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Electromagnetic theory of helicoidal dichroism in reflection from magnetic structures
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We present the classical electromagnetic theory framework of reflection of a light beam carrying orbital
angular momentum (OAM) by a magnetic structure with generic symmetry. Depending on the magnetization
symmetry, we find a change in the OAM content of the reflected beam due to magneto-optic interaction and
an asymmetric far-field intensity profile. This leads to three types of magnetic helicoidal dichroism (MHD),
observed when switching the OAM of the incoming beam, the magnetization sign, or both. In cases of
sufficient symmetries, such as domain walls and magnetic vortices, we establish analytical formulas that link
an experimentally accessible MHD signal to the magneto-optical Kerr effect (MOKE) constants.
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I. INTRODUCTION

Laguerre-Gaussian light beams, which are a special case
of vortex beams (VB) [1,2], carry orbital angular momentum
(OAM) and show a chiral symmetry: their wavefront appears
as a spiral surface, the two forms of which, left-handed or
right-handed, are mirror images but not superimposable [3,4].
From symmetry principles, one can expect a different re-
sponse of the two chiralities when interacting with matter
presenting no trivial symmetry [5]. For instance, such an ef-
fect was observed when a VB was sent on chiral molecules
adsorbed on a surface [6], or on structured nanopatterns [7].
These kinds of differential effects, linked to the properties of
light, are generally called birefringence or dichroism, whether
they appear on the real or imaginary part of the optical index
or reflectivity coefficients. They may appear due to micro-
scopic, macroscopic, or induced dissymetries in the medium,
providing altogether an extremely rich set of investigation
tools.

All these effects have long been identified for light car-
rying a spin angular momentum (SAM), which is another
form of chirality of light beams associated to circular polar-
ization. Discovered by Arago on α-quartz crystals, circular
birefringence, also called optical activity, was linked to the
symmetry of the macroscopic structure [8]. It is caused by
different real optical indices for circularly polarized light
beams with opposite helicities (SAM). Biot reported four
years later that it also has a microscopic origin, reporting
its observation in isotropic liquid media [9]. These semi-
nal discoveries were instrumental towards the discovery by
Pasteur of molecular dissymetry [10], today called molec-
ular chirality after Kelvin’s work [11]. The counterpart in
absorption, circular dichroism (CD), was discovered in 1896
by Cotton [12]. Furthermore, the dissymetry can be induced
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by external “forces,” like a magnetic field. Faraday discov-
ered the magnetic circular birefringence in 1846 [13] and
its counterpart in absorption, magnetic circular dichroism
(MCD), which later became accessible [14,15], is now a
standard investigation method for magnetic samples, espe-
cially in the x-ray spectral range [16–18]. All these effects
are second-order effects, appearing beyond the first or-
der electric-dipole approximation. However, when the result
of the interaction with light is photoionization, first order
effects, which appear as an uneven distribution of the pho-
toelectrons on a detector, could be identified, such as, for
instance, photoelectron circular dichroism (PECD) [19,20],
or circular dichroism in angular distribution (CDAD) on
surfaces [21].

As for OAM-dependent light-matter interactions, which
we may call Helicoidal Dichroisms (HD) [22], a few of them
have already been reported in different contexts, as reviewed
in Ref. [23]. To list only a few examples, one could consider
the measurements of the OAM of light beams as a kind of HD,
may it be used in the framework of classical [24] or quantum
light [25,26]. These schemes use either diffraction on non-
symmetrical apertures (e.g., triangular slit), interferences with
a beam of different symmetry (e.g., a VB with a plain beam),
or modes converters using birefringent prisms. However, none
of these schemes is currently of spectroscopic wide interest:
matter is here only used to alter the mode content of the beam,
without any consideration upon the physics of light-matter
interaction.

The question of spectroscopic applications first arises when
matter is left in an excited state. A recent specific review
dedicated to the interaction of twisted light with atoms is
available in Ref. [27]. Briefly, through electric-dipole tran-
sitions, twisted light beams do not couple differentially to
the internal degrees of freedom of the atomic or molec-
ular system, i.e., the electronic ones, but can act on its
external ones [28,29]. This last behavior led to important
developments, enriching the scope of techniques available
for manipulation and cooling of atoms. The first order of
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perturbation sensitive to the OAM linked to internal degrees
of freedom is the electric quadrupolar one, as recently demon-
strated experimentally in ultra-cold trapped ions [30,31], or
theoretically in oriented chiral molecular ensembles [32].
Such a result also holds for bulk magnetic materials [33].
Interestingly, these general conclusions are modified when
an atomic system gets ionized through the interaction with
a very high intensity beam (�1020 W/cm2): in this context,
new selection rules were proposed within the electric dipole
approximation [34–37], providing an analog to PECD and
CDAD. However, all these spectroscopic HDs remain ex-
perimentally extremely challenging nowadays, if possible at
all. The difficulty ultimately relies on the necessity for the
system to “see” altogether a significant twist of the wave
front over its dimensions, and a high enough intensity. When
systems are larger than atoms or molecules, these conditions
may be less demanding. Important examples are the use of
VB to control Bose-Einstein condensates [38] and to gen-
erate skyrmions [39,40]. An effect was also predicted for
nanodots [41], nanoantennas [42] and chiral dipolar nanos-
tructures [43], and an OAM-dependent plasmonic coupling
between SAM and OAM was reported when light is sent
through nanoholes [44].

From this brief and selective overview, although many
applications emerged using VB and OAM beams [3,23],
it appears that the picture of anisotropic effects involving
VB remains incomplete as compared to circularly polarized
beams. It is even more apparent when considering reflective
geometries for which a wealth of magneto-optical Kerr ef-
fect (MOKE) [15,45–47] have been identified for different
polarization/magnetization combinations which do not find
their counterpart for VB. These MOKE effects are particularly
enlightening in the extreme ultra violet (XUV) spectral range
(50–150 eV), where 3p edges of many magnetic material are
found [48–50], and in the soft x-ray region (600–900 eV),
typical for 2p edges [51–53].

In this paper, we contribute to filling the picture by ex-
plicitly predicting with classical electromagnetic theory the
existence of a phenomenon analogous to MCD, observ-
able with beams carrying OAM instead of SAM: magnetic
helicoidal dichroism (MHD). Its value can be very large,
comparable to other MOKE effects. Combined with the re-
cent availability of XUV VB both on free-electron laser
sources [54–56] and high harmonic sources [57–63], it should
make it measurable rapidly. We consider structures with
sizes comparable to a standard beam focus (100-nm–few-
micrometer width), and materials which exist at ambient
temperature. This lifts the above mentioned strong require-
ments, making MHD a promising spectroscopic tool. For
simplicity, only magnetization with constant magnitude and
not radially dependent components is considered, but an ex-
tension to more general cases can be readily achieved. We
will derive the analytical expressions of MHD for reflec-
tion of beams carrying OAM in the three different cases of
switching the OAM sign, the magnetization sign or both.
This approach is similar to what has been derived for dichro-
ism in scattering when switching OAM sign, SAM sign or
both [42]. We find that for targets with nonhomogeneous
magnetization MHD is always present when the reflected
beam profile is spatially resolved, which we indicate as
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FIG. 1. Sketch of the beam path for the reflection on the magnetic
target.

“differential” MHD. This is similar to what has been shown
for the case of resonant x-ray scattering of light carrying
SAM [64] or OAM [65], or for PECD measurements [19,20].
Furthermore, while MHD also depends on the polarization
state of the incident light, its observation does not require
any polarimetric analysis, which is convenient especially for
the XUV spectral range. We implement our model in nu-
merical calculations, the details of which are reported in
Appendix A.

This paper is organized as follows. In Sec. II, we present
the analytical model for the input OAM beam and a generic
magnetic structure. The two special cases of a magnetic vor-
tex and of two antiparallel magnetic domains are considered
explicitly. In Sec. III, we calculate the characteristics of the
reflected light beam by the magnetic structure in the near
field, finding the rules for the modification of the OAM. In
Sec. IV, we propagate the beam to the far field, evaluate the
expression for the intensity and find the equations describing
the MHD. Finally, discussion and conclusions are presented in
Sec. V.

II. MODEL

In this section, we present the analytical framework used in
our model to describe the Laguerre-Gaussian (LG) beam and
the magnetic structure.

A. Beam propagation and decomposition on the
Laguerre-Gaussian basis

We consider sufficiently loose focusing conditions so that
the paraxial equation for beam propagation is valid. We start
with a collimated Gaussian beam and propagate it in several
steps using the Fresnel integral. The beam path is shown in
Fig. 1. It first goes through a phase mask, such as a spiral
staircase, which imparts OAM to the beam. Then it propagates
to a lens, and it is focused on the sample. After reflection, the
beam is again propagated to the far field, where the detector
is placed. In order to be able to study the results in terms
of angular momentum, we use the LG basis to analyze the
interaction of an optical vortex with a magnetic structure. The
LG basis is a family of solutions of the paraxial equation
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forming a complete basis, indexed by the two integers (�, ρ),
with � being the azimuthal number, positive or negative, and
ρ the radial number, positive. The complex electric field of a
given LG mode (focus at z = 0) reads [66]

�Ein = C|�|
ρ

1

w(z)

(
r
√

2

w(z)

)|�|
L|�|

ρ

(
2r2

w2(z)

)

× e− r2

w2 (z) e−ik r2

2R(z) ei�φei(ωt−kz)ei(2ρ+|�|+1)γ (z)

(
εP

εS

)
, (1)

where C|�|
ρ is a normalization constant specific for the basis

(�, ρ), (r, φ) are the polar coordinates, L|�|
ρ represents the

Laguerre polynomial, ω is the angular frequency, and k is
the wave vector along the propagation direction z. The vector
(εP, εS ) represents the polarization state of the beam; notably,
(1,0), (0,1), and (1,±i) correspond to linearly P-polarized,
linearly S-polarized, and left and right circularly polarized
beams, respectively. The Gouy phase γ (z), the beam width
w(z) and the radius of curvature R(z) are respectively defined
as

γ (z) = arctan

(
z

zR

)
, (2a)

w(z) = w0

√
1 +

(
z

zR

)2

, (2b)

R(z) = z

[
1 +

(
zR

z

)2]
(2c)

with zR = πw2
0/λ being the Rayleigh range and w0 the waist

of the beam. For shortness, we rewrite Eq. (1) as

�Ein = A|�|
ρ eiϕ0 ei�φ

(
εP

εS

)
, (3)

where we introduced A|�|
ρ (r, z) = C|�|

ρ
1

w(z) ( r
√

2
w(z) )

|�|
L|�|

ρ ( 2r2

w2(z) )

e− r2

w2 (z) e−ik r2

2R(z) and ϕ0(t, z) = ωt − kz + (2ρ + |�| + 1)γ (z).

