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Rotation-sensitive quench and revival of coherent oscillations in a ring lattice
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We consider ultracold atoms trapped in a toroidal trap with an azimuthal lattice for utility as a macroscopic
simulator of quantum optics phenomena. We examine the dynamics induced by the adiabatic introduction of
the lattice that serves to couple the normal modes as an analog of a laser field coupling electronic states. The
system is found to display two distinct behaviors, manifest in the angular momentum—coherent oscillation and
self-trapping—reminiscent of nonlinear dynamics yet not requiring interatomic interactions. The choice is set
by the interplay of discrete parameters, the specific initial mode, and the periodicity of the lattice. However,
rotation can cause continuous transition between the two regimes, causing periodic quenches and revivals in the
oscillations as a function of the angular velocity. Curiously, the impact of rotation is determined entirely by the
energy spectrum in the absence of the lattice, a feature that can be attributed to adiabaticity. We assess the effects
of varying the lattice parameters and consider applications in rotation sensing.
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I. INTRODUCTION

Ultracold atoms trapped in ring-shaped lattices offer a
versatile system for probing and simulating quantum mechan-
ics, while also offering possibilities for sensor applications
[1–3]. The closed-loop topology enables access to some of
the most enigmatic quantum features, like nonlocal effects
[4,5], sustained superfluid flow [6], and effects of gauge
fields mimicked by rotation [1,7]. The azimuthal lattice struc-
ture makes the system substantially richer, introducing band
structure in a finite periodic system [8]. Coherent states
satisfying the periodic boundary condition also provide a
macroscopic realization of de Broglie’s classic model [9] of
quantization of electronic orbits, which launched our cur-
rent understanding of quantum physics. This last aspect of
cold atoms in a ring lattice is the subject of interest in this
paper.

The introduction of a lattice serves to couple the normal
modes of the ring. A direct analogy can be made with the
situation of lasers interacting with electronic states of an atom
[2], with the lattice coupling the modes of the ring just as a
laser field couples the electronic states, illustrated schemati-
cally in Fig. 1. Even spin degrees of freedom can be mimicked
with clockwise and counterclockwise flow orientations. This
makes cold atoms in ring lattices an attractive simulator of
quantum optics [10] at a scale orders of magnitude larger.
Beyond the similarities, the macroscopic scale, the external
degrees of freedom, and the option of strong nonlinearity [11]
create possibilities that can go beyond typical quantum optical
paradigms, blending them with aspects of condensed-matter
physics and nonlinear dynamics.

Multiple pathways exist for creating ring traps for atoms
[12–20], some conveniently adaptable to include an azimuthal
lattice structure, such as the use of Laguerre-Gaussian (LG)
beams [21,22]. While numerous experiments [6,23,24] have
been conducted with cold atoms in ring traps, proportionate

effort with the inclusion of lattices is overdue, notwithstand-
ing the rich physics indicated by continuing theoretical works
[2,8,25–38].

The focus of theoretical studies has been centered primar-
ily on the nonlinear aspects of the system and associated with
persistent currents and potential applications for atomtronics
and quantum computation. These are very relevant topics and
justify continued exploration. The purpose of this paper, in
contrast, is to examine the linear dynamics of the system in the
context of close analogies with quantum optics. We examine
the dynamical behavior of ultracold atoms in a ring lattice as
a function of the primary lattice parameters with regard to two
fundamental questions that are relevant for any experiment on
such a system: (1) How does the system respond to the lattice
being introduced adiabatically? (2) How does the presence of
rotation impact the resulting dynamics? Our findings contain
some surprising features that open lines of further studies and
also provide principles that can find value in sensor applica-
tions.

In Sec. II, we present the physical model that is utilized
throughout the paper. Section III identifies the salient features
of the dynamics and explains them, and Secs. IV and V clarify
the influence of the parity of the initial mode and adiabaticity,
respectively. The crucial impact of rotation is presented in
Sec. VI, with considerations of sensor application in Sec. VII.
Effects of various lattice parameters on the induced dynamics
are analyzed in Sec. VIII. We conclude in Sec. IX, with a
discussion of feasibility in experiments and with an outlook
for further studies.

II. PHYSICAL MODEL

We consider a Bose-Einstein condensate in a toroidal trap
as shown in Fig. 1. We take the minor radius to be much
smaller than the major radius R, so that the system can be
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(a) (b)

FIG. 1. (a) Laser light interacting with an electronic state of
an atom, its quantization represented by a de Broglie model of an
eigenmode satisfying the periodic boundary condition. (b) This is
mimicked by ultracold atoms (filled blue) trapped in an effectively
one-dimensional toroidal trap with an azimuthal lattice potential (red
line) serving to couple the coherent collective modes of the atoms.

treated as a cylinder r = (z, r, ϕ) with a periodic boundary
condition on z. We assume the confinement along (r, ϕ), trans-
verse to the ring circumference, is sufficiently strong to keep
the atoms in the ground state ψ0(r, ϕ) for those degrees of
freedom, so that the three-dimensional bosonic field operator
can be written in the effective form �̂(z)ψ0(r, ϕ). Integrating
out the transverse degrees of freedom, the dynamics can be
described by an effective one-dimensional Hamiltonian

