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Optical lattice platform for the Sachdev-Ye-Kitaev model
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The tractability of the Sachdev-Ye-Kitaev (SYK) model at the large N limit makes it ideal to theoretically
study its chaotic non-Fermi liquid behavior and holographic duality properties. We show that the complex SYK
Hamiltonian emerges from a system of spinless itinerant fermionic atoms in an optical kagome lattice with a
strong disorder. We discuss the regimes supporting flat band spectra in a kagome lattice, where the system can
be nondispersive. Random interaction between nondispersive fermions is induced due to randomly distributed
immobile impurities in the optical lattice, that impede the presence of itinerant fermions at their locations. We
show that the proposed setup represents a maximally chaotic system and is a reliable experimental platform
to realize the SYK model and study its exotic behavior. We show that the velocity distribution of the released
fermions is a sensitive probe of the many-body Wigner-Dyson spectral density of states while the averaged
many-body Loschmidt echo scheme can measure two-point out-of-time-ordered correlation functions of the
SYK system.

DOI: 10.1103/PhysRevA.103.013323

I. INTRODUCTION

The Sachdev-Ye-Kitaev (SYK) model, studied by Sachdev
and Ye in Ref. [1] and generalized and reexamined recently by
Kitaev in Refs. [2,3], has attracted much interest as a strongly
interacting system, which exhibits many prominent properties
of modern theoretical physics including non-Fermi liquid be-
havior, Anti–de Sitter and conformal field theory (AdS-CFT)
duality, fully chaotic behavior, and aspects of integrability.
The model is an excellent building block for systems where
all these properties reveal themselves and lead to fascinating
physics that can be studied effectively [4–15]. The model
consists of N fermions with all-to-all random interactions. The
Hamiltonian of the model is given by

HSYK = −μ
∑

i

c†
i ci +

∑
i> j,k>l

Ji jkl c
†
i c†

j ckcl , (1)

where i, j, k, l = 1, . . . , N , c†
i (ci) are fermion creation (anni-

hilation) operators, μ is the chemical potential, and Ji jkl are
random couplings with 〈Ji jkl〉 = 0 and 〈|Ji jkl |2〉 = J2

2N3 . At the
large N limit, the SYK model is solvable and its two-point
correlation function shows non-Fermi-liquid behavior, and the
out-of-time-ordered correlation (OTOC) function displays a
maximal Lyapunov exponent [16]. At low energy, the SYK
model has an emergent conformal symmetry and is dual to an
extremal black hole in near AdS2 space [17].

Experimental realization of the SYK model is an important
task, which would allow testing the basic understanding of the
physics behind it. Although the analytical solution shows the
duality at the large N and low energy limit (conformal limit), it
is still interesting to detect the nearly conformal behavior and
its dual black hole in nearly AdS space. Another motivation
for the experimental observation of SYK physics is the follow-

ing. The SYK model is analytically treatable [18] at N � 1
and large timescales Jτ � 1, where the system is ergodic,
conformally invariant, and supports the universal many-body
Wigner-Dyson statistics. At small timescales, the system is
nonergodic. The timescale at which the ergodicity sets in,
called Thouless time, is outside of the solvable limit. The
Thouless time (or the corresponding Thouless energy) and its
scaling with N are so far unknown. It would be fascinating to
experimentally observe the system behavior near and beyond
the Thouless energy. Thus a cold atom experiment, if realized,
would undoubtedly be invaluable and would shed light on
these issues.

There is already activity in this direction. Several possible
realizations of SYK model in experiments were proposed,
such as the Majorana SYK model at the interface of a topo-
logical insulator and superconductor [19], the Majorana SYK
model with a quantum dot coupled to an array of topological
superconducting wires [20], the real SYK model in an optical
lattice loaded with atoms and molecules [21], and the complex
SYK model in a graphene flake in a magnetic field [22].
Another avenue for studies of the model is the digital quan-
tum simulation proposed in Ref. [23]. Following this idea, a
generalized SYK-like model is studied in Ref. [24].