B. Model for the optical properties of a magnetic structure

We model our sample as a magnetic dot of typical lat-
eral extension R0 deposited on a nonmagnetic surface. We
will consider only magnetic structures on the surface of
the dot, without dependence on its depth. We will use the
σ subscript for the sample’s frame, with its surface de-
scribed in cartesian coordinates (xσ , yσ ) and polar coordinates
(rσ , φσ ). For the sake of simplicity of the analytical deriva-
tions, we will consider a structure that is perfectly flat and
is larger than the incident beam (R0 > w0), so that geomet-
rical and diffraction effects need not be taken into account.
Also, we will consider structures with constant magnetization

magnitude and no radial dependence, so that the only variation
is due to direction change with azimuthal dependence φσ . For
a better description of the structure in numerical calculations
see Appendix A.

The reflection of the light beam is modeled by the reflec-
tivity matrix R, for which �Eout = R �Ein. When a light beam
is reflected off a magnetic surface, the standard Fresnel re-
flectivity coefficients for the P and S polarizations, denoted
rPP and rSS , are complemented by magnetization-dependent
terms rl

PS , rp
PS , and rt

0 describing the magneto-optical Kerr
effect (MOKE) [45,67,68]. The first two coefficient couples
the S and P polarizations in presence of a longitudinal magne-
tization and polar magnetization respectively, while the third
one acts only on the P polarization when there is a transverse
component of the magnetization.

For simplicity, we limit ourselves to the MOKE terms
linear with the magnetization [69]. We model the reflection
matrix as [67,68]

R =
(

rPP · [
1 + rt

0 · mt
]

rl
PS · ml + rp

PS · mp

−rl
PS · ml + rp

PS · mp rSS

)
. (4)

The matrix R depends on the azimuthal location on the sam-
ple φσ through the normalized magnetization terms mt (φσ ),
ml (φσ ), and mp(φσ ). They are defined as mt = Mt/Msat., ml =
Ml/Msat. and mp = Mp/Msat., where Msat. is the saturation
magnetization of the sample and Mt , Ml and Mp are the mag-
netization components along the transverse (perpendicular to
the scattering plane, i.e., along yσ ), longitudinal (parallel to
the scattering plane, i.e. along xσ ) and polar (parallel to the
sample’s normal, i.e., along −zσ ) directions with respect to
the scattering plane in the sample frame (see Fig. 1). All the
five reflectivity coefficients are complex quantities, which we
consider constant over the structure.

Now we need to model the azimuthal dependence of the
magnetization. The formalism of Eq. (4) requires to express
the magnetization in its longitudinal, transverse and polar
components, �ml = ml x̂σ , �mt = mt ŷσ and �mp = mpẑσ (Fig. 1).
To take advantage of the symmetries of the problem, we
expand the angular part on the standard basis functions,

1√
2π

einφσ . For any function sufficiently regular, the magneti-
zation m∗ (with ∗ = l, p, t) can thus be written as

m∗(φσ ) =
+∞∑

n=−∞
m∗,neinφσ (5)

with complex decomposition coefficients

m∗,n = 1

2π

∫ 2π

0
m∗(φσ )e−inφσ dφσ . (6)

We notice here that since m∗ is a real quantity, we have the
property m∗,−n = m∗,n. Now we can rewrite the reflection
matrix as

R(φσ ) =
(

rPP 0
0 rSS

)
+

∑
n

(
rPPrt

0mt,neinφσ rl
PSml,neinφσ + rp

PSmp,neinφσ

−rl
PSml,neinφσ + rp

PSmp,neinφσ 0

)
, (7)

where we have separated the magnetization dependent and independent parts.
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TABLE I. Properties of the decomposition coefficients for a par-
ticular component of the magnetization m∗, depending on its parity
with respect to the xσ and yσ axes.

Symmetry w.r.t. yσ

even odd

n even only n odd only
even m∗,n real m∗,n real

Symmetry m∗,n = m∗,−n m∗,n = m∗,−n

w.r.t. xσ n odd only n even only
odd m∗,n imaginary m∗,n imaginary

m∗,n = −m∗,−n m∗,n = −m∗,−n

1. Magnetic structures with high symmetries

There is a priori no restriction on the span of the n values
in the decomposition, and different specific geometries will
differ by their decomposition coefficients. We analyze in more
details some cases of high symmetry that are relevant for
magnetization structure, as defined in the following. For each
component m∗ of the magnetization, we consider even or odd
symmetries with respect to (w.r.t.) the xσ and yσ axes in the
(xσ , yσ ) plane. Symmetries w.r.t zσ in other planes are not con-
sidered, since we are limited to the case of no magnetization
variations in the depth of the dot. Each of these four cases has
specific consequences on the properties of the decomposition
coefficients, and in particular on their parity. These properties
are demonstrated in Appendix B and summarized in Table I.
Given the three components of the magnetization, this restric-
tion leads to 64 (i.e., 4 × 4 × 4) different cases of symmetries.
In order to further simplify, we consider the cases of mag-
netic structures having only two magnetization components
(16 cases), and with same parities for their decomposition
coefficients. This additional restriction leads to eight cases of
symmetry, which fall within the same formalism described in
Sec. IV C.

2. Two examples of magnetic structures

We provide now two prototypical examples of magnetic
configurations, depicted in Fig. 2. In both examples, we
consider no polar magnetization component. In the first one
[Fig. 2(a)], the sample separates into two magnetically homo-
geneous domains of equal size, aligned antiparallel to each

(a) (b)

FIG. 2. Examples of magnetic samples with cartesian and polar
coordinate systems: (a) two homogeneous and antiparallel magnetic
domains and (b) counterclockwise magnetic vortex.

other. The second case [Fig. 2(b)] consists of a magnetic vor-
tex with counterclockwise circulation of the magnetization.

In the case of two antiparallel domains [Fig. 2(a)], the
magnetization can be represented as

ml (φσ ) = 0, (8a)

mt (φσ ) = m0 sgn(cos φσ ), (8b)

with m0 being the constant magnitude of the magnetization
normalized by Msat.. In this case, the symmetry of mt w.r.t.
(xσ , yσ ) is (even, odd). To find the corresponding coefficients,
integration of Eq. (6) gives (see Appendix C for the calcula-
tion):

mt,n =
{

0, for n even
2

nπ
in−1 m0, for n odd

. (9)

In the case of the magnetic vortex [Fig. 2(b)], only two coeffi-
cients of the decomposition for both components are nonzero,
corresponding to n = ±1:

ml (φσ ) = m0

2i
e−iφσ − m0

2i
eiφσ = −m0 sin φσ , (10a)

mt (φσ ) = m0

2
e−iφσ + m0

2
eiφσ = m0 cos φσ . (10b)

In this case, the symmetry of ml and mt w.r.t. (xσ , yσ ) is
respectively (odd, even) and (even, odd). The integration in
Eq. (6) now gives (Appendix C):

m∗,n =
⎧⎨
⎩

0, for n �= ±1
im0
2 n, for n = ±1, ∗ = l

m0
2 , for n = ±1, ∗ = t

. (11)

III. MODIFICATION OF THE OAM BY REFLECTION ON A
MAGNETIC STRUCTURE

We consider the axis of the OAM beam to pass through
the center of the magnetic target. It should be noted that re-
alistic sizes of both magnetic structures and OAM beams can
range from hundreds of nanometers to several micrometers.
Therefore an experimental implementation can be achieved,
with accurate control of the sample holder and beam steering
mirrors. In Appendix A, we will show numerically how our
results are modified when beam and target are not perfectly
aligned. By using Eqs. (3) and (7), we calculate the outgoing
electric field �Eout = R �Ein, separating the result into two terms
corresponding to the nonmagnetic ( �Em=0

out ) and magnetic ( �Em
out)

interaction, �Eout = �Em=0
out + �Em

out:

�Em=0
out = A|�|

ρ (r, 0)eiϕ0 ei�φ

(
εPrPP

εSrSS

)
, (12a)

�Em
out = A|�|

ρ (r, 0)eiϕ0
∑

n

ei(�φ+nφσ )

×
(

εPrPPrt
0mt,n + εS

(
rl

PSml,n + rp
PSmp,n

)
εP

(−rl
PSml,n + rp

PSmp,n
) )

. (12b)

We consider that there are no homogeneous magnetization
terms: mt,0 = ml,0= mp,0 = 0, since it will considerably sim-
plify the derivation without much loss of generality. In this
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way we can express the total field as

�Eout =
∑

n

�En,� = A|�|
ρ (r, 0)eiϕ0

∑
n

ei(�φ+nφσ )

(
αx

n,m

α
y
n,m

)
, (13)

where we defined the complex quantities αx
n,m and α

y
n,m for

n �= 0 and αx
0,m and α

y
0,m as

αx
0,m = εPrPP,

αx
n,m = m

[
εPrPPrt

0mt,n + εS
(
rl

PSml,n + rp
PSmp,n

)]
,

α
y
0,m = εSrSS,

αy
n,m = mεP

(−rl
PSml,n + rp

PSmp,n
)
. (14)

The index m = ±1 is introduced in order to explicitly describe
the reversal of the magnetization direction in Sec. IV, and acts
only for n �= 0.

A. Normal incidence

It is important to point out that Eq. (4) is written with
respect to a well defined scattering plane, which means
off-normal incidence. However, first we consider here an un-
physical model system, in which the beam impinges at normal
incidence, but the optical constants are still unequal for S
and P polarizations. This is a simplification that will allow
us to better understand the effect of the magnetic structure
on the reflection and to separate it from geometrical effects.
Pragmatically, this could be seen as the situation where the
incidence angle is very close to normal incidence. Then we
will consider the effect of a tilted target in Sec. III B, and
we will see in which conditions it is possible to distinguish
between the two effects, the trivial geometrical effect and
MHD. For normal incidence, the beam and the target share the
same polar coordinates, therefore we set φσ = φ and rσ = r
in Eq. (12). The field after reflection �Eout is a superposition
of different modes. The nonmagnetic term is an OAM beam
of the same order as the incoming one. Its polarization will
be different from the incoming one due to the different values
or rPP and rSS [Eq. (12a)], corresponding to the Kerr effect.
The magnetic term is more interesting [Eq. (12b)], and two
observations can be made at this point.

(1) The beam is no longer a pure LG mode, since the |�|
power of r in A and the azimuthal phase no longer match.
This leads to the appearance of radial modes ρ different from
the incoming one. This effect is already documented in linear
processes and was lately rationalized for low-order nonlinear
effects [70].

(2) The reflected beam has a different azimuthal mode
population with respect to the incoming one. In particular, the
incoming OAM of order � will give rise to all the possible
orders � + n for every n belonging to the decomposition of
Eq. (5).

