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Scattering theory for stationary materials with PT symmetry
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A theoretical framework is developed for scattering of scalar radiation from stationary, three-dimensional
media with correlation functions of scattering potentials obeying PT symmetry. It is illustrated that, unlike
in scattering from deterministic PT -symmetric media, its stationary generalization involves two mechanisms
leading to symmetry breaking in the statistics of scattered radiation, one stemming from the complex-valued
medium realizations and the other stemming from the complex-valued degree of the medium’s correlation.
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I. INTRODUCTION

The discovery made by Bender and Boettcher [1] on the
possibility of physical systems with complex-valued Hamil-
tonians to possess real-valued spectra, under conditions of
PT symmetry, set the basis for the explosive growth of non-
Hermitian quantum mechanics [2]. This generalization from
Hermitian to non-Hermitian quantum mechanics acquired a
solid foundation after the introduction of a new definition
for the inner product of the Hilbert space [3]. It was soon
realized that PT symmetry is actually a special case of a
more general class of pseudo-Hermitian Hamiltonians that
yield real eigenvalues [4]. Electromagnetics and optics, in
particular, soon benefited from such a generalization in view
of the analogy between the paraxial wave equation and the
time-dependent Schrödinger equation, with manifestation in
the areas of waveguiding [5], unidirectional crystal invisibility
[6], balanced lasing and antilasing [7], structured light emis-
sion [8], and beam dynamics in periodic lattices [9], among
others.

In the realm of physical optics, the PT symmetry of a
deterministic material translates to Hermiticity of its complex-
valued index of refraction or, equivalently, scattering potential
[10]. For static media, only spatial Hermiticity at a fixed
frequency must be imposed. Physically this implies the per-
fect balance between gain and loss centers constituting the
medium. Hence the symmetry in the complex-valued index of
refraction must be considered with precaution, for it can be ge-
ometrically symmetric but not Hermitian, implying imbalance
between the gain and loss contributions. In fact, the geo-
metrically symmetric (unbalanced) and the PT -symmetric
(balanced) media are mutually exclusive, with the only ex-
ception possible when the imaginary parts of their refractive
index, accounting for gain and loss, vanish.
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In this paper, we pursue a set of objectives, the first of
which is to draw a clear distinction between a static, deter-
ministic, geometrically symmetric medium, which we will
term classic, and a PT -symmetric medium. The second, and
the main aim, is to introduce a class of stochastic, station-
ary media obtained on taking the spatial correlation over the
ensemble of realizations of the medium obeying PT sym-
metry. The detailed analysis of the properties of this type of
correlation functions, their mathematical modeling, and their
comparison with those of classic media is then attempted.
Our final goal is to develop a theoretical treatment of light
scattering from this type of stationary media, and compare
it with that from classic stationary media [11]. The central
quantity in the scattering theory involving generally random
illumination and a random medium is the pair-scattering ma-
trix [12] which characterizes the change by the medium in the
correlation along two incident and two scattered directions
and which coincides, within the accuracy of the first Born
approximation, with the Fourier transform of the scattering
potential correlation function. We derive this quantity for
the general stationary PT -symmetric media and reveal its
remarkable properties.

In addition, a mathematical model for a Schell-like correla-
tion function of the PT -symmetric medium with linear phases
is developed with the help of the Bochner theorem previously
used in optics in connection to field correlations [13,14] and
classic medium correlations [15] for numerical illustration of
the new theory.

Various aspects of stochastic light scattering from deter-
ministic PT -symmetric media were recently discussed in
Refs. [16–18]. The results of these studies can be deduced
from the general theory developed here in the completely
correlated medium limit. To our knowledge the only example
of a PT -symmetric stationary medium had previously been
considered in Ref. [19], however without development of the
general theory.

The paper is organized as follows: the stationary PT -
symmetric media and their properties are analyzed in Sec. II;
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the general approach for modeling of the media is developed
in Sec. III; Sec. IV presents the general theory for charac-
terization of weak scattering from such media; the analytical
examples relating to scattering of Schell-like PT -symmetric
media are given in Sec. V; and the concluding remarks are
provided in Sec. VI.