Ĥ (t )=
∫ 2πR

0
dz�̂†(z, t )

×
[
− h̄2

2m
∂2

z + V (z, t )+ g

4π l2
�̂†(z, t )�̂(z, t )

]
�̂(z, t ),

(1)

where g = 4π h̄2a/m is the interaction strength defined by the
s-wave scattering length a, the mass of the atoms m, and the
harmonic oscillator length l for the transverse confinement
along the cross section of the torus. The potential along the
ring is taken to be a periodic lattice that can rotate with angular
velocity ω,

V (z, t ) = h̄U (t ) cos2p

[
1

2
q(z/R − ωt ) + θ

]

≡ h̄U (t )
p∑

j=1

c j cos [ j{q(x − ωt ) + 2θ}], (2)

with both p and q being positive integers. This represents
a lattice potential of period 2π/q corresponding to q peaks
equally spaced along the circumference 2πR of the ring. In-
creasing the value of the power 2p of the cosine causes the
peaks to become progressively narrower. The second form
of the potential introduces the scaled azimuthal coordinate
x = z/R and does a trigonometric expansion in terms of co-
sine functions of periods 2π/( jq) that are integer ( j) divisors
of the base period. The expansion coefficients c j = 1

22p−1

( 2p
p− j

)
leave out a constant offset term c0 = 1

22p

(2p
p

)
. A phase shift θ

is allowed for but will be set to zero except where specified
otherwise.

The strength U (t ) of the lattice potential is time dependent
with the ability to turn the lattice on and off with variable rates
and duration. We will use the functional form

U (t ) = U0 × [{1 − et2/τ 2} − e(T −t )2/τ 2
]. (3)

The first pair of terms controls the switching on, and the last
term controls the switching off. The total duration of evolution
is set by T , and the rate of switching on or off is controlled by
τ , with higher values causing a slower onset.

Expanding the field operator in eigenstates of the ring,

�̂(x) =
∞∑

n=−∞
âne−inωtψn(x), ψn(x) = 1√

2π
einx, (4)

where n = 0,±1,±2, . . . are the quantum numbers labeling
the circulating eigenmodes. Our analysis of the dynamics in
the ring will be based on how the quantum amplitudes of these
modes evolve. The equation of motion for the Hamiltonian
can be transformed into a series of coupled differential equa-
tions for the mode amplitudes or expansion coefficients ân [2],

i
∂

∂t
ân(t ) = (ωn − nω)ân + U (t )

p∑
j=1

c j[ân− jq + ân+ jq]

+ g

4π2l2

∑
k

∑
l

â†
k âl ân+k−l . (5)

These equations serve to provide useful insight into the nature
of the coupling between the modes as well as the impact of
rotation: The lattice potential couples the modes in “ladders”
of steps ± jq corresponding to the number of peaks q in
the lattice, with one such ladder for each available value of
j = 1, . . . , p. Specifically, for the lowest value p = 1 in the
exponent in Eq. (2), only j = 1 is available, so the modes
coupled are separated by steps of ±q. But for higher values,
p > 1, additional “ladders” with larger step sizes ± jq be-
come available for every j = 2, . . . , p. The angular velocity
induced by rotation causes a shift of nω in the spectrum,
proportional to the quantum number n of each mode.

However, we will not use Eq. (5), which, being a
momentum-space representation, is suitable for weak lattices,
whereas in this study we will need to vary the lattice strength
over a wide range. We will instead use the equation of motion
in a position-space representation, obtained directly from the
Hamiltonian (1),

ih̄∂t �̂ =
[
− h̄2

2m
∂2

x + ih̄ω∂x + V + g

4π2l2
�̂†�̂

]
�̂. (6)

The field operator �̂(x, t ) and the potential V (x, t ) have
time and position dependences that are not displayed ex-
plicitly. The relevant connection between the two pictures
represented by Eqs. (5) and (6) is via the projections ân(t ) =
〈ψn(x)|�̂(x, t )〉. The effect of rotation has been added on with
an angular momentum term which amounts to a transforma-
tion to a frame rotating with the lattice. This is consistent
with the form of Eq. (5) obtained by explicit inclusion of the
rotation-induced phase in the mode expansion in Eq. (4).

We will assume the mean-field limit �̂ → 〈�̂〉 = �, ap-
plicable for a large number of particles when quantum
fluctuations are relatively small. Correspondingly, we will
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FIG. 2. (a) The time evolution of the net angular momentum (solid lines) of the quantum state in the ring is plotted as the lattice strength
U (t ) (dashed black line) is switched on and off adiabatically. The thin blue line showing strong oscillation is for q = 2 peaks in the lattice, and
the thick red line with suppressed oscillation (self-trapped) is for q = 3. In both cases, the state is initiated in a specific circulating eigenmode
of the ring with quantum number n0 = 2. The boxed panels show the time evolution of the populations in significantly occupied modes, with
(b) corresponding to the strongly oscillating angular momentum in (a) with q = 2 and (c) corresponding to the self-trapped case in (a) with
q = 3, so called because the population persists significantly in the initial mode n0 = 2. Only states with significant population are plotted,
justified by their sum remaining constant at unity during evolution, seen as a flat black line at the top.

represent the mean-field limit of the projection operators by
an(t ) = 〈ân(t )〉. We will also neglect nonlinearity, setting g =
0, assuming weak interactions possible by Feshbach reso-
nance [39]. We will examine the coherent dynamics of the
quantum state of the medium in the ring, as it interacts with
the lattice, by computing the projections an(t ) that give the
amplitude of the modes, with |an(t )|2 tracking their popula-
tion. We will refer to the modes ψn simply by their quantum
number n.