For example, for the case of a magnetic vortex only the
coefficients of the decomposition corresponding to n = ±1
are nonzero, according to Eq. (11). Therefore the interaction
of an OAM of order � with a magnetic vortex results in the
population of the � ± 1 modes. This situation is particularly
suitable for the study of MHD, and described in detail in
Sec. IV D. As another example, in Fig. 3, we compare the
case of a magnetic dot with constant magnetization and a dot
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FIG. 3. (Left) Near field intensity profiles and (right) decomposi-
tion on the LG-mode basis of a incoming beam with � = 1 reflected
by a magnetic dot of radius 500 nm in four different cases: [(a) and
(b)] constant magnetization with incidence angle θ = 0◦ and [(c) and
(d)] with θ = 45◦; [(e) and (f)] two antiparallel magnetic domains
as in Fig. 2(a) with incidence angle θ = 0◦ and [(g) and (h)] with
θ = 45◦. The focal spot has a size comparable to that of the magnetic
dot. The bar plots values below 4% of the maximum have been
forced to 0. Details of the numerical calculations are reported in
Appendix A.

with two antiparallel domains as in Fig. 2(a), for an incoming
beam with � = 1. The size of the dot is chosen similar to
the beam waist at focus (radius of 500 nm). The details of
the numerical calculations are described in Appendix A. The
near field intensity profile and the decomposition on the LG
basis are shown in Fig. 3, panels (a) and (b) for the case of
constant magnetization, while the corresponding ones for the
two domains are shown in panels (e) and (f). While there is
no modification to the population of � modes in the reflected
beam in the case of constant magnetization, in panel (f) we
can clearly see the population of � + n modes with only n odd
terms. In both cases, we find a rich set of radial modes ρ due
to the finite size of the target.

It is useful to consider separately the S and P components
of the incoming beam. For the S part we set εP = 0. In this
case, �Em=0

out is along the y direction and �Em
out along the x

direction. Taking the square of their sum to get the intensity
leads to no cross terms. Instead, for the P component of the
incoming field, we set εS = 0, and we find that �Em=0

out is along
the x direction while �Em

out has both x and y components. Taking
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the square of their sum leads to a cross term, which is at the
origin of the dichroism effect that will be discussed in more
detail in Sec. IV.

B. Arbitrary incidence angle

We now generalize the model to describe the reflection of
an OAM beam at an arbitrary angle of incidence, since in
practical situations the sample will be rotated with respect
to the incoming beam, in order to be able to collect the re-
flected beam. This has two effects on the formalism presented
before. One is that the reflectivity coefficients will depend
on the angle. This can be trivially taken into account and
exploited to choose favourable conditions, in which the mag-
neto optical constants will be large compared to the regular
Fresnel reflection coefficients. For instance, one may choose
the Brewster angle to maximise the magnetic contribution to
the reflected intensity, as in transverse MOKE experiments
using P-polarized light, with and without polarization analy-
sis [71]. The other effect is a change in the geometry, since the
polar coordinates of the beam and the target are no longer the
same. For instance, if we consider a magnetic vortex where
the magnetization shows a circular pattern, from the point
of view of the beam it will appear as an ellipse. This will
give rise to a trivial dichroism, which might have different
symmetry than the magnetic HD of interest. In order to study
this effect, we consider a rotation of the target by an angle θ

as depicted in Fig. 1. In this case, the relationship between the
cartesian coordinates in the sample frame (xσ , yσ ) and in the
beam frame (x, y) is

xσ = x

cos θ
, (15a)

yσ = y. (15b)

Upon trigonometric inspection and defining the function
g(φ, θ ) = 1/

√
1 − sin2 φ sin2 θ one finds the following rela-

tions (see Appendix D):

sin φσ = sin φ g(φ, θ ) cos θ, (16a)

cos φσ = cos φ g(φ, θ ), (16b)

eiφσ = g(φ, θ )

(
1 + cos θ

2
eiφ + 1 − cos θ

2
e−iφ

)
, (16c)

rσ = r

g(φ, θ ) cos θ
. (16d)

As expected, for θ = 0 we retrieve the coincidence of the
polar coordinates of beam and sample. The azimuthal de-
pendence of the functions of our chosen basis is einφσ . With
Eq. (16c), we get

einφσ = g(φ, θ )n einφ

n∑
n1=0

Cn
n1

(
1 + cos θ

2

)n1

×
(

1 − cos θ

2

)n−n1

ei2n1φ, (17)

where Cn
n1

is the number of combinations of n1 elements from
n. This expression should be inserted in Eq. (12b). Without ex-
pressing it fully, we see right away that the phases previously
reading �φ + nφ now become �φ + (n + 2n1)φ. For instance,
in the case of the magnetic configurations depicted in Fig. 2
where only odd coefficients are present, the even coefficients

remain zero when considering a tilted target. This is clearly
shown in Figs. 3(c) and 3(d), where we chose θ = 45◦.

Additionally, the radius rσ and the g function also be-
come function of φ, with a sin2 φ dependence. Thus they
are symmetric with respect to φ = π and φ = π/2 and their
decomposition yields only even coefficients. We notice that
if the incoming beam carries an odd value of the OAM, the
phase-dependent term will appear in the odd LG modes, while
the radial-dependent terms will populate the even LG modes.
Conversely, if the incoming beam carries an even value of
OAM, phase-dependent terms will populate the even modes
and radial-dependent terms the odd modes. Therefore their
influence can always be separated. In particular, we come to
the conclusion that the magnetic terms will show up in the
LG components of opposite parity compared to the incoming
beam, while the nonmagnetic terms populate modes of the
same parity, which modifies the observation 2 of the previ-
ous section where all the � + n modes are populated by the
magnetic term and only � by the nonmagnetic one. This case
is illustrated in Figs. 3(g) and 3(h) (see Appendix A for further
details).

IV. HELICOIDAL DICHROISM IN THE FAR FIELD

So far we focused on the structure and mode content of
the field right after reflection by the magnetic object. Here
we show how the far field profile of the beam is affected,
leading to what we call differential helicoidal dichroism, i.e., a
difference in intensity profiles upon switching the sign of the
OAM, of the magnetization, or of both. Here “differential”
is meant as a MHD that occurs at every single point in the
image in the far field. However, the integration over space in
the image leads to constant total intensity, independent on the
sign of the OAM or of the magnetization. This is qualitatively
different from MCD where the difference persists also after
spatial integration of the scattered intensity. In this respect,
MHD is similar to CDAD of photoemission, which is also
a spatially differential effect with no dichroic signal of the
spatially integrated intensity.

In the following, we will describe analytically only the case
of normal reflection, and in Sec. V we will discuss how a tilted
sample can lead in practice to favorable conditions, along the
lines of what was discussed in Sec. III B.

A. Propagation of the reflected field from the focus
to the far field

In order to propagate �Eout to the far field, we make use of
the Fresnel operator. From now on, we refer to the far field
on the screen in Fig. 1 with the coordinate system (r, φ, z),
and we indicate with the prime the field right after reflection,
i.e., the one from Eq. (13). For a function E (r, φ, 0) with
separable variables [as it is in our case of Eq. (13)], the Fresnel
propagation equation in cylindrical coordinates reads [72]

E (t, r, φ, z) = eiϕ0(t,z)

iλz

× e
ik
2z r2

∫ 2π

0
dφ′

∫ +∞

0
r′dr′ E (r′, φ′, 0)e− ikrr′

z cos(φ−φ′ ). (18)
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The expression in Eq. (18) has the form of a specialized
Fourier transform, or a generalized Hankel transform. There-
fore we propagate the field of Eq. (13) with Eq. (18).
We study what happens to the propagation of any term
Ex,y

n,�,m(r′, φ′, 0) = A|�|
ρ (r′, 0)ei(�+n)φ′

α
x,y
n,m, and the final result

will be given by the sum over n. We have

Ex,y
n,�,m(t, r, φ, z)

= eiϕ0 (t,z)

iλz
e

ik
2z r2

αx,y
n,m

∫ +∞

0
r′dr′A|�|

ρ (r′, 0)

×
∫ 2π

0
dφ′ ei(�+n)φ′

e− ikrr′
z cos (φ−φ′ )

= eiϕ0 (t,z)

iλz
e

ik
2z r2

αx,y
n,mei(�+n)φ

∫ +∞

0
r′dr′A|�|

ρ (r′, 0)

×
∫ 2π

0
dφ′′ ei(l+n)φ′′

e− ikrr′
z cos φ′′

(19)

with the substitution φ′′ = φ′ − φ. The last integration is just
the definition of the Bessel function J�+n( krr′

z ) multiplied by a
factor 2π/il+n [72]. We keep implicit the trivial dependence
on time in ϕ0(z) = ϕ0(t, z) = ωt − kz + (2ρ + |�| + 1)γ (z),
while we write explicitly the expression of A|�|

ρ (r′, 0) =
C|�|

ρ
1

w0
( r′√2

w0
)
|�|

L|�|
ρ ( 2r′2

w2
0

)e
− r′2

w2
0 . With 1/i�+n = e−i π

2 (�+n), we
obtain

Ex,y
n,�,m(r, φ, z)

= 2π
eiϕ0(z)

iλz
e

ik
2z r2

C|�|
ρ

1

w0

(√
2

w0

)|�|
αx,y

n,mei(�+n)(φ− π
2 )

×
∫ +∞

0
dr′r′|�|+1L|�|

ρ

(
2r′2

w2
0

)
e
− r′2

w2
0 J�+n

(
krr′

z

)

= D|�|
ρ (r, z)αx,y

n,mei(�+n)(φ−π/2)Hn,�(kr, z), (20)

where we introduced the function D|�|
ρ (r, z) = 2π eiϕ0 (z)

iλz e
ik
2z r2

C|�|
ρ

1
w0

(
√

2
w0

)
|�|

, and the function Hn,�(kr, z) as the result of the
radial integral. This integral can be evaluated numerically, or
for example it is found tabulated for the mode ρ = 0 (meaning
L|�|

ρ = 1) in Ref. [73]. In particular, we notice the fact that the
H functions are real, and that since J−n(x) = (−1)nJn(x), we
have

H−n,−�(kr, z) = (−1)n+�Hn,�(kr, z). (21)

From Eq. (20), we confirm that the population of the � + n
modes is maintained after propagation, as expected.