II. COMPLEX MATERIAL CORRELATION FUNCTIONS
WITH CLASSIC AND PT SYMMETRIES

We will confine our attention only to a (wide-sense) statis-
tically stationary medium distributed in a three-dimensional
region of space and being symmetric, in a certain sense, with
respect to its geometrical center, say �r = 0. Let us first con-
sider the case of an unbalanced stationary medium in which
the realizations of the complex-valued index of refraction

n(�r, ω) = nr (�r, ω) + ini(�r, ω), (1)

at position �r and angular frequency ω, obey geometrical sym-
metry relations

nr (−�r, ω) = nr (�r, ω), ni(−�r, ω) = ni(�r, ω). (2)

We will refer to such media as having classic symmetry or
just classic and use them throughout the paper to set up the
contrast with PT -symmetric media that we will introduce
below. The realizations of the scattering potential defined
as [11]

F (�r, ω) = (k2/4π2)[n2(�r, ω) − 1], (3)

where k is the radiation’s wave number, then must be symmet-
ric about the center as well:

Fcl(−�r, ω) = Fcl(�r, ω), (4)

where subscript “cl” is used to denote the classic (unbalanced)
medium. See Fig. 1 (left) for visualization of real and imagi-
nary parts of Fcl.

This immediately implies that the spatial correlation func-
tion of the scattering potential in Eq. (4) [11],

Ccl(�r1, �r2, ω) = 〈F ∗
cl (�r1, ω)Fcl(�r2, ω)〉m, (5)

of the classic medium, where subscript m denotes averaging
over medium realizations, must meet condition

Ccl(−�r1,−�r2, ω) = Ccl(�r1, �r2, ω), (6)
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FIG. 1. Real and imaginary parts of typical classic (left) and
PT -symmetric (right) media’s scattering potentials, along a single
Cartesian axis, say x.

i.e., must also be symmetric with respect to the medium’s
center �r = 0. We will also refer to such stationary media as
classic. As we will demonstrate, due to their inherent geomet-
rical symmetry, such media constitute a solid comparison tool
with the PT -symmetric media. Indeed, random media with
spatially asymmetric, real-valued correlation functions can
also be shown to lead to broken symmetries in the statistics
of scattered radiation [20].

On the other hand, a PT -symmetric material is described
by a complex refractive index the real and imaginary parts of
which must satisfy relations

nr (−�r, ω) = nr (�r, ω), ni(−�r, ω) = −ni(�r, ω). (7)

Then the scattering potential of such a medium is also PT
symmetric and satisfies condition

F ∗
PT(−�r, ω) = FPT(�r, ω). (8)

In view of Eq. (8) the two-point correlation function of the
PT -symmetric scatterer

CPT(�r1, �r2, ω) = 〈F ∗
PT(�r1, ω)FPT(�r2, ω)〉m (9)

must satisfy relation

C∗
PT(−�r1,−�r2, ω) = CPT(�r1, �r2, ω). (10)

We will term the media with correlation in Eq. (10) PT -
symmetric stationary media.

In order to avoid possible misconceptions we will now
outline some other similarities and differences between the
two media types, based on comparison between Eqs. (6)
and (10). First, switching the order of spatial arguments in
any complex-valued correlation function yields C(�r2, �r1, ω) =
C∗(�r1, �r2, ω), which implies with the use of Eqs. (6) and (10)
that

Ccl(�r2, �r1, ω) = C∗
cl(−�r1,−�r2, ω),

CPT(�r2, �r1, ω) = CPT(−�r1,−�r2, ω). (11)

Second, on defining the measure of the strength of scattering
potential for the two media by the expressions

Icl(�r, ω) = Ccl(�r, �r, ω), IPT(�r, ω) = CPT(�r, �r, ω), (12)

we find that they are given by the same formula:

Iα (�r, ω) = 〈|F (�r, ω)|2〉m (α = cl,PT), (13)

being, due to Eqs. (6) and (10), the real-valued and even
functions

Iα (−�r, ω) = Iα (�r, ω). (14)

In order to highlight the distinctive feature of stationary
PT -symmetric media we introduce a quantity, antistrength of
scattering potential, which is an analog of a cross-correlation
function used sometimes in connection to optical fields (see
Ref. [21]),

NPT(�r, ω) =CPT(−�r, �r, ω) = 〈F 2(�r, ω)〉m, (15)

and note that Im[NPT(�r, ω)] = (k4/4π4)〈nrni(n2
r − n2

i − 1)〉
relates to the amount of asymmetry that a PT -symmetric
medium introduces on scattering, while Im[NPT(0, ω)] = 0.
For classic media this quantity can also be defined but coin-
cides with Icl.
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More generally, the degrees of potential correlation defined
at any points �r1 and �r2 by expressions