For our numerical simulations, the radius R of the ring
serves as the length unit as already implicit in our definition
of x = z/R, so that x is numerically equivalent to the angular
coordinates in radians and ih̄∂x is the angular momentum
operator. We take ε = h̄2

mR2 = h̄ω0 as our energy unit, τ = ω−1
0

as the time unit, ω0 as the unit of angular velocity, and
√

2mε

as the unit of angular momentum. The population densities
are in units of R−1. These units are used in all our simulations
and figures.

III. CRITERIA FOR COHERENT OSCILLATION

The eigenstate expansion (4) represents circulating modes,
with positive and negative values of the quantum number
corresponding to counterpropagating flows. We initiate the
system in one of the modes with quantum number n0, with
the lattice potential switched off, U (t ) = 0. Then, we adi-
abatically switch on the lattice to reach a stable maximum
depth of U0. As the equations of motion (5) show, this causes
the state to couple to other modes with quantum numbers
{n0 ± q, n0 ± 2q, . . . } transferring population. It is clear from
the properties of the binomial series that for a fixed value of
p, the expansion coefficients c j used in Eq. (2) diminish with
increasing j so that the highest weight will always correspond
to the first term with j = 1, which therefore provides the
dominant coupling pathway. Therefore, we first consider the
case of the lowest power with p = 1 which contains only this
single term in the expansion. The effects of higher powers,
p > 1, will be examined in Sec. VIII.

We solve the differential equation, Eq. (6), with g = 0 for
the time-evolved quantum state �(t ), and from its projections
an(t ), we determine the populations of a set of modes n0 ±
jq, j = 0, 1, . . . on a ladder centered about the initial mode
n0. Energy conservation places a natural limit on the number
of such modes that will acquire significant population. We
ensure that in our simulations, a sufficient number are taken
into consideration by verifying the sum of their populations
remains unity.

We first capture the aggregate behavior of the medium
by computing the expectation of the angular momentum of
the system 〈ih̄∂x〉 = 〈�(t )|ih̄∂x|�(t )〉. Two very different and
distinct behaviors emerge, as shown in Fig. 2: (1) The angu-
lar momentum undergoes oscillations with almost complete
reversal occurring periodically, or (2) the angular momentum
stabilizes at some intermediate value with the emergence of
small oscillations about that mean, which we will refer to
as “wiggles.” To contrast with the oscillating case, we refer
to the second case as “self-trapped,” in analogy with similar
behavior in nonlinear dynamics, wherein the population is
restrained from making a complete transition out of a specific
state.

By adiabatically switching off the lattice, we find that for
the self-trapped cases, the angular momentum is restored to
the initial value, as illustrated in Fig. 2. However, in the oscil-
lating case, the degree of restoration depends on the precise
timing of initiating the switching off, but complete revival
appears to be always possible.

Whether oscillations occur or not is determined by the
relation between the spatial periodicities of the initial mode
n0 and that of the lattice 2π/q. Oscillating cases constitute a
limited subset of possibilities that occur whenever 2n0/q = j
is a nonzero integer, also necessitating that q � |2n0|. Ex-
amination of the evolution of the population sheds light on
this: Satisfaction of this condition provides a ladder pathway
through a sequence of intermediate coupled modes from the
initial mode n0 to another mode which is degenerate in energy
with it, in this case −n0. Thus, in Fig. 2(b), where q = 2,
the population dominantly oscillates between the degenerate
modes n0 = +2 and n0 − 2q = −2 because they are coupled
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by two ladder steps of q. The intermediate state n0 − q = 0 is
populated but has muted oscillations since it is nondegenerate.
Population oscillations also occur between other degenerate
states, for example, between the modes n = ±4, since there
is direct coupling of one of them with the initially occupied
mode: n0 + q = +4. But the amplitude is lower than for os-
cillations involving the initial mode directly due to a larger
energy gap.

In contrast, for the self-trapped cases, the ladder of coupled
modes does not contain any pair with degenerate energies,
as illustrated in Fig. 2(c). There is, however, some exodus of
population from the initial mode, and as should be expected,
the primary recipient is the mode closest to it on the ladder but
with lower energy. Progressively smaller population appears
in modes energetically farther apart on the ladder. An inter-
esting special case of note is that of the ground state. Since it
is nondegenerate, it always remains self-trapped regardless of
the periodicity of the lattice.