B. Expressions of the helicoidal dichroism

The intensity detected on the screen placed in the far field,
for each of the polarization components x and y, will be the
square modulus of the sum over n of the field components

Ex,y
n,�,m:

Ix,y
�,m =

∣∣∣∣∣
∑

n

Ex,y
n,�,m

∣∣∣∣∣
2

= ∣∣D|�|
ρ

∣∣2

∣∣∣∣∣
∑

n

αx,y
n,mei(�+n)(φ−π/2)Hn,�

∣∣∣∣∣
2

= ∣∣D|�|
ρ

∣∣2 ∑
n,n′

αx,y
n,mα

x,y
n′,mei(n−n′ )(φ−π/2)Hn,�Hn′,�

= ∣∣D|�|
ρ

∣∣2 ∑
n

∣∣αx,y
n,m

∣∣2
H2

n,�

+ ∣∣D|�|
ρ

∣∣2 ∑
n �=n′

αx,y
n,mα

x,y
n′,mei(n−n′ )(φ−π/2)Hn,�Hn′,�

= (
Ix,y
�,m

)
1 + (

Ix,y
�,m

)
2, (22)

where we introduced the two terms of the sum (Ix,y
�,m)1,2 for

convenience. Also, for the following it is useful to separate
the product α

x,y
n,mα

x,y
n′,m in its modulus and phase term:

αx,y
n,mα

x,y
n′,m = ∣∣αx,y

n,m

∣∣∣∣αx,y
n′,m

∣∣eiδϕx,y
n,n′ . (23)

At this point, we can explicitly write the expressions for
MHD, where we need to calculate the difference in far-field
intensities between two measurements. We will consider sepa-
rately three possible dichroism experiments: incoming beams
with opposite � (MHD-�), magnetic targets with opposite
magnetization direction m (MHD-m), or both (MHD-�m). We
define the three MHD respectively as

�Ix,y
� (r, φ, z) = Ix,y

�,m(r, φ, z) − Ix,y
−�,m(r, φ, z), (24a)

�Ix,y
m (r, φ, z) = Ix,y

�,m(r, φ, z) − Ix,y
�,−m(r, φ, z), (24b)

�Ix,y
�,m(r, φ, z) = Ix,y

�,m(r, φ, z) − Ix,y
−�,−m(r, φ, z). (24c)

Now we consider the effect of the two terms (Ix,y
�,m)1,2

on MHD separately. We show in Appendix E that the first
term (Ix,y

�,m)1 does not contribute to MHD-m and has negligi-
ble contribution to MHD-� and MHD-�m in most practical
cases. Therefore, in the following we will disregard it.
Instead, (Ix,y

�,m)2 leads to MHD. As shown in Appendix F, upon
manipulation of the indices we can calculate the three MHD
expressions:

�Ix,y
� (r, φ, z)

= 2
∣∣D|�|

ρ

∣∣2 ∑
n �= n′

n − n′ > 0

Hn,�(kr, z)Hn′,�(kr, z)

× [∣∣αx,y
n,m

∣∣∣∣αx,y
n′,m

∣∣ cos
(
(n − n′)(φ − π/2) + δϕ

x,y
n,n′

)
− (−1)n+n′ ∣∣αx,y

−n,m

∣∣∣∣αx,y
−n′,m

∣∣ cos
(
(n − n′)(φ − π/2)

− δϕ
x,y
−n,−n′

)]
, (25)

�Ix,y
m (r, φ, z)

= 4
∣∣D|�|

ρ

∣∣2 ∑
n �=0

∣∣αx,y
0,m

∣∣∣∣αx,y
n,m

∣∣
× cos

[
n(φ − π/2) + δϕ

x,y
n,0

]
H0,�(kr, z)Hn,�(kr, z),

(26)
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�Ix,y
�,m(r, φ, z)

= 2
∣∣D|�|

ρ

∣∣2 ∑
n �= n′

n − n′ > 0

Hn,�(kr, z)Hn′,�(kr, z)

× [∣∣αx,y
n,m

∣∣∣∣αx,y
n′,m

∣∣ cos
(
(n − n′)(φ − π/2) + δϕ

x,y
n,n′

)
+ χn,n′ (−1)n+n′ ∣∣αx,y

−n,m

∣∣∣∣αx,y
−n′,m

∣∣
× cos

(
(n − n′)(φ − π/2) − δϕ

x,y
−n,−n′

)]
. (27)

For the third expression MHD-�m of Eq. (27) we defined the
function χn,n′ = 1 if n = 0 or n′ = 0 and −1 otherwise.

From Eq. (26), we can draw an important conclusion about
the relationship between magnetic structure and observation
of MHD. For this, we need to consider that having an OAM
with fixed � leads to MHD-m as long as �Ix,y

m (r, φ, z) �= 0.
Since α

x,y
0,m, the H function and the cosine term cannot be

identically zero everywhere in r and φ, the only requirement
is to have at least one α

x,y
n,m nonzero. Therefore we find that

there will be MHD whenever the magnetization is nonhomo-
geneous. Here it is important to stress that we considered
the nonhomogeneity to be an azimuthal dependence of the
magnetization direction with constant magnitude. However, a
decomposition of a radial dependent magnetization in a man-
ner similar to Eq. (5) and a amplitude varying magnetization
in Eq. (14) would also eventually lead to MHD for similar
reasons.

Furthermore, Eq. (26) leads us to another important con-
clusion. In the particular case of an incoming beam without
OAM (� = 0), there still exists differential MHD when
switching the magnetization (MHD-m). As soon as the mag-
netization has some structure (as in the two cases of Fig. 2,
for example) a linearly polarized Gaussian beam will popu-
late different OAM modes after reflection. This requirement
of anisotropy for OAM interaction has already been pointed
out [74]. As an example, the magnetic vortex [Fig. 2(b)] will
populate the modes � = ±1. Measuring the reflected beam
profile with spatial resolution will allow to obtain dichroic
images when changing the sign of the magnetization. This is
an extension to the case of MCD in reflection by a magnetic
domain [64], since we find that linearly polarized light even
wihtout OAM can still lead to a helicoidal dichroic signal
(MHD-m).

Finally, it can be noticed that the information contained in
the three MHD of Eqs. (25)–(27) is redundant. Indeed, we
have MHD-� = MHD-�m + MHD-m [75]. The three equa-
tions are the general expressions of MHD for OAM light
with generic � and ρ modes and any given symmetry of
magnetization, but they are not trivial. For a certain structure
with no specific symmetry, any coefficient may exist with
any phase and we do not anticipate any further simplification.
Instead, they can greatly simplify when considering specific
symmetric structures with respect to the center of the beam,
or specific incoming polarizations. An example is given in the
following section.

C. Example: P-polarized beam on a symmetric structure

In order to have a better insight and simplify the expres-
sions of MHD, we consider as an example the case of a

P-polarized incoming beam reflected by a highly symmetric
magnetic structure with only two magnetization components
(e.g., ml and mt ) and with decomposition coefficients n of
the same parity, as defined in Sec. II B. In other words, if
the component ml corresponds to a given case of Table I, the
component mt has to be in the same one or in the diagonal one.
Therefore we set εS = 0, and since m∗,n = m∗,−n (Sec. II B),
we have |αx,y

n,m| = |αx,y
−n,m|. We also define the two following

phases:

ϕ∗,n = arg (m∗,n) + arg (m), (28a)

ϕt
0 = arg

(
rt

0

)
. (28b)

We have the following properties: ϕ∗,n = −ϕ∗,−n, and ei-
ther ϕ∗,n = 0 or π for real coefficients or ϕ∗,n = ±π/2 for
imaginary coefficients (see Table I). For the αx values, we
calculate

δϕx
n,n′ =

⎧⎪⎨
⎪⎩

ϕt,n − ϕt,n′ = 0 or π if n, n′ �= 0,

−ϕt,n′ − ϕt
0 if n = 0,

ϕt,n + ϕt
0 if n′ = 0.

(29)

Instead, for the αy values, we calculate

α
y
0,m = 0, (30a)

δϕ
y
n,n′ = ϕl,n − ϕl,n′ = 0 or π if n, n′ �= 0. (30b)

Now we can evaluate the three MHD expressions for this
specific case. The full calculations are detailed in Appendix G.
It is found that the y component in all cases �Iy

� , �Iy
m and

�Iy
�,m, is identically zero, therefore MHD reduces to the x

component. The results are reported in the following, and
illustrated in Fig. 4 for the case of a magnetic dot with two
antiparallel domains as in Fig. 2(a).

1. Expression of MHD-�

The expression of �Ix
� (r, φ, z) takes a compact form when

considering that only either odd or even n terms are present
because of the symmetries invoked in this example. For even
terms, we obtain

�Ix
� (r, φ, z) = −4

∣∣D|�|
ρ

∣∣2
H0,�

∣∣αx
0,m

∣∣ sin ϕt
0

×
∑
n �= 0
n even

(−1)
n
2 Hn,�

∣∣αx
n,m

∣∣ sin (nφ + ϕt,n),

(31)

while for odd terms, we obtain

�Ix
� (r, φ, z) = 4

∣∣D|�|
ρ

∣∣2
H0,�

∣∣αx
0,m

∣∣ cos ϕt
0

×
∑
n �= 0
n odd

(−1)
n+1

2 Hn,�

∣∣αx
n,m

∣∣ sin(nφ + ϕt,n).

(32)

In Figs. 4(a) and 4(b), we can observe this sine azimuthal
dependence for the example of two antiparallel domains, cal-
culated for m = ±1.
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FIG. 4. Computation of MHD for a magnetic dot of 500 nm
with two antiparallel domains as in Fig. 2(a). (a) MHD-� for m = 1
and (b) for m = −1; (c) MHD-m for � = 1 and (d) for � = −1; (e)
MHD-�m as a difference of intensity maps corresponding to � = 1
and m = 1 and � = −1 and m = −1, and (f), MHD-�m, difference
of intensity maps corresponding to � = 1 and m = −1 and � = −1
and m = 1. The MHD plots are normalized to the global maximum of
their corresponding far-field intensity profiles. The incoming polar-
ization is P and the angle of incidence is θ = 5◦. The computational
details are given in Appendix A.

2. Expression of MHD-m

For the expression of �Ix
m(r, φ, z), we obtain

�Ix
m(r, φ, z) = 4

∣∣D|�|
ρ

∣∣2
H0,�

∣∣αx
0,m

∣∣ ∑
n �= 0

Hn,�

∣∣αx
n,m

∣∣
× cos

[
n(φ − π/2) + ϕt,n + ϕt

0

]
. (33)

We can observe this azimuthal dependence for the example of
two antiparallel domains in Figs. 4(c) and 4(d), calculated for
� = ±1.

3. Expression of MHD-�m

In a similar way to the case of MHD-�, the expression of
�Ix

�,m(r, φ, z) takes a compact form when considering sepa-
rately the even and odd n terms. For even terms, we obtain

�Ix
�,m(r, φ, z) = −4

∣∣D|�|
ρ

∣∣2
H0,�

∣∣αx
0,m

∣∣ cos ϕt
0

×
∑
n �= 0
n even

(−1)
n
2 Hn,�

∣∣αx
n,m

∣∣ cos(nφ + ϕt,n)

(34)

and for odd terms,

�Ix
�,m(r, φ, z) = 4

∣∣D|�|
ρ

∣∣2
H0,�

∣∣αx
0,m

∣∣ sin ϕt
0

×
∑
n �= 0
n odd

(−1)
n+1

2 Hn,�

∣∣αx
n,m

∣∣ cos(nφ + ϕt,n).

(35)

The cosine azimuthal dependence is shown in Figs. 4(e)
and 4(f) for the example of two antiparallel domains, calcu-
lated for m = ±1 or equivalently for � = ±1.