μα (�r1, �r2, ω) = Cα (�r1, �r2, ω)√
I (�r1, ω)

√
I (�r2, ω)

, (α = cl,PT) (16)

are seen to satisfy the same relations as Ccl and CPT, respec-
tively, but their values are bound to the unit circle of the
complex plane. Equation (16) has a particularly simple form
at symmetric points:

μα (−�r, �r, ω) = Nα (�r, ω)

I (�r, ω)
, (α = cl,PT). (17)

This immediately implies that while a classic medium is fully
correlated (for such points), viz.,

μcl(−�r, �r, ω) = 1, (18)

the PT -symmetric medium can have any, generally complex-
valued, correlation state:

μPT(−�r, �r, ω) = 〈F 2(�r, ω)〉m

〈|F (�r, ω)|2〉m
. (19)

III. MODELING OF PT -SYMMETRIC MEDIA
CORRELATION FUNCTIONS

The Bochner theorem of functional analysis was employed
in Ref. [15] for modeling of novel three-dimensional scat-
tering media (see also Refs. [13,14] for its application to
stationary radiation). We will now explore the application of
this idea specifically to the PT -symmetric stationary media.
For CPT(�r1, �r2, ω) to represent a genuine correlation function,
it is sufficient to write it as

CPT(�r1, �r2, ω) =
∫

p(�v, ω)H∗
PT(�r1, �v, ω)HPT(�r2, �v, ω)d3v,

(20)
where p(�v, ω) � 0, HPT(�r, �v, ω) is a complex-valued func-
tion, and the integration extends over the three-dimensional
space of vector �v. Equation (10) imposes some restrictions on
the possible forms that HPT(�r, �v, ω) can assume:∫

p(�v, ω)HPT(−�r1, �v, ω)H∗
PT(−�r2, �v, ω)d3v

=
∫

p(�v, ω)H∗
PT(�r1, �v, ω)HPT(�r2, �v, ω)d3v. (21)

For this relation to be satisfied it is sufficient that

HPT(−�r1, �v, ω)H∗
PT(−�r2, �v, ω)

= H∗
PT(�r1, �v, ω)HPT(�r2, �v, ω), (22)

or

H∗
PT(−�r, �v, ω) = HPT(�r, �v, ω), (23)

implying that HPT(�r, �v, ω) is PT symmetric. It is interesting
to compare Eq. (23) with that for classic media. On writing

Ccl(�r1, �r2, ω) =
∫

p(�v, ω)H∗
cl(�r1, �v, ω)Hcl(�r2, �v, ω)d3v,

(24)

we find that in view of the first of Eqs. (11) no additional con-
dition is imposed on Hcl: indeed, it can be any complex-valued

function. We stress that condition (23) is only sufficient; in
general HPT may have a more general form.

For Schell-like scatterers the correlation class takes the
form of the three-dimensional Fourier-transform kernel

H (�r, �v, ω) = a(�r, ω) exp(−2π i�r · �v), (25)

where a(�r, ω) must satisfy a∗(−�r, ω) = a(�r, ω) provided
Eq. (23) holds. Then, Eq. (20) simplifies as

CPT(�r1, �r2, ω) = a∗(�r1, ω)a(�r2, ω)

×
∫

p(�v, ω) exp[−2π i�v · (�r2 − �r1)]d3v

= a∗(�r1, ω)a(�r2, ω)g(�rd , ω) ⊗ g(�rd , ω)

=
√

IPT(�r1, ω)
√

IPT(�r2, ω) (26)

× exp[−iψ (�r1, ω)] exp[iψ (�r2, ω)]

× μPT(�rd , ω),

where
√

IF (�r, ω) = |a(�r, ω)|, ψ (�r, ω) = arg[a(�r, ω)], ⊗
denotes the three-dimensional convolution, �rd = �r2 − �r1,
μPT(�rd , ω) = g(�rd , ω) ⊗ g(�rd , ω), and g(�rd , ω) is given by
integral

g(�rd , ω) =
∫ √

p(�v, ω) exp(−2π i�v · �rd )d3v. (27)

There are two fundamental ways in which CPT in Eq. (26)
can possess a nontrivial phase: function ψ can be nontrivial
or μPT can be complex valued. This results in qualitatively
different far-field spectral density distributions. In the former
case an originally deterministic PT -symmetric medium is
randomized, resulting in partial “blurring” of the scattered
spectral density, as compared with that for μPT = 1. In the
latter case the medium is not PT symmetric and if μPT = 1 it
would scatter to spectral density symmetric about the z axis.
However, if |μPT| → 0 and complex valued it produces PT -
symmetry-like effects in which Fourier transform of |μPT|
determines the scattered spectral density profile and arg(μPT)
determines the off-axis shift. Both conditions can hold si-
multaneously, leading to a much more complex scattering
outcome. In particular, two mechanisms can annihilate the
asymmetries produced by them individually.