A vital ingredient of the SYK model is that it is zero space
dimensional. Therefore, in order to fabricate the SYK model
experimentally in real d-dimensional space, it is necessary
to eliminate the momentum dependence of the spectrum and
make a flat band. In Ref. [22], this problem is solved by intro-
ducing a strong magnetic field, which forces energy levels of
the system to become flat Landau levels. Besides the flatness
of the band, one also needs to generate random couplings for
interactions of fermions. In Ref. [22], this problem is solved
by considering an ensemble of samples with random boundary
conditions.
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In this paper, we present another scheme of flat band for-
mation and randomization of the interaction coupling. We
propose a concrete realistic realization of the SYK model
with cold atoms in an optical lattice of kagome type, which
gives straightforward ways of detecting its nontrivial proper-
ties experimentally. Among those is the measurement of the
distribution of the particle velocities after deconfinement of
the optical lattice. It will manifest the many-body Wigner-
Dyson spectral density of states. The second possibility is the
measurement of the averaged two-point OTOC function. The
kagome optical lattice realized in Ref. [25,26] shows a flat
band [27], which is an ideal playground for studying enhanced
interaction effects of particles. In this paper, we show that the
low energy effective theory of spinless fermions in an optical
kagome lattice with strong disorder realizes the complex SYK
model. Unlike previous proposals, this method does not need
superconductors or strong magnetic fields, while the disorder
can be tuned.

The remainder of the paper is organized as follows. In
Sec. II, we discuss the effective theory and the proposed
experimental setup. In Sec. III, we show that the low energy
physics of the proposed setup is dominated by the SYK model.
Finally, Sec. IV presents estimates for the experimental real-
ization of the proposed setup.

II. THE MODEL AND THE PROPOSED SETUP

We now concentrate on the details of the Hamiltonian
describing the proposed scheme. It consists of three terms:
H = H0 + Himp + Hint , with the tight-binding Hamiltonian
H0 of itinerant ultracold fermions supporting a flat band,
the impurity Hamiltonian Himp describing a set of randomly
distributed onsite δ-function potentials, and a short-range in-
teraction Hamiltonian Hint .

The tight-binding Hamiltonian on kagome lattice [see Fig.
1(a)] is given by

H0 = − μ
∑

m

(a(a)†
rm

a(a)
rm

+ a(b)†
rm

a(b)
rm

+ a(c)†
rm

a(c)
rm

)

− t
∑
〈m,n〉

eiϕ (a(b)†
rm

a(a)
rn

+ a(a)†
rm

a(c)
rn

+ a(c)†
rm

a(b)
rn

) + H.c.

(2)
Here a(α)†

rm
and a(α)

rm
(α = a, b, c) are creation and annihilation

operators of a spinless fermion residing on sublattice α of the
optical lattice and positioned at rm [28–30]. μ is the chemical
potential of loaded fermions, t is the hopping parameter, and
ϕ is the phase of the hopping that can be tuned with the
help of artificial gauge fields [31–34]. The momentum space
representation of the hopping Hamiltonian, H0, reads

H0(k) = −μ(a(a)†
k a(a)

k + a(b)†
k a(b)

k + a(c)†
k a(c)

k )

− 2teiϕ cos(k · b)a(b)†
k a(a)

k − 2teiϕ cos(k · c)a(a)†
k a(c)

k

− 2teiϕ cos(k · c − k · b)a(c)†
k a(b)

k + H.c. (3)

Here a(α)†
k and a(α)

k (α = a, b, c) are creation and annihilation
operators of a fermion on sublattice α with momentum k,
b = ( 1

4 ,
√

3
4 ), c = ( 1

2 , 0), and k = (kx, ky). The spectrum of

(a)

(b) (c) (d)