4. Discussion of MHD expressions

The five formulas Eqs. (31)–(35) summarize the main
properties of MHD in structures with high symmetry as de-
fined in Sec. II B, probed with incoming linearly P-polarized
light, and detected without any specific polarimetric de-
vice. We notice that all contributing terms come from the
interference between regular reflectivity, indexed by the sub-
script 0, and a coefficient of the magnetization, with no
cross terms between different magnetization components.
We also note that inverting the magnetization corresponds
to inverting all α

x,y
n,m coefficients (n �= 0), i.e., adding a π

phase to all ϕt,n. All intensity differences change sign as
expected for a dichroism. This is an important point if the
process is to be used for determining the chirality of mag-
netic structures. Importantly, when the structure has only odd
(respectively, even) coefficients, �Ix

� (r, φ, z) shows a sine
pattern, the amplitude of which is proportional to cos ϕt

0 (re-
spectively, sin ϕt

0), while �Ix
�,m(r, φ, z) shows a cosine pattern,

the amplitude of which is proportional to sin ϕt
0 (respec-

tively, cos ϕt
0). The two patterns can thus be fitted to yield,

up to some normalization the cosine and sine of the phase
of one of the MOKE constants. In particular, if we con-
sider the common case |mt,n||rt

0| 	 1, which is typical away
from absorption resonance and Brewster’s angle [76], then
|αx

n �=0,m| 	 |αx
0,m| [Eq. (14)], and therefore I� ∝ |αx

0,m|2H2
0,� =

|εPrPP|2H2
0,�, meaning that the reflected intensity is dominated

by |rPP|2. In such a case, one can estimate, e.g., for a sam-
ple with odd coefficients, the expression of the normalized
dichroism MHD-� = �I�/(I� + I−�):

MHD-� ≈ 2
∑
n �= 0
n odd

(−1)
n+1

2
Hn,�(kr, z)

H0,�(kr, z)

× ∣∣rt
0

∣∣|mt,n| sin(nφ + ϕt,n) cos ϕt
0, (36)

where we have reintroduced the explicit dependence of the
Hn,� functions on space and dropped the x label, since there is
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strictly no contribution of the y term to �I� = (I� − I−�), and
only a weak one to (I� + I−�), of the order of the one discarded
for the x term. Similar expressions of the normalized MHD
can be obtained in the other cases, replacing the sine and
cosine according to Eqs. (31), (34), and (35). Moreover, each
component of the cos nφ or sin nφ images can be separated
by a polar Fourier transform or an Abel inversion, and are all
proportional to the amplitude of the MOKE constant times
the nth coefficient of the decomposition of the magnetization.
We expect for this amplitude an order of magnitude corre-
sponding to the ratio of the MOKE constants over the Fresnel
constants, which is in the few percent to tens of percents. On
the other hand, exploring wavelengths at the absorption edges
and geometries near the Brewster angle might give even larger
signals.

D. A case study: application to the magnetic vortex state

In this section, we exploit the previous results and ex-
plore numerically how to extract the complex magneto-optical
constant rt

0 in an example. We consider a P-polarized beam
carrying OAM � = ±1 reflected by a magnetic vortex (MV)
with sign of its helicity designed by m = ±1, as the one de-
picted in Fig. 2. Details of the numerical model we implement
to describe the MV as a ferromagnetic dot are given in Ap-
pendix A. Using the expressions from the previous sections,
we obtain for this case:

MHD-� ≈ m
∣∣rt

0

∣∣ cos ϕt
0(−H−1 − H1) sin φ, (37a)

MHD-m ≈ m
∣∣rt

0

∣∣ ∑
n=±1

Hn sin(φ + nϕt
0), (37b)

MHD-�m ≈ m
∣∣rt

0

∣∣ sin ϕt
0(H−1 − H1) cos φ, (37c)

where the function Hn is defined as Hn(kr, z) =
Hn,1(kr, z)/H0,1(kr, z). Two of the MHD signals, MHD-�
and MHD-�m for example, allow to extract rt

0 by fitting
the intensity maps to sin φ and cos φ functions. To test this
prediction, we compute MHD-� and MHD-�m maps for a
MV on an Fe dot at θ = 5◦ for several photon energies.
They are shown in Figs. 5(a) and 5(b), respectively, for
hν = 50.1 eV. The tilt induces an extra dissymetry, but with
a 2φ symmetry which does not interfere with the MHD φ

symmetry, as discussed in Sec. III B. The fit of the lineout
taken along the shown circles is excellent for MHD-�, while
poor for MHD-�m [Fig. 5(c)]. However, since tilt and MHD
have different symmetry, the fitted cosine still corresponds
to the same line out extracted from the ideal θ = 0◦ case.
Upon normalization of amplitude and phase, we can retrieve
the complex rt

0, taking care of scaling the circle with hν.
The comparison to their initial values plugged in the model
is excellent [Fig. 5(d)], whether the tilt is taken into account
or not. Also, the choice of the fitting circle radius has
no influence, as long as it gives an intense signal for all
wavelengths.

V. CONCLUSION

As allowed by Curie’s principle, we identified a dichroism
in the intensity pattern of beams carrying orbital angular mo-
mentum (�) reflected by a target with a magnetic structure, that
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FIG. 5. (a) MHD-� and (b) MHD-�m for θ = 5◦ and hν =
50.1 eV. (c) Lineouts along the circles drawn in panel (a) (purple
dots) and (b) (green squares), together with the fits from Eq. (37a)–
(37c). Purple crosses and green diamonds correspond to the same
lineouts obtained from the θ = 0◦ case. (d) hν dependence of am-
plitude (blue, left axis) and phase (red, right axis) of the retrieved
magneto-optical constant rt

0 for θ = 5◦ (full symbols) and θ = 0◦

(three-branch crosses). The dashed lines are the corresponding input
rt

0 values. Amplitudes are normalized to 1, with same normaliza-
tion constant for tilted and not tilted cases. Phases are set equal at
resonance.

we call Magnetic Helicoidal Dichroism. We have restricted
our detailed analysis to the case of a magnetization distribu-
tion of constant amplitude and no radial dependence, but our
model can be readily generalized beyond these constraints.
We find that as soon as the magnetization is not spatially
homogeneous [74], because of magneto-optic interaction the
reflected beam will populate different OAM modes depend-
ing on the decomposition of the magnetic structure on the
polar basis set. Consequently, because of interference of the
different modes the intensity pattern in the far field changes
when changing �, the sign of the magnetization or both. The
dichroism is differential in the sense that the effect is averaged
out when the reflected intensity is integrated in space. For
magnetic structures of sufficiently high symmetry, the MHD
appears as a simple sinusoidal pattern at any given radius of
the reflected image, the parameters of which depend on the
particular shape of the magnetic structure and on the magneto-
optical constants. In particular, we could directly link the
differential image shapes to the coefficients of the polar de-
composition of the magnetic structure, providing a new way
to analyze the magnetization, or alternatively to determine
the MOKE constants without any polarization device in the
experiment. For structures with many decomposition coef-
ficients, the MOKE constants are even overdetermined and
therefore reliably accessible in an experiment. This provides
MHD with the potential of becoming an important new tool
to access the properties of magnetic materials, in particular
for dynamic studies measurements, which are known to be
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time-consuming, including time-resolved pump-probe studies
of the magnetization dynamics that can be naturally imple-
mented at laser based experimental facilities.

The common situation of an incoming beam without OAM
is a special case in our MHD model. We showed that reflection
by a sample with inhomogeneous magnetization redistributes
the mode � = 0 into other modes with � �= 0, depending on
the sample symmetry. The MHD is still present when switch-
ing the sign of the magnetization (MHD-m). This effect, up
to now overlooked in magnetic reflection experiments, may
provide a new way to either study magnetism or even to
produce OAM light. Conversely, special magnetic structures
could be engineered in order to obtain light carrying OAM or
to analyze the OAM content of a beam.

For practical reasons, an experiment exploiting the MHD
requires reflection at an angle out from normal incidence. We
found that the symmetry breaking of a tilted sample is an ad-
ditional way to redistribute the OAM modes population upon
reflection, which in general can be mixed to the redistribution
due to the interaction with the structure. However, we could
identify favorable conditions where the two effects do not mix.
A specific case is an incoming P polarized beam, impinging on
a structure that shows even or odd magnetization with respect
to both the xσ and yσ axes. In this case, the magnetic effect
only appears on the odd OAM modes, while the geometrical
effect appears on the even ones. We examined in more detail
the case of a magnetic vortex, which is particularly simple
since the decomposition has only two coefficients, and par-
ticularly interesting since it allows to study the coupling of a
beam carrying topological charge with an object of topologi-
cal nature itself.

The theory of MHD that we have presented is very general
and can be applied to many kinds of magnetic structures, to
any polarization state and in different wavelength ranges. We
developed it into details and applied it to a few specific cases,
showing for instance how it makes it possible to retrieve the
MOKE constants in the XUV range without implying any
polarization analysis. Among other possible applications, for
example, one can envisage to: extend the study to the soft
x-ray regime; probe periodic nano- and micro-structures to ad-
dress the collective response of their magnetization; achieve a
rapid readout of the symmetry of the magnetization structure,
possibly with micrometer spatial resolution by integrating a
beam and/or sample scanning system; explore the coupling
with SAM [42,77], since tailoring structured light beams can
allow the appearance of new dichroisms [78].

This MHD theory of reflection is developed in the frame-
work of classical electromagnetism, as a result of spatially
inhomogeneous reflectivity coefficients coupled to a spatially
varying phase term of the beam reflected. Similar arguments
could be made for an equivalent of Faraday effect, analyzing
the transmission matrix. In order to understand the physical
microscopic origin of MHD, however, a quantum description
of reflection is needed [79]. Indeed, at this stage it is still
unclear whether there is a local transfer of OAM between
light and matter, and how the magnetic structure dynamically
responds to light with OAM. Experimentally, these questions
can be addressed by extending the study to the time domain,
which is naturally accessible with HHG and FEL sources.
Whether or not there is angular momentum transfer, the redis-

tribution of azimuthal modes in the reflected beam may locally
alter the magnetic structure of the sample, which could dy-
namically respond with an effect similar to spin-orbit torque
with large spin density [80], thus leading to a time-dependent
MHD. Also, time resolution would provide an access point to
the dynamics of magnetic structures such as vortices [81] and
skyrmions [82] and potentially to manipulate them, a great
interest for topological and spintronics applications.

From this outlook, it appears that the analysis of MHD
in the reflection of OAM beams from a magnetic structure
can find original applications of both applied and fundamental
interest in the field of magneto-optics.
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APPENDIX A: NUMERICAL CALCULATIONS

1. Optical beam

The theory presented here, was tested with a specifi-
cally written python-based propagation code based on Fresnel
propagation of light. When propagating from the far-field to
the near field or vice versa, a Fourier transform method is used
to compute the field in the new plane, while for far-field to
far-field propagation we use the convolution method. We set
Laguerre mask and lens at the same place (Fig. 1), with focal
length of the lens of 1 m. The sample is placed at focus. The
waist of the incoming collimated beam is set to w0 = 15 mm.
The intensity patterns are computed separately for the P and S
linearly polarized components, before being combined when
required. The transverse direction is mapped on a spatial grid
of 1024 × 1024 points.

