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Dark matter-wave gap solitons in dense ultracold atoms trapped by a one-dimensional optical lattice
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Optical lattices have been used as a versatile toolbox to control Bose-Einstein condensates (BECs) in recent
years, and a wealth of emergent nonlinear phenomena have been found, including bright gap solitons and dark
ones, among which the former has been realized in experiments. The latter, however, has only theoretical results
and its fundamental properties are still not well understood. Here we theoretically and numerically explore an
open issue of creating stable matter-wave dark gap solitons in a one-dimensional optical lattice, onto which the
BECs with self-defocusing quintic nonlinearity are loaded. Using linear-stability analysis and direct simulations,
the formation, structures, and properties of dark gap solitons in quintic nonlinearity have been compared to those
upheld by cubic Kerr nonlinearity. In particular, we uncover that the dark gap solitons and soliton clusters are
robustly stable in the first finite band gap of the underlying linear spectrum, and are hard to be stabilized in the
second gap. The predicted dark gap solitons are observable in current experiments on dense ultracold atoms,
using an optical lattice technique, and in the optics domain for nonlinear light propagation in periodic optical
media with quintic nonlinearity.
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I. INTRODUCTION

Bose-Einstein condensates (BECs), created in ultracold
bosonic atoms and degenerate quantum gases, are a macro-
scopic quantum phenomena and thus can be considered as
a single particle in mean-field theory, whose conceptual
framework is commonly referred to as Gross-Pitaevskii equa-
tions [1]. Recent decades have witnessed the emergence,
prediction, and confirmation of a great number of interesting
nonlinear phenomena in BECs, including profile, dynamical
expansion and nonlinear excitations of trapped conden-
sates [2], dark [3,4] and bright solitons [5–9], dark ring-
shaped waves [10], Faraday [11] and shock waves [12,13],
and four-wave mixing [14], to name just a few. The radical
advance in laser technology has made the controlling and
steering of BECs in an optical way possible, called optical
lattices or standing optical waves, which can be easily cre-
ated by using pairs of counterpropagating laser beams [15].
It is already known that by preparing the BECs or ultracold
atomic gases onto optical lattices, we can study the existence
of nonlinear matter waves and their dynamics [16–18], and
simulate condensed-matter physics, including quantum many-
body physics and beyond [19–21].

Localized waves or localized modes supported by periodic
physical systems, such as BECs in optical lattices [15–18],
and optical waves in photonic crystals and lattices [22–25],
have become the focus of research in the frontier of non-
linear physics. Gap solitons are a novel kind of localized
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modes in periodic physical systems, whose chemical potential
values are located inside the finite band gaps of the under-
lying linear spectrum. The gap solitons have been predicted
theoretically [26–38] and observed in experiments [39–45],
including the matter-wave gap solitons [39] (and exciton-
polariton gap solitons [40–42]) in optical lattices, and the
optical-wave gap solitons in Bragg gratings [43–45] and in
negative index materials [46]. In addition, an extended version
of gap solitons, which is being viewed as truncated nonlinear
Bloch waves or gap waves [47,48], supported by periodic
potentials as well, has been observed in BECs [49] and optics
experiments [50,51] in the last decade. The periodic poten-
tials are so fascinating in the respective optical and ultracold
atomic media; the paramount reason is that they provide
unique opportunities to manipulate the formation, propaga-
tion, and property of nonlinear optical and matter waves, in
a very similar way to that for controlling the electrons in
semiconductors [15–17,22–24].