IV. PARITY EFFECT FOR STANDING WAVES

The presence of oscillations is sensitive to the initial state.
If we initiate the system in a standing wave of the form
∼ cos(n0x), there are never any instances of oscillating cases
even when the criteria defined in Sec. III are satisfied. That
is because the potential V ∼ cos(qx) is an even function of
the coordinate and therefore couples only states with the same
parity, which, in this case, are other standing waves also of the
form cos(nx) with n = 0, 1, 2, . . . . Since n 	= n0, there can be
no degeneracies among those states. Strong oscillations can
occur only between a pair of distinct states that are degenerate
in eigenenergies and are also separated by an integer number
of ladder steps ±q, set by the lattice period. This requires cou-
pling of cos(n0x) with sin(n0x). In order to make that happen,
we introduce a phase shift of θ = π/4 into the potential, so
that V ∼ cos[qx + 2θ ] → − sin(qx) is an odd parity function
that can now couple even- and odd-parity states. Physically,
in the context of p = 1, this amounts to initiating the system
in a mode that is phase shifted by π/2 from the period of the
lattice peaks. Figure 3 shows the case where the initial mode
is a standing wave cos(3x) in a lattice of periodicity q = 2.
Oscillations are absent with θ = 0 but appear with θ = π/4.

The criteria for oscillation are now different. The ladder
of coupled modes must necessarily contain a pair of modes
that are resonantly coupled, which can happen only if modes
with quantum number n = ±q/2 (set by the lattice period)
are on the ladder, requiring q to be even. That ensures that
the degenerate modes cos(qx/2) and sin(qx/2) are directly
coupled. Then, a pathway exists for the initial mode cos(n0x)
to couple with its energy-degenerate pair sin(n0x). This can
happen only if 2n0/q is an odd integer; otherwise, any ladder
connecting n0 to −n0 would lead to the nondegenerate zero
mode, and there can be no resonant coupling.

Two different bases are used to show the dynamics of
the states, with Figs. 3(a) and 3(c) showing the population
in circulating modes and Figs. 3(b) and 3(d) showing that
for standing-wave modes. In the standing-wave modes, only
cosine modes populate as expected for θ = 0, but oscillations
with the sine mode appear when θ = π/4. In the circulat-
ing bases, both clockwise and counterclockwise modes have
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FIG. 3. When the initial mode is a standing wave cos(n0x), the
time evolution of the population in occupied modes is plotted as the
lattice potential U (t ) (dashed black line) is switched on adiabatically,
shown here for n0 = 3 and q = 2. Left panels show the circulating
mode basis, and the right panels show the standing-wave basis (la-
beled cos(nx) ≡ cos[n] ≡ c{n}). In both bases, top panels show that
with no phase shift, θ = 0, between the lattice and the initial mode,
oscillations are suppressed. But in the bottom panels with θ = π/4,
oscillations occur. Note that in (a) counterpropagating modes with
the same wave number (±n) have identical evolution and overlap.
The states displayed are the only ones with significant population,
confirmed by their sum (flat black line) remaining normalized.

exactly the same population evolution for identical mode
numbers when θ = 0. But with θ = π/4, when oscillations
occur, the oppositely circulating modes evolve differently,
demonstrating consistency regardless of the specific basis
used.

One feature we have noted across all strongly oscillating
cases, regardless of the initial mode—circulating or standing
wave—is that at steady state, the clockwise modes all fall into
sync with each other and the counterclockwise modes likewise
sync up mutually. This can be clearly seen in Fig. 3(c), where
the positive numbered modes all oscillate together in phase
and so do all the negative numbered modes. In contrast, there
is no such syncing of cosines and sines evident in Fig. 3(d);
rather, the cosine modes are out of phase with the adjacent co-
sine modes. This kind of resonant directional “mode-locking”
behavior ensures strong oscillation of the angular momentum
when coherent oscillations are present.

V. INSTANTANEOUS EIGENSTATES

The dynamics as described assumes adiabatic switching of
the potential. The implications can be understood by follow-
ing the projection of the wave function on the instantaneous
eigenstates of the Hamiltonian as it evolves, parameterized
by the time t . With sufficiently slow evolution, the system
will follow the instantaneous eigenstate φn0(t ) that evolved
from the mode ψn0 the system was initiated in. Being a closed
system, in the absence of rotation all the instantaneous states
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FIG. 4. (a) Evolution of the population projected on the instan-
taneous eigenstates φn of the Hamiltonian for q = 2 and initial mode
n0 = 2. The solid lines show the population in the occupied states,
shown for two different rates (set by τ ) of switching on of the
potential U (t ) plotted by dashed black lines. A faster rate (τ = 1)
causes visible loss from the initial mode φ2, but there is hardly any
at the slower rate (τ = 10). (b) Zooming in for τ = 10 shows any
loss is sufficiently small to justify adiabaticity. Plots of the instanta-
neous eigenstates that are populated are shown: (c) when the lattice
potential V is weak, U0 = 0.1, and (d) when it is strong, U0 = 10.
The states are labeled symmetric (S) or antisymmetric (A) about the
peaks of the lattice potential V plotted by dotted black line on right
axis.

can be chosen to be real valued and take the form sin(nx) and
cos(nx) in the limit of no lattice. As the lattice is switched
on, their functional form alters, but they can still be classified
as symmetric or antisymmetric about the potential maxima,
designated φnS and φnA, respectively. When the initial mode
is a circulating one, the instantaneous state φn is a 50:50
superposition of φnS and φnA.