IV. SCATTERING THEORY FOR STATIONARY
PT -SYMMETRIC MEDIA

Within the validity of the first Born approximation, the
cross-spectral density W s(rŝ1, rŝ2, ω) of radiation scattered to
the far zone of a stationary medium is given by integral ([11],
p. 120)

W s(rŝ1, rŝ2, ω) = 1

r2

∫
V

∫
V

W i(�r1, �r2, ω)C(�r1, �r2, ω)

× exp[−ik(ŝ2 · �r2 − ŝ1 · �r1)]d3r1d3r2,

(28)
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where W i(�r1, �r2, ω) is the cross-spectral density of the inci-
dent field. We can express Eq. (28) as

W s(rŝ1, rŝ2, ω) = 1

r2
W̃ i(�r1, �r2, ω) � C̃(�r1, �r2, ω)

∣∣∣∣∣
(−kŝ1,kŝ2,ω)

,

(29)

where the tilde stands for three-dimensional Fourier transform
and � denotes convolution in six dimensions. This expression
indicates that C̃ plays the crucial part in characterizing the
redistribution of energy along various incident and scattered
directions. See also Ref. [12] for more general expressions for
W s involving C̃ for the intermediate scattered field, relating
to the pair-scattering matrix. Expression (29) substantially
simplifies under the assumption that the incident field is a
polychromatic plane wave propagating along direction ŝ0,
and, hence, having the cross-spectral density of the form

W i(�r1, �r2, ω) = Si(ω) exp[ikŝ0 · (�r2 − �r1)], (30)

where Si(ω) is the (position-independent) spectral density.
After substituting from Eq. (30) into Eq. (29) we obtain

W s(rŝ1, rŝ2, ω) = Si(ω)

r2
C̃(− �K1, �K2, ω), (31)

where

�K1 = k(ŝ1 − ŝ0) and �K2 = k(ŝ2 − ŝ0) (32)

are the momentum transfer vectors characterizing scattering
from incident direction ŝ0 to outgoing direction ŝ j , where j =
1, 2. We note that in cases when W i involves more than one
direction the momentum transfer vectors have a more general
form: �K1 = k(ŝ1 − ŝ′

1) and �K2 = k(ŝ2 − ŝ′
2), i.e., they depend

on two incident and two scattered directions.
Let us now analyze C̃(− �K1, �K2, ω) in detail:

C̃(− �K1, �K2, ω) = 〈F̃r (− �K1, ω)F̃r ( �K2, ω)〉m

+ 〈F̃i(− �K1, ω)F̃i( �K2, ω)〉m

+ i[〈F̃r (− �K1, ω)F̃i( �K2, ω)〉m

− 〈F̃i(− �K1, ω)F̃r ( �K2, ω)〉m]. (33)

For a classic medium both Fr (�r, ω) and Fi(�r, ω) are real
valued and even, hence both F̃r ( �K, ω) and F̃i( �K, ω) are
real valued and even, F̃r (− �K, ω) = F̃r ( �K, ω) [F̃i(− �K, ω) =
F̃i( �K, ω)]. This implies that

C̃cl(− �K2, �K1, ω) = C̃∗
cl(− �K1, �K2, ω). (34)

Since all Fourier transforms entering C̃cl are real functions, it
must always be complex valued if �K1 
= �K2, unless Fi(�r, ω) =
0. For PT -symmetric medium Fr (�r, ω) [Fi(�r, ω)] is even
[odd], hence we have F̃r (− �K, ω) = F̃r ( �K, ω) [F̃i(− �K, ω) =
−F̃i( �K, ω)], and F̃r ( �K, ω) is real valued, while F̃i( �K, ω) is
purely imaginary. This implies

C̃PT(− �K2, �K1, ω) = C̃PT(− �K1, �K2, ω). (35)

Further, since F̃i( �K, ω) is a purely imaginary function,
Eq. (35) implies that C̃PT must always be real valued, even
for �K1 
= �K2 and Fi(�r, ω) 
= 0.