We consider wavelengths significantly larger than the ru-
gosity of the dot’s surface, expected below the nanometer. The
beam waist at focus is smaller than the MV diameter, avoiding
the treatment of edge diffraction. These hypothesis justify the
coherent approach proposed here. With these constraints, a
suitable wavelength range for MHD is 10 nm � λ � 1000
nm, which covers magnetization sensitive electronic exci-
tations at optical and core transitions in most elements of
interest for magnetic materials. The wavelength of the beam is
set to λ = 23.5 nm in our simulations when not specified oth-
erwise. However, it is important to stress that the dependence
of our results on the wavelength is only due to the variation of
the reflectivity coefficients on λ, as illustrated in Fig. 5.

The two orthogonal components of the field calculated
on the detector in the far field can be decomposed on a LG
basis with a finite number of elements. In order to define the
family of LG modes we need to choose the finite amount of
ρ and � modes. We noted, on the examples that we treated,
that using ρ modes ranging from 0 to 18 and � modes from
−9 to 9 (that is 19 � modes in total, and a grand total of
361 modes) was sufficient to accurately describe the intensity
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FIG. 6. . Reflectivity coefficients maps used for the computation.
λ = 23.5 nm, angle of incidence θ = 5◦. From (a) to (d): |rPP|, |rSS|,
|rPP rt

0 my|, and arg(rPP rt
0 my ). For (d), all points with magnitudes of

less than 1% of the value at center (maximum), have been set to NaN.
(e) Modulus and (f) phase of the following coefficients along the line
at y = 0. Plum cross: rPP; blue dotted line: rSS; purple plus: rt

0.

profiles. The decomposition on the LG basis is obtained by
computing the integral of the product of any polarization
component of the field (S or P) with a given LG mode. If
the result is below a given accuracy parameter (set here to
10−4) compared to the dominant mode then it is forced to
zero. The trivial radius of curvature of the field wave front
in the far field, due to its divergence, is removed before
decomposition.

2. Sample

In all numerical examples, we considered a SiN sub-
strate (nonmagnetic material) on which the magnetic material,
considered as Fe, was deposited. The optical reflectivity coef-
ficients outside of the sample are thus those of SiN and not of a
purely absorbing material, as used for sake of simplification in
the analytical derivation in the main text. The corresponding
reflectivity coefficients are displayed in Fig. 6. This computa-
tional detail has of course no importance when the beam focus
is smaller than the magnetic dot.

In order to describe the magnetic dot used as a typical
example, we write its height h as

h(rσ ) = h0e−( rσ
R0

)β
, (A1)

where R0 is the radius of the dot, h0 is the height of the
dot in the center and β is an integer. The hyper-Gaussian
function takes into account the sharpness of the dot edge. In
all numerical applications we set β = 6.

We develop a numerical example using the magneto-
optical constants of Fe in the XUV range corresponding to
the 3p → 3d electron excitation. We computed the follow-
ing values for their maxima at θ = 5◦ [67,68,76,83]: rpp =
0.027e−1.38 j , rt

0 = 0.038e−0.11 j and rl
ps = 0.00051e−1.49 j . We

note that the two coefficients (rpp rt
0) and rl

ps have similar
amplitude, respectively 3.8% and 1.9% of rpp. The values of
the reflectivity coefficients are shown in Fig. 6 for the case of
a magnetic dot of radius R0 = 500 nm with two antiparallel
magnetic domains as in the example of Fig. 2(a). A smooth
transition from the dot to the substrate is ensured by multi-
plying the reflectivity coefficients by h(rσ )/h0 [Eq. (A1)] for
the magnetic dot and by (1 − h(rσ ))/h0 for the substrate. The
reflectivity matrix thus reads

R(rσ , φσ ) = e
i4π
λ

h(rσ ) h(rσ )

h0

×
(

rPP [1 + rt
0 mt (φσ )] rl

PS ml (φσ )
−rl

PS ml (φσ ) rSS

)

+
(

1 − h(rσ )

h0

)(
rσ

PP 0
0 rσ

SS

)
(A2)

where we have explicitly indicated the dependence of the
matrix on the azimuthal location on the sample. The leading
phase term of the first line describes the dephasing of the light
wave depending on whether it hits the dot or the substrate.
For λ ≈ h0, this phase term is simply ≈2 × 2π , where the
factor 2 describes back and forth travel. This dephasing is
far from being negligible: the thickness of a permalloy dot
is typically h0 ≈ 20 nm, comparable to the wavelength of the
3p resonance of Fe (λ = 23.5 nm).

3. Centering of beam and magnetic dot

In Sec. III, we required the axis of the OAM beam to pass
through the center of the magnetic dot for our theory, and
we argued that this can be achieved with accurate control of
the sample holder and beam steering mirrors. However it is
interesting to study what happens when beam and target are
not perfectly aligned. For this, we consider the two coordinate
systems of light and target, (r, φ) and (rσ , φσ ) respectively, to
have different origins: the target coordinate system is centered
in the point indicated by (�,�) in the beam frame. It can be
shown by trigonometry that the term ei(�φ+nφσ ) in Eq. (12b)
is modified to ei�φ[(rei(φσ −�) − �)/rσ ]

n
. It can be seen that

it is quite difficult to carry out the study of the symmetries
analytically, therefore we proceed numerically.

In Fig. 7(a), present as an example the study of an incident
vortex beam on a magnetic vortex at θ = 48◦. Five different
relative position of VB and MV are shown. The central one
corresponds to a perfect alignment, while the other ones cor-
respond to a shift along the diagonal direction. In panel (b),
the corresponding reflected beam intensities in the far field
are shown. As one could expect, for small shifts the image is
only slightly modified, while it gets more deformed for larger
shifts. Interestingly, within the limits of our model the two
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FIG. 7. (a) Numerical simulation of the relative position of an incident beam and a magnetic vortex (diameter of 10 μm and placed at
θ = 48◦ for this simulation on a square of 17.2 μm) and (b) the resulting reflected intensity in the far field (at 10 cm from the sample here,
square of 15 cm).

opposite shifts with respect to the center do not give images
that can be converted to one another by any symmetry. For
sake of simplicity, here we do not explore further the effect of
such shift, and further studies are required to determine if and

how it affects the symmetry of the MHD signals. Certainly it
should be taken into account in case of experimental studies,
and eventually it might be possible to retrieve the actual shift
from MHD measurements.

APPENDIX B: PARITY OF THE ANGULAR DECOMPOSITION

We show here how to obtain the symmetry properties of Table I. We express the coefficient m∗,n by separating the azimuthal
integral in Eq. (6) piecewise as

m∗,n = 1

2π

∫ π

0
m∗(φσ )einφσ dφσ +

∫ 2π

π

m∗(φσ )einφσ dφσ

= 1

2π

∫ π

0
[m∗(φσ )einφσ + m∗(2π − φσ )e−inφσ ]dφσ

= 1

2π

∫ π
2

0
[m∗(φσ )einφσ + m∗(2π − φσ )e−inφσ ]dφσ +

∫ π

π
2

[m∗(φσ )einφσ + m∗(2π − φσ )e−inφσ ]dφσ

= 1

2π

∫ π
2

0
[m∗(φσ )einφσ + m∗(2π − φσ )e−inφσ ] + (−1)n[m∗(π − φσ )e−inφσ + m∗(π + φσ )einφσ ]dφσ (B1)

where we have used the changes of variables φσ → 2π − φσ and φσ → π − φσ for the last integrals in lines 2 and 4, respectively.
We envision 4 general cases, depending on the symmetry of the azimuthal dependence with respect to xσ (i.e. φσ = π ) and yσ

(i.e. φσ = π/2) being even or odd, as listed in Table I.
For instance, we consider m∗ being (even, odd) w.r.t. (xσ , yσ ), i.e. m∗(2π − φσ ) = m∗(φσ ) and m∗(π − φσ ) = −m∗(φσ ). For

example, this is the case of mt of both the antiparallel magnetic domains and the magnetic vortex of Fig. 2. We have

m∗,n = 1

2π

∫ π
2

0
2m∗(φσ ) cos nφσ [1 − (−1)n]dφσ . (B2)

From this integral, we see that all coefficients m∗,n with even n will be zero. Instead, they may be nonzero for n odd. In addition,
all m∗,n are real quantities, and m∗,−n = m∗,n.

An equivalent analysis for the other three symmetry cases leads to all the results presented in Table I.

APPENDIX C: FOURIER DECOMPOSITION OF THE MAGNETIZATION OF EXAMPLES IN FIG. 2

We present the calculation of the Fourier decomposition coefficients for the magnetization in the case of antiparallel magnetic
domains [Fig. 2(a)] and magnetic vortex [Fig. 2(b)].
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1. Case of the antiparallel domains

mt,n = m0

2π

∫ +π

−π

dφσ sign(cos(φσ ))e−inφσ

= m0

2π

(∫ π/2

−π/2
dφσ e−inφσ −

∫ −π/2

π/2
dφσ e−inφσ

)

= m0

2π

1

−in
[(−i)n − in − (in − (−i)n)]

= m0in−1

nπ
[1 − (−1)n],

mt,n =
{

0, for n even
2m0
nπ

in−1, for n odd
.

2. Case of the vortex

For this case, we use the general result:

∫ +π

−π

dφσ eiκφσ =
{

0, for κ �= 0
2π, for κ = 0 . (C1)

We thus have for the longitudinal part:

ml,n = m0

4iπ

∫ +π

−π

dφσ (e−iφσ − eiφσ )e−inφσ , (C2)

ml,n =
{

0, for n �= ±1
∓m0

2i , for n = ±1
(C3)

and for the transverse part,

mt,n = m0

4π

∫ +π

−π

dφσ (eiφσ + e−iφσ )e−inφσ , (C4)

mt,n =
{

0, for n �= ±1
m02
,

for n = ±1
. (C5)

APPENDIX D: TRIGONOMETRY

In the following, we present the calculations that allow to obtain Eq. (16). For the sin φσ term,

sin φσ = yσ√
y2
σ + x2

σ

= y√
y2 + x2

cos2 θ

= y√
x2 + y2

1√
x2/ cos2 θ+y2

x2+y2

= sin φ
1√

cos2 φ

cos2 θ
+ sin2 φ

= sin φ
cos θ√

cos2 φ + sin2 φ cos2 θ

= sin φ
cos θ√

1 − sin2 φ sin2 θ
.
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The exact same computations can be carried out for the cosine, replacing the numerator of the first equation by xσ . We
thus get

cos φσ = cos φ
1√

1 − cos2 φ sin2 θ

and combining them

eiφσ = cos φσ + i sin φσ = g(φ, θ ) (cos φ + i sin φ cos θ ) = g(φ, θ )

(
1 + cos θ

2
eiφ + 1 − cos θ

2
e−iφ

)
.

For the rσ term, we calculate

rσ =
√

y2
σ + x2

σ =
√

y2 + x2

cos2 θ
=

√
x2 + y2

√
x2/ cos2 θ + y2

x2 + y2
= r

√
cos2 φ

cos2 θ
+ sin2 φ = r

cos θ

√
1 − sin2 φ sin2 θ.

