i tr(σ1U ′)] 0

)

− 2a′

tr(U ′σ0)

(
1 0
0 1

)
. (F7)

The effective Hamiltonian in the unprimed coordinates is
given by Eq. (D5):

Heff = vD(p − Aeff ) · σ + Weff σ0 (F8)

with

Weff = −2a
 tr(Uσ0), Aeff = 2b


vD

(+tr(Uσ3)
−tr(Uσ1)

)
. (F9)

As discussed above, we have

v′
D = vDe−iθ , b′


 = b
e2iθ . (F10)

We now simplify each of the three terms in Eq. (F7). Using
Eq. (F10) gives for the first term(

0 v′
D (p′

1 − ip′
2)

v′
D (p′

1 + ip′
2) 0

)
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= vD

[
p′

1(cos θ σ1 − sin θ σ2) + p′
2(sin θ σ1 + cos θ σ2)

]
= vD p′ · σ ′ (F11)

where in the last line we have defined rotated Pauli matrices
σ ′

j = Vσ jV† with V = eiθ (σ3/2). Equivalently, the rotated Pauli
matrices are given by

(
σ ′

1
σ ′

2

)
=

(
cos θ − sin θ

sin θ cos θ

)(
σ1

σ2

)
. (F12)

Using Eq. (F10), we have for the second term of Eq. (F7)

(
0 −2b′


[tr(σ3U ′) + i tr(σ1U ′)]
−2b′


[tr(σ3U ′)−i tr(σ1U ′)] 0

)

= −2b
{[ tr(σ3U
′) cos 2θ + tr(σ1U

′) sin 2θ ]σ1

+ [ tr(σ3U
′) sin 2θ − tr(σ1U

′) cos 2θ ]σ2}
= −2b
{[ tr(σ3U

′) cos 3θ + tr(σ1U
′) sin 3θ ]σ ′

1

+ [ tr(σ3U
′) sin 3θ − tr(σ1U

′) cos 3θ ]σ ′
2}

= −vD A′
eff · σ ′ (F13)

where we have defined

A′
eff = 2b


vD

(
cos 3θ − sin 3θ

sin 3θ cos 3θ

)(+tr(σ3U ′)
−tr(σ1U ′)

)
. (F14)

To relate A′
eff to Aeff , we note that U ′ = RθURT

θ . Hence,
Eq. (F14) becomes

A′
eff = 2b


vD

(
cos 3θ − sin 3θ

sin 3θ cos 3θ

)(+tr(RT
θ σ3RθU )

−tr(RT
θ σ1RθU )

)

= 2b


vD

(
cos 3θ − sin 3θ

sin 3θ cos 3θ

)(
cos 2θ sin 2θ

− sin 2θ cos 2θ

)

×
(+tr(σ3U )

−tr(σ1U )

)

= 2b


vD

(
cos θ − sin θ

sin θ cos θ

)(+tr(σ3U )
−tr(σ1U )

)
= Rθ Aeff . (F15)

Note also that p′ = Rθp. Finally, from the expression for a
 in
Theorem 2, it is clear that a′


 = a
. Hence, for the third term
in Eq. (F7), we have

W ′
eff ≡ −2a′


tr(U ′σ0) = −2a
tr(URT
θ σ0Rθ )

= Weff . (F16)

Putting all of this together, we have

Heff = vD(p − Aeff ) · σ + Weff σ0,

H′
eff = vD(p′ − A′

eff ) · σ ′ + W ′
eff σ ′

0 (F17)

where

A′
eff = RθAeff , p′ = Rθp,

W ′
eff = Weff , σ ′

j = Vσ jV†

with V = eiθ (σ3/2).
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