In our simulations, the lattice potential is switched on or
off according to Eq. (3), where a larger value of the parameter
τ causes a more adiabatic variation. Figures 4(a) and 4(b)
show that for τ = 1, the instantaneous state φ2 loses some
population during the switching on but then stabilizes. For
a more adiabatic onset of the potential, with τ = 10, there
is hardly any loss of population, which is detectable only on
zooming in at the order of 10−3.

The composition of the instantaneous states reflects the
oscillations present in the normal modes of the ring with-
out a lattice. Figures 4(c) and 4(d) show the instantaneous
eigenstates corresponding to initial mode n0 = 2 for weak
and strong lattice strengths. For a weak lattice, the relevant
states are sinusoidal, symmetric, and antisymmetric about
the two peaks of the lattice with q = 2, φ2A 
 sin(2x), and
φ2S 
 cos(2x). As the lattice reaches maximum depth, φnA 

0.44 sin(2x) + 0.064 sin(4x) + 0.0015 sin(6x), and φ2S 
 0.44
+ 0.21 cos(2x) + 0.092 cos(4x) + 0.0030 cos(6x), reflecting
relative populations seen in Fig. 2(b).

The antisymmetric state here actually has the lower energy,
which may seem surprising considering that antisymmetric

pairing of localized states always has higher energy. The rea-
son is that in this case of two lattice sites, q = 2, as the lattice
is turned on, the ground state remains symmetric, pairing up
with the antisymmetric state arising from the initially degen-
erate pair of first excited states. The two states approach a new
degeneracy as the lattice strength is increased. Likewise, the
symmetric first excited state pairs up with the antisymmet-
ric second excited state and so on, maintaining the expected
pattern of the antisymmetric state having the higher energy
within each pairing, as seen later in Fig. 6(d).

When we initiate the state in the circulating mode ψ2 in
the absence of a lattice, it comprises two degenerate modes, of
which the antisymmetric one migrates to the lower band and
the symmetric one migrates to the higher band, causing the
seeming inversion of the energy structure of symmetric and
antisymmetric instantaneous states when a correspondence is
made with the initial modes ψn.

VI. SENSITIVITY TO ROTATION

Introducing rotation fundamentally changes the dynamics
discussed so far. Rotation can transform an oscillating case
into a self-trapped case and vice versa, as shown in Fig. 5:
In Figs. 5(a) and 5(b), for an initially oscillatory case, as the
angular velocity is increased, the amplitude of oscillation of
the initial mode diminishes and practically vanishes. Similar
behavior is seen with the mean value, together indicating a
transition to self-trapped behavior. Curiously, at larger angular
velocities, the oscillations undergo an almost complete revival
that repeats at integer values of the angular velocity.

Likewise, for an initially self-trapped case, increasing an-
gular velocity causes transformation into an oscillatory case,
as seen in Fig. 5(c). There are once again revivals of oscil-
lation which now peak at half-integer values of the angular
velocity.

The population evolution at the angular velocities where
the revival peaks occur reveals another aspect in Figs. 5(d)–
5(f). The dominantly coupled modes are different from the
ones when there is no rotation. Thus, for initial mode n0 = 1
and lattice periodicity q = 2, with no rotation ω = 0, the
population oscillates between n = ±1, but at ω = 2, the dom-
inant oscillation occurs between n = 1 and n = 3, as seen in
Fig. 5(d), while at ω = 3 it occurs between n = 1 and n = 5.
Similar drift of the dominantly coupled modes is observed
to occur when the system is self-trapped in the absence of
rotation, with the mode oscillations corresponding to the first
revival peak in Fig. 5(c) shown in Fig. 5(f).

An explanation for this behavior can be found in the en-
ergy spectrum of the ring in the presence of rotation shown
in Fig. 6(a). The oscillation revival peaks correspond to the
emergence of new degeneracies. Considering that in the ab-
sence of a lattice the modes have energy Ei = n2

i /2 − niω

(setting h̄ = m = 1), degeneracies of two modes Ei = Ej oc-
cur at ω = (ni + n j )/2, which takes integer and half-integer
values. The n0 = 1 mode establishes new degeneracies with
n = +3 and n = +5 at ω = 2 and ω = 3, and those are
precisely the dominant modes in Figs. 5(d) and 5(e) that
correspond to peaks I and II in the amplitude at those ω in
Fig. 5(a). All of the amplitude peaks in Fig. 5 are similarly
explained, including the initially self-trapped case in Fig. 5(c).
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FIG. 5. (a)–(c) Rotation changes the dynamics continuously be-
tween oscillating and self-trapped behavior, evident in the variation
of the amplitude of oscillation of the initial state n0. At no rotation
ω = 0, cases in (a) and (b) are oscillatory, and that in (c) is self-
trapped, but all show recurrence of oscillatory behavior at specific
values of the angular velocity ω. (d)–(f) display the time evolution
of the modal population for parameters corresponding to specific
peaks labeled by Roman numerals in (a)–(c). Specifically, (d) and
(e) correspond to peaks I and II in (a): Note the initial mode n0 = 1
dominantly couples to mode n = 3 in (d) but with mode n = 5 in (e),
showing that rotation alters the primary coupling.