FIG. 1. (a) A fragment of the kagome optical lattice with nearest-
neighbor couplings. A unit cell of the lattice is shown with the
corresponding flux configuration that supports a flat band. The bare
band spectrum with a flat band is shown for ϕ = 0 (b), ϕ = π/6 (c),
and ϕ = π (d).

the hopping Hamiltonian H0, which describes the lattice sub-
ject to the staggered flux depicted in Fig. 1(a), is found from
the characteristic equation det[EI − H0(k)] = 0. The latter
acquires the form

x3 −
(

3

2
+ A(k)

2

)
x − 1

2
[cos(3ϕ) + A(k) cos(3ϕ)] = 0,

(4)

where x = −E+μ

2t and A(k) = cos kx + 2 cos kx
2 cos

√
3ky

2 . If
one of three energy bands of the Hamiltonian is nondispersive
(flat), the corresponding x should be independent of k. This
implies x + cos(3ϕ) = 0, x3 − 3

2 x − 1
2 cos(3ϕ) = 0.

Noting that ϕ and ϕ + 2π/3 are equivalent since 2π/3 can
be gauged out, and ϕ and −ϕ are related by time reversal
transformation, the possible values for ϕ supporting a flat
band are ϕ = 0, π

6 , π , and the corresponding band structures
are shown in Figs. 1(b) to 1(d) where flat bands are located
at top, middle, and bottom respectively. For ϕ = 0 or π , the
full Hamiltonian respects the time-reversal symmetry, while
ϕ = π/6 breaks it, which leads to real or complex Ji jkl ’s as
we will show later. At ϕ = 0 or π with an open boundary, a
band gap always exists because of the trivial topology [35].

The real space expression of the impurity Hamiltonian cor-
responding to randomly distributed on-site impurities reads

Himp = u
∑
rm∈R

a†
rm

arm , (5)

where u is the on-site potential and R is a random set of M sites
with M much smaller than 1/3 of the number of the lattice
sites, L

3 . In the following, we choose M ∼ 0.1L.
The flat band of the kagome lattice originates from the

structural destructive interference containing degenerate lo-
calized states circulating among the hexagons of the kagome
lattice [35,36]. The impurity Hamiltonian, Himp, in turn, con-
nects wave functions between hexagons that are next to each
other while keeping the localization property intact in general.
Hence Himp will remove a number of states from the flat band,
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but most of them will still remain there (Fig. 2). For detailed
calculations, see Appendix A. With rotational symmetry, the
spectrum of H0 is sixfold. The impurity Hamiltonian Himp

breaks the rotational symmetry making the spectrum smeared.
The impurity also widens the gap at the ϕ = π case (see
Appendix A) so that when considering the interaction one
can project it onto the energy degenerate subset of the single-
particle states at low energy.

Finally, the interaction Hamiltonian is given by

Hint = 1

2
V

∑
〈m,n〉

a†
rm

a†
rn

arm arn , (6)

where the summation is over the nearest neighbors. Mi-
croscopically, the potential originates from the two-body
scattering pseudopotential as described in Appendix B. For
potentials that decay fast enough, the scattering length de-
termines the low energy scattering and the details of the
interaction are irrelevant [37,38].

III. EMERGENT SYK PHYSICS

Now we will show that the free Hamiltonian, H0 + Himp,
together with the perturbation Hint , is capable of generating
the SYK model irrespective of the particular form of the inter-
action given that it is sufficiently weak. Consider N particles
with wave functions φi(rm), i = 1, . . . , N , that are accom-
modated within the flat band due to the fine-tuned chemical
potential (e.g., keeping the lattice filling fraction ν � 1/3 for
ϕ = π ; 1/3 < ν � 2/3 for ϕ = π/6; and 2/3 < ν � 1 for
ϕ = 0). The second quantized wave function of the fermion
at cite rm can be expanded over the basis of flat-band wave
functions as arm = ∑

i φi(rm)ci, where the ci is an annihilation
operator of that state. In terms of these operators we can get
the low-temperature effective Hamiltonian for the degenerate
ground states [22]:

Heff = (2t̃ − μ)
∑

i

c†
i ci +

∑
i jkl

J̃i jkl c
†
i c†

j ckcl , (7)

with

J̃i jkl = 1

2
V

∑
〈r1,r2〉

[φi(r1)φ j (r2)]∗[φk (r1)φl (r2)], (8)

where t̃ = t for ϕ = 0, t̃ = 0 for ϕ = π/6, and t̃ = −t for
ϕ = π , φi(r) is the wave function of the ith degenerate state,
r1/2 are the lattice sites, and c†

i and ci are creation and an-
nihilation operators of fermionic modes residing in the flat
band. Using the anticommutation relations of creation and
annihilation operators, it is convenient to equivalently rewrite
the effective Hamiltonian Heff as

Heff = (2t̃ − μ)
∑

i

c†
i ci +

∑
i> j,k>l

Ji jkl c
†
i c†

j ckcl , (9)

where

Ji jkl = J̃i jkl + J̃ jilk − J̃ jikl − J̃i jlk . (10)

Here we introduced ordering of indices in the Hamiltonian,
and now will show that the resultant couplings, Ji jkl , are fully
random. Suppose J̃i jkl and Ji jkl are calculated in the basis
{φi}. Under basis transformation φ′

i′ = ∑
i Ui′iφi, where Ui′i is

a unitary matrx, U †U = 1, the couplings transform as

J̃ ′
i′ j′k′l ′ =

∑
i jkl

U ∗
i′iU

∗
j′ jUk′kUl ′l J̃i jkl ,

J ′
i′ j′k′l ′ =

∑
i jkl

U ∗
i′iU

∗
j′ jUk′kUl ′l Ji jkl .

We see that in the absence of impurities, the specific values
of Ji jkl are basis dependent. Fortunately, if couplings Ji jkl are
independent Gaussian random variables, J ′

i′ j′k′l ′’s are also in-
dependent Gaussian random variables with the same variance.
So the distribution will be independent of basis.

Interestingly, from Eq. 10, we have

∑
i> j,k>l

Ji jkl = 1

2

∑
〈r1,r2〉

V
∑

i> j,k>l

[φi(r1)φ j (r2) − φ j (r1)φi(r2)]∗[φk (r1)φl (r2) − φl (r1)φk (r2)]

= 1

2

∑
〈r1,r2〉

V

∣∣∣∣∣
∑
i> j

[φi(r1)φ j (r2) − φ j (r1)φi(r2)]

∣∣∣∣∣
2

. (11)

So
∑

i> j,k>l Ji jkl and V have the same sign and one may
notice that the relation holds for a general potential also.
This property implies that we have a constraint on the Ji jkl

couplings, which removes one degree of freedom. Fortunately,
if the number of random Ji jkl is large (N � 1), the degree of
freedom is large, and hence the constraint will not affect the
statistical properties.

Consider now n particles in the flat-band kagome lattice
described by the Hamiltonian H0 + Himp with chemical po-
tential μ that insures that the Fermi surfacelies in the flat
band. With given n, the conserved charge Q = ∑

i(c
†
i ci − 1

2 )
has the eigenvalue q = n − N/2 (N is the number of states
in the flat band). For even N , q would be an integer, and for

odd N , q would be a half-integer. Since Q commutes with the
Hamiltonian Eq. 9, we can diagonalize the Hamiltonian within
a specific q subspace.