Along the same scattered direction ŝ = ŝ1 = ŝ2, �K = �K1 =
�K2, and, hence, the spectral density becomes

Ss(rŝ, ω) = Si(ω)

r2
C̃(− �K, �K, ω)

= Si(ω)

r2
Ñ ( �K, ω),

(36)

where

Ñ ( �K, ω) = C̃(− �K, �K, ω)

= 〈F̃r (− �K, ω)F̃r ( �K, ω)〉m + 〈F̃i(− �K, ω)F̃i( �K, ω)〉m

+ i[〈F̃r (− �K, ω)F̃i( �K, ω)〉m

− 〈F̃i(− �K, ω)F̃r ( �K, ω)〉m]. (37)

In particular,

Ñcl( �K, ω) = 〈F̃ 2
r ( �K, ω)〉m + 〈F̃ 2

i ( �K, ω)〉m

= 〈|F̃ ( �K, ω)|2〉m,
(38)

being the Fourier transform of Icl(�r, ω) in Eq. (13), and

ÑPT( �K, ω) = 〈[F̃r ( �K, ω) + iF̃i( �K, ω)]2〉m

= 〈F̃ 2( �K, ω)〉m,
(39)

being the Fourier transform of NPT(�r, ω) in Eq. (15). Both
Ñcl( �K, ω) and ÑPT( �K, ω) are obviously real valued. By def-
inition, the spectral degree of coherence of the scattered field
is

μs(rŝ1, rŝ2, ω) = W s(− �K1, �K2, ω)√
W s(− �K1, �K1, ω)

√
W s(− �K2, �K2, ω)

(40)
and in view of Eq. (31) it generally yields

μs(rŝ1, rŝ2, ω) = C̃(− �K1, �K2, ω)√
Ñ ( �K1, ω)

√
Ñ ( �K2, ω)

. (41)

To summarize the results of this section, (I) for generic
vectors �K1 and �K2, C̃PT must be real valued while C̃cl must be
complex-valued; and, (II) as compared with Ñcl, ÑPT contains
an additional term being the correlation function of the real
and imaginary parts of the scattering potential.

V. APPLICATION TO SCHELL-MODEL SCATTERERS
WITH LINEAR AND QUADRATIC PHASES

Let us assume that CPT of the scatterer is given by Eq. (26)
where a(�r, ω) and μ(�rd , ω) are selected as

a(�r, ω) = I0 exp

(
− r2

2a2

)
exp(−i�α · �r),

μ(�rd , ω) = exp

[
− (�r1 − �r2)2

2d2

]
exp[i�β · (�r1 − �r2)], (42)

where I0 is a constant, and �α and �β are real vectors, the former
relating to the non-Hermiticity of the material’s realizations
and the latter characterizing non-Hermiticity of the material’s
correlation function. Further, a is related to the dimensions
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of the scatterer and d is the correlation length. In the case of
linear phases the effects of �α and �β can be combined:

�γ = �α + �β. (43)

Note that if �α = −�β then CPT is symmetric and real valued
and will result in axially symmetric scattered spectral density,
even though the realizations of the material are PT symmet-
ric. Such simple phase cancellation is not possible in cases
when the phase functions are nonlinear.

Then using Eqs. (42) in Eq. (26) and applying three-
dimensional Fourier transform of CPT(�r1, �r2, ω) yields

C̃PT(− �K1, �K2, ω) = I2
0

(2π )3/2a6d3

(2a2 + d2)3/2
exp

(−a2 �K1 · �K2

2 + d2/a2

)

× exp

[
−(a2 + d2)

( �K2
1 + �K2

2

)
/2

2 + d2/a2

]

× exp

[−d2 �γ · ( �K1 + �K2 − �γ )

2 + d2/a2

]
.