Each peak corresponds to the emergence of a new relevant
degeneracy for the initially occupied mode, as indicated in
Fig. 6(a).

Notably, we also see why there is no peak in Fig. 5(a) at
ω = 1 because Fig. 6(a) shows that the n0 = 1 mode is not
degenerate with any other mode, and hence, oscillations are
suppressed. However, energy degeneracy is not the complete
story. For example, there are no peaks in Fig. 5(b) at ω = 1
and 3 and in Fig. 5(c) at ω = 1.5, and 2.5, although Fig. 6(a)
shows that the initial mode n0 = 2 has degeneracies there.
That is because, as explained in Sec. III, for oscillations to
occur there also needs to be a ladder pathway between the
degenerate modes; that is, they need to be separated by integer
multiples of the lattice period q, which does not occur for
these above-mentioned cases.

Perhaps the most surprising aspect of these quenches and
revivals of the coherent oscillation is that they are completely
determined by the energy spectrum in the absence of the lat-
tice. Figures 6(b) and 6(d) show the variation of the spectrum
as U0 is varied from zero to the maximum value for lattice
period q = 2 and 4, as used in Fig. 5, and then Figs. 6(c)
and 6(e) show how the spectrum is further changed by angular
velocity, keeping the lattice strength at U0 = 10. Clearly, the
defining degeneracies that appear in the absence of the lattice
in Fig. 6(a) are generally absent in Figs. 6(c) and 6(e). This
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FIG. 6. Variation of the lowest-energy eigenvalues in the ring as
function of (a) the angular velocity with no lattice, U0 = 0, (b) and
(d) the lattice strength without rotation ω = 0, and (c) and (e) the an-
gular velocity for lattice strength U0 = 10. (b) and (c) are for q = 2,
and (d) and (e) are for q = 4, reflected in the number of states in each
band when the lattice is on. Intersections labeled by Roman numerals
in (a) match similarly labeled peaks in Fig. 5 that mark recurrence of
oscillation. They correspond to the onset of new degeneracies for
the initial mode, induced by rotation, with the lattice absent. (b)–(e)
show that those relevant degeneracies are conspicuously absent with
the lattice present.

underscores the relevance of the adiabatic switching on of the
potential [τ = 10 in Eq. (3)] with the angular velocity already
present. As shown in Fig. 4, the state remains in the instanta-
neous state as the lattice is turned on, so that the degeneracies
present in the absence of the lattice continue to determine the
dynamics even when the lattice reaches maximum strength, as
long as it is done adiabatically.

VII. SENSOR APPLICATION POTENTIAL

The sensitivity of the coherent oscillation to rotation nat-
urally suggests possible application in rotation sensing. The
response of the amplitude of oscillations will be manifest in
the angular momentum and hence the circulation, an observ-
able of the system. However, Fig. 5 shows that the decline
in the amplitude with rotation is rather gradual, indicating
limits to sensitivity. But Figs. 7(a)–7(c) indicate this can be
remedied by reducing the lattice depth. In the limit of very
weak coupling (small U0), the drop in amplitude of oscillation
can be quite sharp, indicating heightened rotation sensitivity.
Furthermore, as seen there, a weak lattice also has the ad-
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FIG. 7. (a)–(c) plot the variation of the amplitude of the oscilla-
tion caused by rotation. They match Fig. 5(a), except here, along with
the initial mode n0 = 1 (marked by blue dots), the modes it couples
to are also shown to undergo similar behavior, and all are impacted
by the lattice strength U0. (d)–(f) show that rotation also impacts the
period of oscillation of the modes causing a drop and subsequent
rise that gets sharper with increasing U0. (a) and (d) label modes
that overlap with the initial mode; its dominant coupling changes
from mode n = −1 to n = +3 as ω varies, also seen at higher U0 but
less stark. The legend in (e) applies to (a)–(f). The boxed panels, (g)
and (h), show the time evolution of the primarily occupied modes,
corresponding to the specific values of ω circled in (f); fluctuations
are due to migration of the dominant coupling.

vantage that only the primary modes are excited, making the
dynamics more transparent and cleaner.

There is, of course, a trade-off. A weaker lattice leads to
longer periods, evident in Figs. 7(d)–7(f), which reflects the
energy time trade-off of the uncertainty principle. So while
rotation sensitivity can be enhanced by weakening the lattice
strength, longer duration of observation is required to allow
for completion of a period.