As the next step, we exactly diagonalize the Hamiltonian
H0 + Himp with q = −1/2 or 0 and calculate the couplings
Ji jkl using Eq. 10 and three different interaction potentials.
Then we calculate the thermodynamic entropy of the effective
Hamiltonian, Eq. 9. The results for λ = 0.01a are shown in
Figs. 3(a) and 3(b) with phase ϕ = 0 and Figs. 3(c) and 3(d)
with ϕ = π . In all cases, the distribution of Ji jkl is nearly
Gaussian, which is the defining property of the disordered
couplings in the SYK model. In the SYK model, random cou-
plings Ji jkl are independent, and the distribution of a specific
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(a) (b)

(c) (d)

(e) (f)

FIG. 2. The exact spectrum of the noninteracting system plotted
from the Hamiltonian H0 (left column) and H0 + Himp (right col-
umn) with 25 unit cells. The spectrum is shown for ϕ = 0 in the
absence of impurities (a) and in the presence of impurities (b); for
ϕ = π

6 in the absence of impurities impurities (c) and in the presence
of impurities (d); for ϕ = π in the absence of impurities (e) and in
the presence of impurities (f).

Ji jkl will be the same as that of all the Ji jkl ’s in a single real-
ization. Also, the entropy agrees with that of the SYK model
obtained from exact diagonalization to some extent. One can
further calculate the averaged relative difference of entropy
〈
S〉/〈SSYK〉 where 
S = SSYK − S and 〈S〉 = ∫ J

0 SdT/J , as
shown in the insets of Figs. 3(d) and 3(f). This is at the same
order as that in Ref. [22], which is 0.018 for N = 16. One
can expect that the difference will decrease as N gets larger
in the actual experimental setup. At the high-temperature
limit T/J � 1, the entropy approaches its maximum value
S∞ = kB ln

(N
n

)
, where

(N
n

)
is the binomial coefficient. As the

temperature goes to zero, for infinite N , the entropy of the
SYK model tends to a finite number. For finite N , the entropy
goes to zero as expected by the third law of thermodynamics.
It can be shown that the averaged difference of entropies at
finite N and infinite N is proportional to 1/N [39].

The SYK Hamiltonian Eq. 9 without a chiral symmetry
will experience no extra constraint when q = 0 [40]. All the
couplings Ji jkl with chosen parameters can be real in a cer-
tain basis. So the probability distribution of energy spacings

(a) (b)

(c)
(d)

(e)
(f)

FIG. 3. The results of the proposed optical lattice simulation are
compared with the exact diagonalization results of the SYK model.
Distribution of couplings Ji jkl [(a), (c), and (e)] and entropies [(b),
(d), and (f)] are plotted for the proposed scheme described by the
effective Hamiltonian, Eq. 9. Ji jkl s are measured in the units of V ,
which is the interaction strength of nearest neighbors. For simulation
the following parameters are chosen: ϕ = 0 [(a) and (b)], ϕ = π

[(c) and (d)], and ϕ = π/6 [(e) and (f)], with u = t and the number of
states in flat band N = 15. The inset to panel (e) shows the real and
imaginary parts of couplings which are independent of each other
and each of them is Gaussian distributed. In panels (b), (d), and (f) the
upper (orange) lines correspond to the SYK model, and bottom (blue)
lines are calculated from the effective Hamiltonian Eq. 9. Insets to
panels (d) and (f) show the decreasing averaged relative difference
of entropy with respect to increasing N .

[defined as the distribution of rn = (En+1 − En)/(En − En−1),
where En is the energy of the nth level] will exhibit behavior
inherent to the Gaussian orthogonal ensemble (GOE) [40],
as shown in Figs. 4(a) and 4(b). For the N = 15 case, q is
always nonzero. The level statistics is the same as for the
q �= 0 situation at N = 14.

For ϕ = π/6, the same quantities, namely distribution of
couplings Ji jkl , the entropy [Figs. 3(e) and 3(f)], and level
statistics [Fig. 4(c)], are calculated with u = t . Now one has
complex couplings Ji jkl whose real part and imaginary part are
approximately Gaussian and the distribution of |Ji jkl | becomes
a χ distribution with degree of freedom 2, which indicates
the independence of real and imaginary parts. Also the level
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(a)

(b)

(c)

FIG. 4. Many-body level statistics shown as histograms for N =
14, u = t , and ϕ = 0 (a), ϕ = π (b), and ϕ = π/6 (c). Solid,
dash-dotted, and dotted curves correspond to Gaussian symplectic
ensemble (GSE), Gaussian unitary ensemble (GUE), and Gaussian
orthogonal ensemble (GOE) respectively.

statistics follows the distribution of the Gaussian unitary en-
semble (GUE) [40].