Note that the aforementioned gap solitons represent a class
of bright localized gap modes with a central peak, and recall
that both bright and dark fundamental matter-wave solitons
have been well understood and implemented in BECs (as
mentioned above) [3–9]; in comparison, their dark coun-
terparts, i.e., dark localized gap modes with a central dip,
have not been well understood on the theoretical side (pre-
vious theoretical studies have found that the dark solitons
can be controlled by optical superlattices [52]). In particular,
the formation and property of dark gap solitons and how
to stabilize them in dense BECs with quintic nonlinearity
are still unclear; by contrast, their presence and dynamics
in dilute BECs in optical lattices have been predicted and
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very recently surveyed theoretically (although an experimen-
tal observation is still lacking) [53,54]. In highly dense BECs,
where the atom-atom collision is dominated by three-body
interactions, the nonlinear term of the underlying theoretical
framework (Gross-Pitaevskii equation) is the self-focusing
or self-defocusing quintic nonlinearity [55–60]. In such a
regime, the condensate of rubidium atoms with hard-core
interactions, also known as the Tonks-Girardeau gases, gov-
erned by three-body inelastic collisions has been realized
experimentally [61]. For very dense BECs, the three-body
inelastic collisions induce unavoidable losses which can af-
fect the robustness of solitons. On the other hand, for the
BECs with two-body collision but without any three-body
interaction, and trapped by a strong confinement in the trans-
verse plane, a universal quintic nonlinear term is present in
the underlying theoretical model when the dimension is re-
duced from three to one [62–64]. In the context of nonlinear
optics, theoretical predictions [65,66] and experimental ob-
servations [67–69] have confirmed the existence of quintic
nonlinearity in nonlinear optical media.

The objective of this work is to survey an open issue
outlined above of the existence and dynamics of dark gap
solitons in a dense BEC supported by the reciprocity between
a 1D external periodic potential (optical lattice) and quintic
repulsive nonlinearity. We report systematic results, which
combine theory and numerical calculations, for dark matter-
wave gap solitons and soliton clusters in shallow and medium
shallow optical lattices, as well as in a moderately deep one.
We uncover that for the former, the soliton solutions are par-
tially stable in the first band gap, which resemble our recent
predictions in the dilute BEC with cubic nonlinearity [53];
the corresponding stability region is greatly expanded for the
latter two (medium shallow and moderately deep lattices). Our
recent related article on a dilute BEC demonstrated that the
gap-type dark localized modes are stable objects in most of
the second band-gap region; on the contrary, here we find that
these dark gap modes, constructed in the second gap too, can
hardly be stabilized in the dense BEC. The stability property
and evolution process of the dark gap modes in both band gaps
are provided by linear-stability analysis and direct perturbed
numerical simulations. Our results provide further insight into
the unobserved dark gap modes in the fifth state of matter—
the BEC, driving the development of soliton studies in the
theoretical and experimental communities in BEC and beyond
(e.g., in nonlinear optics). With the preceding descriptions in
mind, we foresee that in the coming years, the predicted dark
gap modes reported here and elsewhere will be tested exper-
imentally in the corresponding ultracold atoms laboratories
and in the context of optics territory with nonlinear optical
media possessing cubic or quintic nonlinearity.

II. THEORETICAL MODEL AND NUMERICAL METHODS

In mean-field theory, the dense BEC trapped by an opti-
cal lattice is described by the conventional Gross-Pitaevskii
equation with nonlinear terms, which is expressed by the order
parameter (wave function) U [1,2,29,30],

ih̄
∂U

∂τ
= − h̄2

2m
∇2U + VtrapU + β|U |αU, (1)

where the parameters h̄, m, and τ represent, respectively,
Planck’s constant, the mass of the atom, and evolution time;
and where Laplacian ∇2 = ∂2

X in spatial dimension D = 1 for
low-dimensional condensed quantum gases (usually referred
to as the cigar-shaped BEC), and Vtrap is the periodic trapping
potential called the optical lattice induced by the interference
of counterpropagating laser beams.

The order of the nonlinearity is given by α = 2 and α = 4
for a dilute BEC and a dense one, respectively, with nonlin-
ear strength β being β = 2h̄2as/(ma2

⊥) and β = g2/(3π2a4
⊥),

where as is the s-wave scattering length and a⊥ is the trans-
verse linear oscillator length, and the coefficient g2 depends
on the three-body interactions [55]. Note that the above equa-
tion is in the same form of the groundbreaking nonlinear
Schrödinger equation; such a similarity confirms the fact that
the last term of Eq. (1) stands for cubic (Kerr) nonlinearity
as α = 2, and the nonlinear term should be called quintic
nonlinearity in the case of α = 4. Since our focus is restricted
to the dense BECs with quintic nonlinearity, we shall set
α = 4 in the following, unless otherwise stated. Without loss
of generality, the governing Eq. (1) can be rescaled to a di-
mensionless form by rewriting the variables t = τ/τ0, ψ =
(mg0/3π2 h̄2a4