Interestingly, a potential bypass of this trade-off also seems
to be implied in the behavior of the period of oscillation. At
some nonzero angular velocity, there is a sharp drop in the
period as the angular velocity is increased. This is shown in
Figs. 7(d)–7(f). That drop is sharper at higher lattice strengths.
But the trade-off here is that the drop off is smaller in magni-
tude. One could, in principle, utilize the sharpness of period
change if one were to monitor the period of oscillation keep-
ing the system rotating at a uniform rate close to the transition

point. Then, a small change in the period would indicate a
change in the rotational state.

The drop in both the period and the amplitude of oscillation
and subsequent revival actually occurs for all the relevant cou-
pled modes, although to a variable degree for each. This marks
the transition of one set of strongly coupled oscillating modes
to another set, as the energy degeneracy shifts with rotation.
This is clearly evident in Figs. 7(a)–7(c) for the amplitudes of
the modes as ω changes.

The regime of the reduced period spans different ranges
of the angular velocity for the various modes but is widest
for the initial mode, as seen in Figs. 7(d)–7(f). The cause for
the sudden change is evident when one tracks the population
oscillation for values of ω lying in the valley of reduced
periodicity. For a pair of points in that regime, Figs. 7(g) and
7(h) show that oscillations become rather erratic. This can be
attributed to transitions in the coupling of the modes that occur
here, so that the same mode is coupled with equal strength to
two distinct modes.

VIII. INFLUENCE OF LATTICE PARAMETERS

We now turn our attention to the influence of the lattice pa-
rameters on the system dynamics. To be specific, we track the
response of the time evolution of the population in the initial
state, characterizing it by the period and the amplitude of its
oscillation, as well as by the mean value of the population.
All are averaged over multiple periods at steady state when
the lattice potential is constant at maximum depth. We illus-
trate this comparatively for an oscillating case n0 = 2, q = 2
and a self-trapped case n0 = 2, q = 3. In the latter case, the
period and the amplitude refer to those of the wiggles in the
population of the initial state.

A. Revival time

As noted earlier, on adiabatically switching off the lattice,
in the oscillating cases, the system does not necessarily get
restored to the initial state and angular momentum. The degree
of revival is influenced by the rate of switching off as well
as by when the switch off is initiated. By adjusting these
parameters, via τ and T in Eq. (3), practically any terminal
angular momentum can be achieved intermediate between and
up to a complete clockwise or counterclockwise circulation.
The time for complete revival depends on the number of
ladder steps, given by the ratio 2n0/q, separating the initial
state from its energy-degenerate counterpart. A higher value
requires longer revival time. Furthermore, for fixed lattice
period q, the revival time generally increases with the mode
n0 and hence its energy. The notable exception is for the
resonant case when 2n0/q = 1, where the initial mode couples
directly with its degenerate mode, in which case, the revival
time remains surprisingly constant regardless of the specific
initial mode n0 in consideration.

B. Exponent of the potential

We have presented all our results so far for the power
of cosine in the lattice potential in Eq. (2) at 2p = 2. We
now show that the conclusions are qualitatively unchanged
by that constraint. Increasing the exponent 2p has the effect
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FIG. 8. The influence of the power 2p of the cosine potential on
the dynamics is represented by tracking the period, mean value, and
amplitude of the oscillations/wiggles in the time evolution of the
initial mode. Left panels are for an oscillating case with n0 = 2, q =
2, and the right panels are for the self-trapped case with n0 = 2, q =
3. The solid circles interpolated by orange lines keep the area under
the potential fixed by adjusting the lattice strength U0, while the open
circles interpolated by blue lines keep U0 constant.

of narrowing the width of the peaks of the potential with
no effect on the lattice periodicity. We consider two options,
(1) keeping the strength U0 fixed and (2) adjusting it so that
the integrated area of each peak remains constant. The latter
option simulates the approach to a sequence of δ functions in
the limit p → ∞, matching a similar limit of a Kronig-Penney
model. Figure 8 illustrates the effects. Fixed U0 makes the
potential weaker with increasing power, so the oscillation
period increases, consistent with the proportionality of energy
to frequency. However, when U0 is adjusted to maintain the
strength of the lattice, the period settles into a stable value. A
sharp initial drop is due to the opening up of new ladder paths
with a larger step size, implicit in the trigonometric expansion
in the second form of the potential in Eq. (2).

The mean value of the oscillation captures the loss of
population from the initial state, averaged over a period. The
patterns are similar for both oscillating and self-trapped cases,
but with different physical interpretations. For the oscillat-
ing case, the mean value is proximate to a value of 1/2,
which corresponds to oscillations with maximum amplitude.
At fixed U0 as the potential weakens, it is harder to excite
more distant modes so that the system tends towards a full
amplitude oscillation between the dominant degenerate pair.
This is also reflected in the behavior of the amplitude. The
initial sharp boost levels off as the maximum amplitude is
approached asymptotically. When the strength of the potential
is kept constant by adjusting U0, both the amplitude and the
mean remain at values that reflect diminished oscillations of
the dominant pair, with population acquired by other modes.
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potential 2p.

A sharp drop at low power is once again due to the opening
up of new ladder paths.