While the distribution of rn shows the correlations between
adjacent energy levels, the spectral form factor defined as

Z (J/T + iJτ )Z (J/T − iJτ )

=
∑
n,m

e−(J/T +iJτ )En e−(J/T −iJτ )Em , (12)

where Z is the partition function of the model, characterizes
correlations between all energy levels at all scales [7]. On the
gravity side, this quantity describes the properties of the black
hole in the dual AdS space [41,42].

The averaged spectral form factor 〈|Z (J/T + iJτ )|2〉J is
shown in Fig. 5. One can see that at short times the slope
regime is dominated by the decoupled SYK saddle points
[42], for which it decays with a power law. The late time ramp
and plateau originate from the statistics of the random matrix
ensemble. Similar behavior exists in the Jackiw-Teitelboim
gravity [42]. This behavior is robust against temperatures
ranging from 0.1J to J .

(a) (b)

(c) (d)

FIG. 5. The spectral form factor is plotted at ϕ = π (left column)
and ϕ = π/6 (right column) for J/T = 10 [(a) and (b)] and J/T = 1
[(c) and (d)] for the system with the number of states in flat band
N = 14.

Importantly, the averaged two-point OTOC function,∫
dA〈A(0)A†(t )〉J , where A is a local unitary operator one

can access in experiments and dA is the Haar measurement
with respect to it [43], is proportional to the spectral form
factor |Z (2T, τ )|2. OTOC can be measured by the many-body
Loschmidt echo scheme [44,45].

Upon releasing the trap and the optical lattice in time-of-
flight experiments, the fermion states are projected onto plane
waves, and the many-body energy spectrum distribution of the
flat-band system (given by the Wigner semicircle) is projected
to the energy distribution of atoms. Hence, the velocity dis-
tribution of atoms, as free particles, can be determined from
many-body Wigner-Dyson statistics, as seen in Fig. 6. The
latter can be observed in the time of flight experiments. We
notice that the distribution of energy and the velocity predicted
for the present scheme has a somewhat long tail, which is
attributed to the small variation of J when averaging over
different disordered realizations. Our numerical simulations
suggest that, when N increases, the variation of J is averaged
out and the averaged relative difference of spectral density
〈
ρ〉/〈ρSYK〉 = ∫ |ρ − ρSYK|dE/

∫
ρSYKdE decreases, lead-

ing to a faster decaying tail.

IV. DISCUSSION OF EXPERIMENTAL ASPECTS

In the following, we discuss aspects of the experimen-
tal realization of the proposed scheme: ( i) The randomly
distributed on-site potential can be realized by heavy atoms
randomly loaded in the optical lattice whose strength can be
tuned by Feshbach resonances [46]. (ii) Positive or complex
hopping can be realized with the help of artificial gauge
fields created by applying a zero averaged homogeneous
inertial force [33] or Raman-assisted tunneling in an asym-
metric kagome lattice [34]. (iii) While each of the required
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(a) (b)

(c) (d)

(e) (f)

FIG. 6. Energy spectral density [(a) and (b)] and the velocity
distribution [(c) and (d)] after releasing the atoms [dotted curves
correspond to the numerical results of the effective Hamiltonian
Eq. 9, dash-dotted curves correspond to the exact diagonalization
results of the SYK model, and solid curves correspond to the Wigner
semicircle law of the random matrix theory] at N = 14. Panels (e)
and (f) show the variance of J (blue round dots) and the averaged
relative difference of spectral density (orange crosses) decreases
when N increases. Phases are ϕ = π for panels (a), (c), and (e) and
ϕ = π/6 for panels (b), (d), and (f). The velocity is measured in the

units of v0 =
√

2ε

m , where m is the mass of the itinerant atoms.