APPENDIX E: CONTRIBUTION OF (Ix,y
�,m)1 TO MHD

In this Appendix, we show that the contribution of the term (Ix,y
�,m)1 to MHD is negligible.

1. Case of MHD-�

We calculate (�I�)1 = (Ix,y
�,m)1 − (Ix,y

−�,m)1:

(�Il )1 ∝ ∣∣αx,y
0,m

∣∣2(
H2

0,� − H2
0,−�

) +
∑
n>0

∣∣αx,y
n,m

∣∣2(
H2

n,� − H2
n,−�

) +
∑
n<0

∣∣αx,y
n,m

∣∣2(
H2

n,� − H2
n,−�

)

∝
∑
n>0

(∣∣αx,y
n,m

∣∣2 − ∣∣αx,y
−n,m

∣∣2)(
H2

n,� − H2
n,−�

)
.

Now, considering Eq. (14), for the y component we see that since |αy
n,m|2 = |αy

−n,m|2, we have (�I�)1 = 0.
Instead, for the x component we have αx

n,m defined as the sum of two terms. If one of them is zero, for instance the incoming
light is P- or S-polarized (εS = 0 or εP = 0, respectively) or if the magnetic structure is such that mt,n or ml,n are zero, then also
in this case we have simply |αx

n,m|2 = |αx
−n,m|2, and thus (�I�)1 = 0.

If the experimental conditions are such that both components of αx
n,m are not zero, then (�I�)1 is not necessarily zero.

A somewhat lengthy calculation leads to(∣∣αx
n,m

∣∣2 − ∣∣αx
−n,m

∣∣2) = −4
∣∣rt

0

∣∣2∣∣εPεSrPPrl
PS

∣∣Im{mt,nml,n} sin
(
ϕP − ϕS + ϕPP − ϕl

PS

)
,

namely, a term proportional to the square of the magnetization and of the MOKE constant rt
0. This can be an important

contribution compared to (�I�)2 in the most general case, and we note that it could be a way to experimentally access the
quantity ϕPP − ϕl

PS under properly chosen conditions. However, as we will see later (Sec. IV C), for highly symmetric structures
and under the reasonable assumption |m∗,n||rt

0| 	 1, (�I�)2 is found to be linear with magnetization and rt
0, thus (�I�)1 can still

be considered negligible. In any case, as pointed out above this issue can be simply avoided by choosing a proper experimental
setup.

2. Case of MHD-m

We calculate (�Im)1 = (Ix,y
�,m)1 − (Ix,y

�,−m)1:

(�Im)1 ∝
∑

n

(∣∣αx,y
n,m

∣∣2 − ∣∣αx,y
n,−m

∣∣2)
H2

n,� . (E1)

Since |αx,y
n,m|2 = |αx,y

n,−m|2, in this case simply (�Im)1 is always zero.

3. Case of MHD-�m

A similar analysis to that for MHD-� leads to the same conclusion of (�I�,m)1 giving a negligible contribution to MHD-�m.

APPENDIX F: DERIVATION OF GENERAL MHD FORMULAS

In the following, we present the detailed derivation of the general MHD expressions, where we evaluate the three differences
of Eq. (24) using the expression of (Ix,y

�,m)2 from Eq. (22). In order to simplify the notation we drop the (kr, z) explicit dependence
of the Hn,l and the m subscript for all α

x,y
n terms. We will use the property H−n,−� = (−1)n+�Hn,� [Eq. (21)], and the general

property of series
∑

n−n′>0 sn,n′ = ∑
n′−n>0 sn′,n = ∑

n−n′>0 s−n′,−n.
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1. Expression of MHD-� [Eq. (25)]

�Ix,y
� (r, φ, z) = ∣∣D|�|

ρ

∣∣2 ∑
n �=n′

(
αx,y

n α
x,y
n′ ei(n−n′ )(φ−π/2)

)
[Hn,�Hn′,� − Hn,−�Hn′,−�]

= 2
∣∣D|�|

ρ

∣∣2 ∑
n �= n′

n − n′ > 0

∣∣αx,y
n

∣∣∣∣αx,y
n′

∣∣ cos
[
(n − n′)(φ − π/2) + δϕ

x,y
n,n′

]
[Hn,�Hn′,� − Hn,−�Hn′,−�]

= 2
∣∣D|�|

ρ

∣∣2 ∑
n �= n′

n − n′ > 0

∣∣αx,y
n

∣∣∣∣αx,y
n′

∣∣ cos
[
(n − n′)(φ − π/2) + δϕ

x,y
n,n′

]
[Hn,�Hn′,� − (−1)n+n′

H−n,�H−n′,�]

= 2
∣∣D|�|

ρ

∣∣2 ∑
n �= n′

n − n′ > 0

∣∣αx,y
n

∣∣∣∣αx,y
n′

∣∣ cos
[
(n − n′)(φ − π/2) + δϕ

x,y
n,n′

]
Hn,�Hn′,�

− 2
∣∣D|�|

ρ

∣∣2 ∑
n �= n′

n − n′ > 0

(−1)n+n′ ∣∣αx,y
n

∣∣∣∣αx,y
n′

∣∣ cos
[
(n − n′)(φ − π/2) + δϕ

x,y
n,n′

]
H−n,�H−n′,�

= 2
∣∣D|�|

ρ

∣∣2 ∑
n �= n′

n − n′ > 0

∣∣αx,y
n

∣∣∣∣αx,y
n′

∣∣ cos
[
(n − n′)(φ − π/2) + δϕ

x,y
n,n′

]
Hn,�Hn′,�

− 2
∣∣D|�|

ρ

∣∣2 ∑
n �= n′

−n + n′ > 0

(−1)n+n′ ∣∣αx,y
−n

∣∣∣∣αx,y
−n′

∣∣ cos
[−(n − n′)(φ − π/2) + δϕ

x,y
−n,−n′

]
Hn,�Hn′,�

= 2
∣∣D|�|

ρ

∣∣2 ∑
n �= n′

n − n′ > 0

∣∣αx,y
n

∣∣∣∣αx,y
n′

∣∣ cos
[
(n − n′)(φ − π/2) + δϕ

x,y
n,n′

]
Hn,�Hn′,�

− 2
∣∣D|�|

ρ

∣∣2 ∑
n �= n′

n − n′ > 0

(−1)n+n′ ∣∣αx,y
−n′

∣∣∣∣αx,y
−n

∣∣ cos
[−(n′ − n)(φ − π/2) + δϕ

x,y
−n′,−n

]
Hn′,�Hn,�,�Ix,y

� (r, φ, z)

= 2
∣∣D|�|

ρ

∣∣2 ∑
n �= n′

n − n′ > 0

Hn,�Hn′,�
[∣∣αx,y

n

∣∣∣∣αx,y
n′

∣∣ cos
(
(n − n′)(φ − π/2) + δϕ

x,y
n,n′

)

− (−1)n+n′ ∣∣αx,y
−n

∣∣∣∣αx,y
−n′

∣∣ cos
(
(n − n′)(φ − π/2) − δϕ

x,y
−n,−n′

)]
. (F1)

2. Expression of MHD-m [Eq. (26)]

�Ix,y
m (r, φ, z) = ∣∣D|�|

ρ

∣∣2 ∑
n �=n′

(
αx,y

n α
x,y
n′ ei(n−n′ )(φ−π/2)

)
[Hn,�Hn′,� + χn,n′Hn,�Hn′,�]

= 2
∣∣D|�|

ρ

∣∣2 ∑
n �= n′

n − n′ > 0

∣∣αx,y
n

∣∣∣∣αx,y
n′

∣∣ cos
[
(n − n′)(φ − π/2) + δϕ

x,y
n,n′

]
[Hn,�Hn′,� + χn,n′Hn,�Hn′,�]

= 4
∣∣D|�|

ρ

∣∣2 ∑
n = 0 or n′ = 0

n − n′ > 0

∣∣αx,y
n

∣∣∣∣αx,y
n′

∣∣ cos
[
(n − n′)(φ − π/2) + δϕ

x,y
n,n′

]
Hn,�Hn′,�

= 4
∣∣D|�|

ρ

∣∣2 ∑
−n′ > 0

∣∣αx,y
0

∣∣∣∣αx,y
n′

∣∣ cos
[−n′(φ − π/2) + δϕ

x,y
0,n′

]
H0,�Hn′,�

+ 4
∣∣D|�|

ρ

∣∣2 ∑
n > 0

∣∣αx,y
n

∣∣∣∣αx,y
0

∣∣ cos
[
n(φ − π/2) + δϕ

x,y
n,0

]
Hn,�H0,�
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= 4
∣∣D|�|

ρ

∣∣2 ∑
n < 0

∣∣αx,y
0

∣∣∣∣αx,y
n

∣∣ cos
[−n(φ − π/2) − δϕ

x,y
n,0

]
H0,�Hn,�

+ 4
∣∣D|�|

ρ

∣∣2 ∑
n > 0

∣∣αx,y
n

∣∣∣∣αx,y
0

∣∣ cos
[
n(φ − π/2) + δϕ

x,y
n,0

]
Hn,�H0,�

= 4
∣∣D|�|

ρ

∣∣2 ∑
n �= 0

∣∣αx,y
0

∣∣∣∣αx,y
n

∣∣ cos
[
n(φ − π/2) + δϕ

x,y
n,0

]
H0,�Hn,�,

�Ix,y
m (r, φ, z) = 4

∣∣D|�|
ρ

∣∣2∣∣αx,y
0

∣∣H0,�

∑
n �= 0

∣∣αx,y
n

∣∣ cos
[
n(φ − π/2) + δϕ

x,y
n,0

]
Hn,�. (F2)

3. Expression of MHD-�m [Eq. (27)]

The derivation of the expression of �Ix,y
�,m(r, φ, z) follows the same steps as that of �Ix,y

� (r, φ, z) [Eq. (25)].

APPENDIX G: DERIVATION OF MHD FORMULAS FOR THE EXAMPLE OF SEC. IV C

In the following, we drop the explicit dependence of the H functions on the spatial coordinates and the m subscript for all
α

x,y
n terms. Also, it is useful to express differences and sums of the δϕx phase terms as

δϕx
n,n′ − δϕx

−n,−n′

2
=

⎧⎨
⎩

ϕt,n − ϕt,n′ = 0 or π if n, n′ �= 0,
−ϕt,n′ if n = 0,
ϕt,n if n′ = 0.