In the self-trapped cases, the mean values approach unity,
and the amplitude of the wiggles approaches zero when the
potential weakens with increasing power, both indicative of a
vanishing effect of the lattice. But when the potential strength
is maintained, the narrowing of the potential causes the mean
to stabilize at some value representing some loss of population
in the initial state, which is accompanied by the characteristic
wiggles that settle into some constant amplitude.

There are two main messages here: (1) If the strength of
the potential is maintained, the dynamics becomes generally
insensitive to the exponent, consistent with settling into uni-
versal behavior as the lattice approaches the δ comb limit. (2)
The greatest impact of the exponent is at low values when
the emergent new ladder pathways have the highest relative
weights compared to the fundamental pathway.

C. Strength of the potential

In Fig. 9, we present the effect of increasing the strength
of the potential, fixing the exponent 2p of the cosine function
in the potential equation (2) at different values, to create a
picture of the composite effect of the potential strength and
width. For both oscillating and self-trapped cases, the increase
in the strength of the lattice potential causes a decline in the
period of the oscillations consistent with higher-energy input,
as seen in Fig. 9. A sharp decline is seen at lower strengths,
particularly for the oscillating case, but at higher strengths, the
period levels off at values that trend higher with the weakening
due to the narrowing of the potential at higher exponents.
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The same basic pattern appears for the mean value as well.
The decline reflects increased loss of population to modes
farther apart on the ladder made energetically accessible by
the stronger lattice coupling but softened by narrowing of the
potential at higher exponent.

In the case of strong oscillations, the amplitude acts in
tandem with the mean value for the same reasons. However,
the amplitude of the wiggles reveals an opposite trend, an
increase with U0 at the beginning before leveling off and pos-
sibly turning around. This occurs because initially, a stronger
potential boosts the coupling between the initial mode n0 and
its neighbor n0 − q, but as the strength increases further, the
latter mode can itself couple further along the ladder, reducing
the amplitude of the initial mode. Notably, the turnaround
effect is less pronounced at higher exponents since the exis-
tence of multiple ladder pathways allows the initial mode to
directly couple to multiple modes on the ladder, leading to
more pronounced oscillations.

The influence of the lattice strength U0 is particularly rel-
evant in the two limits of weak lattice and strong lattice. In
the weak lattice limit, clearly, there is strong sensitivity to the
lattice depth, with even local reversal of trends occurring for
small exponents 2p that can be attributed to the heightened
impact of new coupling pathways opening up. The strong lat-
tice marks a tight-binding limit, where localized states would
be a more appropriate basis and the behavior of individual
circulating modes tends to become uniform.

IX. OUTLOOK AND CONCLUSIONS

The considerations in this paper indicate some of the most
basic experiments that could be done on a ring-shaped lattice.
The primary criterion for testing the results here is to trap ul-
tracold atoms that maintain coherence in a toroidal trap where
an azimuthal lattice structure can be introduced. Confinement
of atoms in ring traps has been demonstrated and utilized in
experiments for some time now, with LG beams [6,12,40]
as well as via other methods such as with an intensity mask
[23,24]. In some of these experiments, sharply focused blue-
detuned lasers have been used to create potential structures
along the azimuth, indicating the feasibility of a lattice poten-
tial with a uniformly spaced multitude. Ring-shaped lattices
have already been demonstrated by interfering two LG beams

with opposite orbital angular momentum (OAM) and offer a
particularly convenient method [21,22]. What remains to be
done is the clearly feasible step of bringing together these
two features, already separately realized, azimuthal lattice
potential, and confinement of ultracold atoms in ring traps.

The other necessary feature in our study is the inclusion
of rotation. Angular motion of the general frame is clearly
an independent consideration that does not impact trapping of
atoms in ring-shaped lattices. The lattice itself can be easily
rotated by introducing a frequency shift between the two
constituent LG beams, limited only by the speed of the phase
modulation, but rotation periods at the picosecond levels are
possible with an electro-optic modulator [41]. Measurement
of the quantum states in the ring can be done through various
imaging techniques, and the phase of each state via mapping
to density modulation such as by interference of a circulating
condensate with a noncirculating one [24,42], and measure-
ments of flow even in situ have been demonstrated [43].

Adiabatic introduction of the lattice can be done in a vari-
ety of ways; one possibility in the case of LG beams would
be to use one beam of zero OAM for confinement and a pair
with opposite OAM, ±h̄q, to create the lattice that can be
independently controlled, so raising its intensity would adi-
abatically introduce the lattice. Different values of the OAM
would lead to different lattice periodicities in multiples of q.
Finally, although not absolutely essential, the nonlinearity can
be reduced by use of Feshbach resonance to tune atom-atom
interactions to approximate the linear behavior [39] assumed
here.

The results reported here offer multiple routes for further
research, particularly with the introduction of nonlinearity, a
subject of our ongoing interest. Specifically, a prior study,
coauthored by one of us, showed that rotation sensitivity can
be enhanced by use of spin squeezing induced by nonlinearity
[2]. The sensitivity, as observed here, of the amplitude of
mode oscillation to rotation could possibly be similarly en-
hanced to make it a competitive mechanism for matter-wave
rotation sensing.
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