steps—namely, loading immobile impurities to random sites
of the optical lattice, introducing the pseudogauge fields, and
creating an optical lattice of kagome type—are by now stan-
dard experimental techniques, combining all of these into one
experiment may require some additional efforts. (iv) To access
the conformal limit in experiments, the parameter J should
be tuned through Feshbach resonances [47,48] that are large
enough (J � kBT ). For fermionic atoms such as 6Li or 40K,
and an experimentally accessible temperature of order T ≈
1 nK [25,49,50], one can estimate by employing Eq. (B11)
the required scattering length of order ap ≈ 0.35a. (v) One
can, in principle, measure the observables when φ = 0 or
φ = π/6 by doubling the number of experimental runs. In
the first run, the chemical potential should be kept slightly
lower than the flat band, and, for the second one, the chemical
potential should be kept in the flat band. Upon analyzing data

and assuming that the Fermi surface does not experience a
phase transition, one should subtract the contribution of the
Fermi sea in the measured observables to detect the emergent
SYK physics. This would be difficult for the φ = 0 case since
the system will have a small gap when L becomes large. So
the φ = π/6 and φ = π cases would be better choices for
experiments, with the latter requiring less experimental runs.

The realization of the SYK model within the described
technique is not specific to the kagome lattice. We believe
these phenomena are quite universal, and the described tech-
nique can be applied to other lattices supporting a flat band.
This, for example, can be seen upon investigating SYK
physics from the interplay of disorder and interactions in the
experimentally realized Lieb lattice using trapped fermions
[51].
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APPENDIX A: EFFECT OF AN ON-SITE IMPURITY

Hamiltonians contributed from the impurities on different
sites commutate with each other, so one can separate their
contributions within a perturbative scheme. So, consider the
tight-binding Hamiltonian for ϕ = π and one impurity on an
arbitrary site: H = H0 + Himp:

H0 = −μ
∑

m

a†
rm

arm + t
∑
〈m,n〉

a†
rm

arn ,

Himp = ua†
RaR, (A1)

where R represents the location of the impurity.
The eigenstates of H0 in the flat band can be written as [35]

|r〉 = 1√
6

(∑
m

(−1)ma†
rm

)
|0〉. (A2)

where r represents the the center of the hexagonal plaquette
of the Kagome lattice, and rm goes over all six lattice cites
around the hexagon [35]. Note that these localized states are
not orthogonal, in fact

〈r||r′〉 = δr,r′ − 1
6δr,r+δ. (A3)

The eigenstates of H0 in the dispersive band that touch the
flat band can be written as

|k〉 = (β (a)(k)a(a)†
k + β (b)(k)a(b)†

k + β (c)(k)a(c)†
k )|0〉. (A4)

By employing the anticommutation relation

{
a(α)

R , a(β )†
k

} =
{

a(α)
R ,

∑
r

eik·ra(β )†
r

}
= eik·Rδα,β, (A5)

the matrix elements of Himp become

〈r|ua†
RaR|r′〉 =

{
0 if R /∈ {rm} ∩ {r′

m},
1
3 uδr,r′ − 1

6 u if R ∈ {rm} ∩ {r′
m}, (A6)

〈k|ua†
RaR|r〉 = 0, (A7)

〈k′|ua†
RaR|k〉 = uβ (α)∗(k′)β (α)(k)ei(k−k′ )·R. (A8)
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From Eq. (A7), one can see that the flat band and the
dispersive one are decoupled. This means that the effect of
impurity can be treated separately. The energy difference
(compared to the unperturbed energy) 
E of the flat band
subset in the presence of the impurity can be found from

det

[

E

(
1 − 1

6− 1
6 1

)
− u

(
1
6 − 1

6− 1
6

1
6

)]
= 0, (A9)

which leads to 
E = 0 or 2
7 u. This analytical analysis ex-

plains slight lifting of the degeneracy of the flat-band states
presented in numerical data of Fig. 2.