(44)

We confirm, based on the results of the previous section,
that C̃PT in (44) is real valued. Also, in the limit d → ∞,
the scattering results pertinent to deterministic PT -symmetric
media can be deduced. Indeed, it is implied by Eq. (44) that
as d → ∞

C̃PT(− �K1, �K2, d → ∞, ω) = I2
0 (2π )3/2a6

× exp

{
−a2

2

[ �K2
1 + �K2

2 − 2�γ · ( �K1 + �K2 − �γ )
]}

,
(45)

as expected. Expression (44) can be also written in a form
evidently demonstrating its non-Hermitian character:

C̃PT(− �K1, �K2, ω) = C̃PT(− �K1, �K2, �γ = 0, ω)

× exp

[ �γ · ( �K1 + �K2 − �γ )

2/d2 + 1/a2

]
,

(46)

where C̃�γ=0(− �K1, �K2, ω) is the correlation function for a Her-
mitian scatterer with �γ = 0, given explicitly by

C̃PT(− �K1, �K2, �γ = 0, ω) = I2
0

(2π )3/2a6d3

(2a2 + d2)3/2

× exp

[
− (a2 + d2)

( �K2
1 + �K2

2

)
/2 − a2 �K1 · �K2

2 + d2/a2

]
.

(47)

In particular, case �α 
= 0 and �β = 0 can be associated with the
situation when the scatterer is deterministic and PT symmet-
ric and is randomized by a real-valued correlation function.
On the other hand, if β = 0 and α = 0, the medium can be
thought of as a classic deterministic material but still produc-
ing PT -symmetric effects. In principle, one can have a match
�α = −�β or �γ = 0. The resulting field cannot be distinguished
from a classic field, even though it would scatter from the
PT -symmetric medium. This is a very special case of the
discussion after Eq. (26) for both linear phases. It appears
impossible to arrange for such a match if at least one of the
phases is not linear.
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FIG. 2. Contour plot of the position-dependent term in the spec-
tral density (48) of the scattered radiation field for (a) a�γ = (0, 0, 0),
(b) a�γ = (0.5, 0, 0), (c) a�γ = (1, 0, 0), (d) a�γ = (0, 0.5, 0), and
(e) a�γ = (0, 1, 0). Parameters used: ka = 1, d/a = 1 and incident
direction ŝ0 = ẑ.

The spectral density produced on scattering of the plane
wave to the far zone of the PT -symmetric medium can be
deduced from Eq. (44) as

Ss
PT(rŝ, ω) = I2

0
Si(ω)

r2

(2π )3/2a6d3

(2a2 + d2)3/2

× exp

(
−γ 2

σ 2

)
exp

(− �K2 + 2�γ · �K
σ 2

)
, (48)

where σ 2 = 2/d2 + 1/a2. Figures 2 and 3 give numerical
examples of Ss

PT in Eq. (48) for several values of a�γ =
(aγx, aγy, aγz ) depending on polar angle φ and azimuthal
angle θ of the spherical coordinate system, defined as

sx = sin θ cos φ, sy = sin θ sin φ, sz = cos θ. (49)

Consider now an example relating to the classic medium.
The Ccl of the classic scatterer directly corresponding to
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FIG. 3. Contour plot of the position-dependent term in the spec-
tral density (48) of the scattered radiation field for (a) d/a = 0.1,
(b) d/a = 0.5, and (c) d/a = 1. Parameters used: ka = 1, a�γ =
(1, 1, 1) and incident direction ŝ0 = ẑ.

Eq. (42) would have the form

a(�r, ω) = I0 exp

(
− r2

2a2

)
exp[−i(αx|x| + αy|y| + αz|z|)],

μ(�rd , ω) = exp

[
− r2

d

2d2

]
exp[i(βx|xd | + βy|yd | + βz|zd |)].

(50)

However, the Fourier transforms of a and μ do not lead to
simple analytic equations for C̃cl. Instead we set

a(�r, ω) = I0 exp

(
− r2

2a2

)
exp(−iαr2) (51)

while keeping μcl as in Eq. (42) with �β = 0. Such classic
medium with quadratic phase yields the complex-valued C̃cl

π
x

y

z

ss

s0

θ θ

s-s0

sin   n̂

^^

^ ^ ^

θ

FIG. 4. Geometry for the symmetrical scattered directions where
ŝ0 is the direction of the incident field and θ is the angle between ŝ
and ŝ0.

of the form

C̃cl(− �K1, �K2, ω) = I2
0

(
2π

c0

)3/2(c2
1 + c2

2

c2
3 + c2

4

)−3/4

× exp

[
−(a2 + d2)

( �K2
1 + �K2

2

)
4 + 8α2a2d2 + 2d2/a2

]

× exp

[
2iαa2d2

( �K2
2 − �K2

1

)
4 + 8α2a2d2 + 2d2/a2

]