(G1a)

δϕx
n,n′ + δϕx

−n,−n′

2
=

⎧⎨
⎩

0 if n, n′ �= 0,
−ϕt

0 if n = 0,
ϕt

0 if n′ = 0.
(G1b)

1. Expression of MHD-� [Eqs. (31) and (32)]

Taking into account that |αx,y
n,m| = |αx,y

−n,m| and using prosthaphaeresis identity, the MHD-� from Eq. (25) reads

�Ix,y
� (r, φ, z) − 4

∣∣D|�|
ρ

∣∣2 ∑
n �= n′

n − n′ > 0
n + n′ even

(−1)
n−n′

2 Hn,�Hn′,�
∣∣αx,y

n

∣∣∣∣αx,y
n′

∣∣ sin

(
(n − n′)φ + δϕ

x,y
n,n′ − δϕ

x,y
−n,−n′

2

)
sin

(
δϕ

x,y
n,n′ + δϕ

x,y
−n,−n′

2

)

+ 4
∣∣D|�|

ρ

∣∣2 ∑
n �= n′

n − n′ > 0
n + n′ odd

(−1)
n−n′+1

2 Hn,�Hn′,�
∣∣αx,y

n

∣∣∣∣αx,y
n′

∣∣ sin

(
(n − n′)φ + δϕ

x,y
n,n′ − δϕ

x,y
−n,−n′

2

)
cos

(
δϕ

x,y
n,n′ + δϕ

x,y
−n,−n′

2

)
. (G2)

However, for the y term, we notice that the first line in the expression of �Iy
� (r, φ, z) is zero due to the final sine when n, n′ �= 0

and to α
y
0,m = 0 when n = 0 or n′ = 0. For the second line, if both n �= 0 and n′ �= 0, in both cases of symmetries yielding either

only odd or only even terms, the sum n + n′ is even and is not in the sum. If n = 0 or n′ = 0, α
y
0,m = 0 and the contribution is

null. Therefore, in the framework of our approximations we identically have �Iy
� (r, φ, z) = 0.

Instead, the x term �Ix
� (r, φ, z) can be further simplified considering that only either odd or even terms are present because

of the symmetries invoked in this example.

a. Even terms

For even terms, only the first line of Eq. (G2) is present since n + n′ is necessarily even. If both n �= 0 and n′ �= 0, however,
the sum is zero because of the last sine term. We are thus left with the sum over either n or n′ = 0. Since the sum runs over
n − n′ > 0, it amounts to summing, for all even integers, the same expression. We thus split the sum in two subsums:

�Ix
� (r, φ, z) = −4

∣∣D|�|
ρ

∣∣2 ∑
n �= 0
n > 0
n even

(−1)
n
2 Hn,�H0,�

∣∣αx
n

∣∣∣∣αx
0

∣∣ sin

(
nφ + δϕx

n,0 − δϕx
−n,0

2

)
sin

(
δϕx

n,0 + δϕx
−n,0

2

)
− 4

∣∣D|�|
ρ

∣∣2 ∑
0 �= n′

−n′ > 0
n′ even

(−1)
−n′

2

× H0,�Hn′,�
∣∣αx

0

∣∣∣∣αx
n′
∣∣ sin

(
−n′φ + δϕx

0,n′ − δϕx
0,−n′

2

)
sin

(
δϕx

0,n′ + δϕx
0,−n′

2

)
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= −4
∣∣D|�|

ρ

∣∣2 ∑
n �= 0
n > 0
n even

(−1)
n
2 Hn,�H0,�

∣∣αx
n

∣∣∣∣αx
0

∣∣ sin (nφ + ϕt,n) sin (ϕt
0) − 4

∣∣D|�|
ρ

∣∣2 ∑
n �= 0
n < 0
n even

(−1)
n
2

× Hn,�H0,�

∣∣αx
n

∣∣∣∣αx
0

∣∣ sin (−nφ − ϕt,n) sin (−ϕt
0)

= −4
∣∣D|�|

ρ

∣∣2 ∑
n �= 0
n even

(−1)
n
2 Hn,�H0,�

∣∣αx
n

∣∣∣∣αx
0

∣∣ sin (nφ + ϕt,n) sin (ϕt
0) (G3)

finding the result of Eq. (31).

b. Odd terms

For odd terms, the first line of Eq. (G2) is present only if both n �= 0 and n′ �= 0, however the sum is zero because of the last
sine term, and thus only the second line needs to be considered. This also reduces to a sum over either n = 0 or n′ = 0, since it
is the only way to have n + n′ odd:

�Ix
� (r, φ, z) = 4

∣∣D|�|
ρ

∣∣2 ∑
n �= 0
n > 0
n odd

(−1)
n+1

2 Hn,�H0,�

∣∣αx
n

∣∣∣∣αx
0

∣∣ sin

(
nφ + δϕx

n,0 − δϕx
−n,0

2

)
cos

(
δϕx

n,0 + δϕx
−n,0

2

)

+ 4
∣∣D|�|

ρ

∣∣2 ∑
0 �= n′

−n′ > 0
n′ odd

(−1)
−n′+1

2 H0,�Hn′,�
∣∣αx

0

∣∣∣∣αx
n′
∣∣ sin

(
−n′φ + δϕx

0,n′ − δϕx
0,−n′

2

)
cos

(
δϕx

0,n′ + δϕx
0,−n′

2

)

= 4
∣∣D|�|

ρ

∣∣2 ∑
n �= 0
n > 0
n odd

(−1)
n+1

2 Hn,�H0,�

∣∣αx
n

∣∣∣∣αx
0

∣∣ sin (nφ + ϕt,n) cos
(
ϕt

0

)

+ 4
∣∣D|�|

ρ

∣∣2 ∑
0 �= n′
n < 0
n odd

(−1)
−n+1

2 H0,�Hn,�

∣∣αx
0

∣∣∣∣αx
n

∣∣ sin (−nφ − ϕt,n) cos
(−ϕt

0

)

= 4
∣∣D|�|

ρ

∣∣2 ∑
n �= 0
n odd

(−1)
n+1

2 Hn,�H0,�

∣∣αx
n

∣∣∣∣αx
0

∣∣ sin (nφ + ϕt,n) cos
(
ϕt

0

)
, (G4)

where we have taken into account for the last step that (−1)
−n+1

2 = (−1)
n−1

2 = −(−1)
n+1

2 , and we find the result of Eq. (32).

2. Expression of MHD-m [Eq. (33)]

The expression of Eq. (33) is simply obtained by using the definition of δϕx
n,0 from Eq. (29) into Eq. (26).

3. Expression of MHD-�m [Eqs. (34) and (35)]

Similarly to the case of MHD-�, we can calculate the full expression of MHD-�m. Following a similar derivation as for
Eq. (G2), the expression of �Ix,y

�,m(r, φ, z) is

�Ix,y
�,m(r, φ, z)

= 4
∣∣D|�|

ρ

∣∣2 ∑
n �= n′

n − n′ > 0
n + n′ even

n = 0 or n′ = 0

(−1)
n−n′

2 Hn,�Hn′,�
∣∣αx,y

n

∣∣∣∣αx,y
n′

∣∣ cos

(
(n − n′)φ + δϕ

x,y
n,n′ − δϕ

x,y
−n,−n′

2

)
cos

(
δϕ

x,y
n,n′ + δϕ

x,y
−n,−n′

2

)

− 4
∣∣D|�|

ρ

∣∣2 ∑
n �= n′

n − n′ > 0
n + n′ odd

n = 0 or n′ = 0

(−1)
n−n′+1

2 Hn,�Hn′,�
∣∣αx,y

n

∣∣∣∣αx,y
n′

∣∣ cos

(
(n − n′)φ + δϕ

x,y
n,n′ − δϕ

x,y
−n,−n′

2

)
sin

(
δϕ

x,y
n,n′ + δϕ

x,y
−n,−n′

2

)
. (G5)

At this point, similarly to the case of MHD-�, we can separate the calculations into the case of even or odd n terms.
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a. Even terms

�Ix
�,m(r, φ, z) = −4

∣∣D|�|
ρ

∣∣2 ∑
n �= 0
n > 0
n even

(−1)
n
2 H (n,�)H0,�

∣∣αx
n

∣∣∣∣αx
0

∣∣ cos

(
nφ + δϕx

n,0 − δϕx
−n,0

2

)
cos

(
δϕx

n,0 + δϕx
−n,0

2

)

− 4
∣∣D|�|

ρ

∣∣2 ∑
0 �= n′

−n′ > 0
n′ even

(−1)
−n′

2 H0,�Hn′,�
∣∣αx

0

∣∣∣∣αx
n′
∣∣ cos

(
−n′φ + δϕx

0,n′ − δϕx
0,−n′

2

)
cos

(
δϕx

0,n′ + δϕx
0,−n′

2

)

= −4
∣∣D|�|

ρ

∣∣2 ∑
n �= 0
n > 0
n even

(−1)
n
2 Hn,�H0,�

∣∣αx
n

∣∣∣∣αx
0

∣∣ cos (nφ + ϕt,n) cos
(
ϕt

0

)

− 4
∣∣D|�|

ρ

∣∣2 ∑
n �= 0
n < 0
n even

(−1)
n
2 Hn,�H0,�|αx

n||αx
0| cos (−nφ − ϕt,n) cos

(−ϕt
0

)

= −4
∣∣D|�|

ρ

∣∣2 ∑
n �= 0
n even

(−1)
n
2 Hn,�H0,�

∣∣αx
n

∣∣∣∣αx
0

∣∣ cos (nφ + ϕt,n) cos
(
ϕt

0

)
(G6)

finding the result of Eq. (34).

b. Odd terms

�Ix
�,m(r, φ, z) = 4

∣∣D|�|
ρ

∣∣2 ∑
n �= 0
n > 0
n odd

(−1)
n+1

2 Hn,�H0,�

∣∣αx
n

∣∣∣∣αx
0

∣∣ cos

(
nφ + δϕx

n,0 − δϕx
−n,0

2

)
sin

(
δϕx

n,0 + δϕx
−n,0

2

)

+ 4
∣∣D|�|

ρ

∣∣2 ∑
0 �= n′

−n′ > 0
n′ odd

(−1)
−n′+1

2 H0,�Hn′,�
∣∣αx

0

∣∣∣∣αx
n′
∣∣ cos

(
−n′φ + δϕx

0,n′ − δϕx
0,−n′

2

)
sin

(
δϕx

0,n′ + δϕx
0,−n′

2

)

= 4
∣∣D|�|

ρ

∣∣2 ∑
n �= 0
n > 0
n odd

(−1)
n+1

2 Hn,�H0,�

∣∣αx
n

∣∣∣∣αx
0

∣∣ cos (nφ + ϕt,n) sin
(
ϕt

0

)

+ 4
∣∣D|�|

ρ

∣∣2 ∑
0 �= n
n < 0
n odd

(−1)
−n+1

2 H0,�Hn,�

∣∣αx
0

∣∣∣∣αx
n

∣∣ cos (−nφ − ϕt,n) sin
(−ϕt

0

)

= 4
∣∣D|�|

ρ

∣∣2 ∑
n �= 0
n odd

(−1)
n+1

2 Hn,�H0,�

∣∣αx
n

∣∣∣∣αx
0

∣∣ cos (nφ + ϕt,n) sin
(
ϕt

0

)
(G7)

finding the result of Eq. (35).
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