The energy difference of the band touching due to the
impurity to the lowest order of u is 
E = u|β (α)(k)|2. As
a special case, the gap around k = 0 would become 
E =
u|β (α)(0)|2. In conclusion, the impurity will lift part of the
flat band states and widen the gap, which is positive and
proportional to u.

APPENDIX B: ESTIMATE FOR THE INTERACTION
STRENGTH FROM A PSEUDOPOTENTIAL

If the optical lattice is loaded with spinless fermions, the
potential energy coming from two-body scatterings can be
written as

V = 1

2

∫
dr1dr2�̂

†(r1)�̂†(r2)V̂p(r1 − r2)�̂(r2)�̂(r1).

(B1)
Here V̂p is the p-wave pseudopotential [52] given by

V̂p(r) = 2π h̄2a3
p

m

←−∇ δ3(r)
−→∇ r

∂3

∂r3
r2, (B2)

which takes into account all the higher-order perturbations.
The state �̂(r) can be expanded in the basis of flat-band states
as

�̂(r) =
∑

i

∑
m

φi(rm)W (r − rm)ci, (B3)

where W (r − rm) is the Wannier function for the lattice.
One can easily check that the anticommutation relation
{�̂(r), �̂(r′)} = δ(r − r′) is satisfied with the help of or-
thonormality of φi(rm) and W (r − rm) and the anticommu-
tation relation of ci.

With the above preparation, one is ready to get the Hamil-
tonian (7) with

J̃i jkl = 1

2

∑
m �=n,p�=q

φ∗
i (rm)φ∗

j (rn)Vd p(rm, rn, rp, rq )φk (rp)φl (rq),

(B4)

where m = n or p = q terms vanish because of the Fermionic
nature of the Hamiltonian, and the discrete pseudopotential

Vd p(rm, rn, rp, rq ) =
∫

dr1dr2W
∗(r1 − rm)W ∗(r2 − rn)

× V̂p(r1 − r2)W (r2 − rp)W (r1 − rq).

(B5)

For deep enough potential, the Wannier function is approx-
imately Gaussian,

W (r) =
(mω

π h̄

) 1
2
(mωz

π h̄

) 1
4
e− mω

2h̄ (x2+y2 )− mωz
2h̄ z2

. (B6)

It is then straightforward to show that

Vd p(rm, rn, rp, rq )

= 12π h̄2a3
p

m

∫
dr2

(mωz

h̄

)2
z2

2W (r2 − rm)W (r2 − rn)

×W (r2 − rp)W (r2 − rq). (B7)

Assuming the overlap between the localized states at different
sites is small, the leading term of the discrete pseudopotential

Vd p(rm, rn, rp, rq )

= 12π h̄2a3
p

m
δmqδnpδ〈mn〉

∫
dr2

(mωz

h̄

)2
z2

2W (r2 − rm)

×W (r2 − rn)W (r2 − rn)W (r2 − rm), (B8)

where the δ〈mn〉 = 1 only when m and n are indices corre-
sponding to nearest neighbors while for all other cases δ〈mn〉 =
0. Then one can introduce a new variable d = rm − rn and
perform integration over r2,

Vd p(rm, rn, rp, rq ) = 3a3
pm2ωω2

z

2π h̄

√
π h̄

2mωz
e− 3mω

2h̄ d2
δmqδnpδ〈mn〉.

(B9)
Plugging this back into Eq. (B4), one gets

J̃i jkl = 1

2

∑
〈m,n〉

φ∗
i (rm)φ∗

j (rn)

× 3a3
pm2ωω2

z

2π h̄

√
π h̄

2mωz
e− 3mω

2h̄ d2
φk (rn)φl (rm), (B10)

and comparison with Eq. 8 yields

V = 3a3
pm2ωω2

z

2π h̄

√
π h̄

2mωz
e− 3mω

2h̄ d2
. (B11)
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