⊥)1/4U , V = m/h̄2Vtrap, and τ0 = h̄/m, leading
to the following reduced system for scaled wave function ψ :

ih̄
∂ψ

∂t
= −1

2
∂2

x ψ + V (x)ψ + g|ψ |4ψ, (2)

where g = g2/g0 is the dimensionless nonlinear strength, with
g0 the nonlinear coefficient, and the positive g > 0 represents
the local strength of defocusing (self-repulsive) nonlinearity
arising from repulsive interatomic interactions. The exter-
nal periodic potential V (x) is an optical lattice expressed
as V (x) = V0 sin2(x), with constant parameter V0 being the
amplitude of the periodic trapping (modulation depth). The
quintic nonlinearity can be realized as Tonks-Girardeau gases
in dense BECs [61]. In the context of nonlinear optics, the ma-
terials with quintic nonlinearity have also been demonstrated
experimentally in recent years [65,66].

The wave function at certain chemical potential μ can be
expressed as ψ = φ exp(−iμt ). Substituting it into Eq. (2)
leads to a stationary equation for the wave function φ:

μφ = − 1
2∂2

x φ + V (x)φ + gφ5, (3)

which can be obtained from the corresponding Lagrangian,

2L =
∫ +∞

−∞

[
μφ2 − 1

2

(
∂φ

∂x

)2

− V (x)φ2 − g

3
φ6

]
dx. (4)

We seek stationary solutions in the form of dark gap soli-
tons, as mentioned above, for Eq. (2) under the condition
of a defocusing sign of the quintic nonlinearity (i.e., g > 0).
This can be done by solving the corresponding stationary
equation (3) in the way of Newton’s iteration. Then a cru-
cially paramount issue that deserves to be carefully weighed
is the stability of the stationary solutions thus found. We ad-
dress such issue in a conventional way, called linear-stability
analysis, which, principally, deals with the stability of the
underlying stationary states against small perturbations (i.e.,
the Bogoliubov–de Gennes equations). This is achieved by
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taking the perturbed solution as

ψ (x, z) = e−iμt [φ(x) + p(x)eλt + q∗(x)eλ∗t ], (5)

where φ is the undisturbed wave function (dark gap soli-
ton) with chemical potential μ, taken as per stationary
equation (3), and p(r) and q∗(r) represent small perturbed
eigenmodes with eigenvalue (instability growth rate) λ. The
substitution of Eq. (5) into Eq. (2) and the linearization results
in the following eigenvalue problem for λ:

iλp = − 1
2∂2

x p + [V (x) − μ]p + g|φ|4(3p + 2q), (6)

iλq = + 1
2∂2

x q − [V (x) − μ]q − g|φ|4(3q + 2p). (7)

According to the principle of linear-stability analysis, it is
seen from Eqs. (6) and (7), which were solved by means of
the finite-difference method, that the stability of the so-found
dark gap soliton solution requires only pure imaginary eigen-
values λ. In other words, the corresponding real part always
obeys Re(λ) = 0 [70]. We stress that the stability property
of the dark gap solitons is also further checked in direct
numerical simulation of the perturbed solutions, performed
in the framework of dynamical equation (2) by also adopting
the commonly used finite-difference method. The Dirichlet
boundary condition is adopted in all our simulations. Without
loss of generality, we set the nonlinear strength g = 1.5 in the
following.

III. NUMERICAL RESULTS AND DISCUSSIONS

This section is devoted to present the numerical results
of the dark gap localized modes (matter-wave solitons and
the soliton clusters) of a dense BEC loaded into periodic
potentials (three types of optical lattices as mentioned above),
with an emphasis on how the modulation depth (V0) degree
of freedom would affect the formation of stable localized
modes, and explain how their structure feature and stability
are achieved. It starts by providing the band-gap structure of
the underlying linear periodic physical model; then the struc-
tures of dark gap modes within the band-gap regions (first and
second band gaps) are produced numerically and compared to
their counterparts in dilute BEC with cubic nonlinearity. Two
numerical approaches, which include the above-mentioned
linear-stability analysis and direct numerical simulations, are
thereafter used to examine the stability of the dark gap modes,
discussing their physical intension and evolution dynamics.