× exp

[
2a2 �K1 · �K2

4 + 8α2a2d2 + 2d2/a2

]
,

(52)

where c0 = 4α2a4d2 + 2a2 + d2, c1 = 1/d2 + 1/a2,
c2 = −2α, c3 = 2a4d2α, and c4 = α4 + a2d2. Equation
(52) clearly satisfies the condition C̃cl(− �K2, �K1, ω) =
C̃∗

cl(− �K1, �K2, ω), as expected. Also, C̃cl is a complex-valued
function but C̃PT(− �K, �K, ω) is real valued. The spectral
density produced on scattering from the classic medium,
obtained from (52), is given by

Ss
cl(rŝ, ω) = I2

0 Si(ω)

r2

(
2π

c0

)3/2(c2
1 + c2

2

c2
3 + c2

4

)−3/4

× exp

( − �K2

4α2a2 + 2/d2 + 1/a2

)
, (53)

and it depends only on the angle between ŝ0 and ŝ. This
is in contrast to the spectral density for the PT -symmetric
medium where it depends not only on �K2 but also on �γ · �K
[see Eq. (48)].

In closing this section, let us analyze the spectral degree
of coherence μs(rŝ1, rŝ2, ω) for the radiation field scattered
by classic and PT -symmetric media. Direct substitution of
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FIG. 5. Spectral degree of coherence μs
PT,cl(θ ) for radiation scat-

tered by PT -symmetric (continuous lines) and classic (dashed lines)
materials. Three values of d/a are considered: 0.1, 1, and 3. Param-
eters: ka = 1 and α/k2 = 2.

Eqs. (44) and (52) into Eq. (41) gives

μs
cl(rŝ1, rŝ2, ω) = exp

[
2iαa2d2

(
K2

2 − K2
1

)
4 + 8α2a2d2 + 2d2/a2

]
× exp

[ −a2( �K1 − �K2)2

4 + 8α2a2d2 + 2d2/a2

]
, (54)

and

μs
PT(ŝ1, ŝ2, ω) = exp

[
−a2( �K1 − �K2)2

2 + d2/a2

]
. (55)

It is usually the case where a pair of symmetrical directions
is chosen to highlight the statistical properties of the scattered
radiation, for example (see Fig. 4),

ŝ1 = ŝ, ŝ2 = ŝ − 2n̂ sin θ. (56)

The symmetry suggested by these vectors depends only
on the angle between ŝ and ŝ0 and is independent of the co-
ordinate system. In the particular, basis-dependent, situation
where ŝ0 = ẑ, angle θ is the azimuthal angle in spherical polar

coordinates. For this choice,

μs
cl(θ, ω) = exp

( −a2k2 sin2 θ

1 + d2/2a2 + 2α2a2d2

)
,

μs
PT(θ, ω) = exp

(−a2k2 sin2 θ

1 + d2/2a2

)
. (57)

We thus found, for these particular symmetrical directions,
that the spectral degree of coherence for the PT -symmetric
scatterers depends only on its geometrical properties while for
the classic medium it depends on the phase α [see Eq. (51)].
Figure 5 shows how μs

cl,PT(θ, ω), given by (57), vary as a
function of θ for several values of d/a.

VI. SUMMARY

We have introduced a class of random, stationary media
whose second-order spatial correlation functions of the scat-
tering potential obey the conditions of PT symmetry and
have derived their major properties. In such media the balance
between gain and loss centers can be achieved by requiring
it from the individual realizations of the scattering potential
(or, alternatively, the index of refraction). Also, the individual
potential’s realizations can be passive (no gain or loss present)
but the correlation function might possess a phase term lead-
ing to PT -symmetric-like effects. In order to illustrate the
distinctive nature of the introduced media we have made a
close comparison of their properties with those of “classic”
media, i.e., geometrically symmetric media with unbalanced
gain and loss. Then we have applied the Bochner theorem
of functional analysis for analytical modeling of the genuine
PT -symmetric correlation functions, and considered in detail
a particular but very important subclass of such media with
uniform (Schell-like) correlations.

Further we have developed a theory of light scattering from
the PT -symmetric media and applied it to an example of
a plane wave interacting with Gaussian Schell-model media
with linear phase functions. Such an example provides the
required insight into the nature of light-medium interactions
while offering unsurpassed simplicity. In particular, it illus-
trates the fact that both types of phase terms (of the potential’s
realizations and of the correlation function) responsible for
asymmetric intensity scattering can be present, the combina-
tion either enhancing the produced asymmetry or suppressing
(annihilating) it.
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