In order to investigate the formation of matter-wave dark
gap solitons, we first need to know what the relevant band-gap
diagram looks like. From the physical point of view, the pe-
riodic potential induces a band-gap structure for Bloch waves
in the linear regime [for the noninteracting BEC in Eq. (3)
by discarding the last (nonlinear) term], based upon the en-
ergy band theory of the crystalline solids [71]. The numerical
results of the spectral bands computed for the optical lattice,
V (x) = V0 sin2(x), are depicted in Fig. 1. The spectral gaps,
which situate the place between the two adjacent spectral
bands, open and widen with an increase of lattice depth V0

[Fig. 1(a)]. We choose three types of optical lattices for sup-
porting dark gap solitons, which we name shallow, medium
shallow, and moderate deep optical lattices respectively, at the
specific lattice depths V0 = 3, 6, and 9, and show the corre-

FIG. 1. Numerical results showing the emergence of the band-
gap structure for 1D optical lattice V (x) = V0 sin2(x). (a) Linear
Bloch spectrum (bands are shaded) as a function of modulation depth
of the lattice V0. (b)–(d) The relevant Bloch spectra at V0 = 3, 6, and
9. SIG: semi-infinite gap; 1st (2nd) BG: first (second) band gap. K
represents the momentum.

sponding band-gap structures in Figs. 1(b)–1(d). For now, we
are interested in the first and second band gaps, within which
the stable dark gap solitons may be localized in the spectral
gaps of the induced band-gap structure due to the interplay
between the optical lattice (which induces the band-gap struc-
ture) and nonlinearity.

We now proceed to present the numerical results of the
dark gap localized modes, which can be constructed through
solving Eq. (3) using the Newton-iteration method, with the
initial input being a hyperbolic tangent function. Typical ex-
amples of the fundamental dark gap solitons, residing within
the first band gap, of a dense BEC (under the quintic repul-
sive nonlinearity) trapped by an optical lattice are shown in
Fig. 2, where the comparison to their counterparts in cubic
nonlinearity is also made. It is seen from the figure that the
amplitude of the solitons increases with the increasing of the
energy of the BEC (chemical potential μ), abiding by the

FIG. 2. Profiles of 1D fundamental dark gap solitons with cubic
(blue solid line) and quintic (red dashed line) nonlinearity in the first
band gap under different chemical potential μ at V0 = 3. (a) μ =
2.5; (b) μ = 3.7. The black dashed line in both panels represents the
shape of the scaled optical lattice.
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common ground of stronger Bragg scatterings in spectral gaps
when going deeper inside the gaps. Compared with the cases
in cubic nonlinearity, we can see clearly that the dark gap
solitons in the quintic nonlinearity have a wider waist and
a larger amplitude. This feature is in strong agreement with
their bright counterparts (gap solitons) supported by quintic
or cubic repulsive nonlinearity; the bright gap solitons en-
hance their amplitudes and waists under the quintic case as
compared with their counterparts in the cubic one (not shown
here). Such a striking feature can be understood from the
intrinsic properties of dilute and dense BECs, such as the
definition of the number of atoms N ,

N = 1

μ

∫ +L/2

−L/2

[
1

2

∣∣∣∣∂φ

∂x

∣∣∣∣
2

+ V (x)|φ|2 + g|φ|α+2

]
dx. (8)

Here, L is the total calculation length. The above expression
is originated from the corresponding stationary equation (3)
by simply multiplying by φ∗ and integrating with a simplifi-
cation; meanwhile, such expression can also be derived from
the Lagrangian (4). When keeping the same values of μ,
V (x), and g, an increase of α (α = 2 for dilute BECs and
α = 4 for dense BECs, as described above) would lead to
the increase of N , indicating the increasing of |φ| (and the
relevant amplitudes), recalling the definition of atoms num-
ber N = ∫ +L/2

−L/2 |φ|2dx. Further, it is also observed from both
Figs. 2(a) and 2(b) that the central dip of the so-found dark
gap solitons is situated at the location of the potential (optical
lattice) minimum, analogous to what we reported above un-
der cubic nonlinearity conditions. A physical principle worth
pointing out is that the nonlinear Bloch waves, i.e., the peri-
odic solutions of the underlying Eq. (3) at given μ, are the
foundation of dark gap solitons—that is, the dark gap solitons
are grounded in the corresponding nonlinear Bloch waves.

With the in-depth investigation, we obtain the relation
between atom number N and chemical potential μ for the
1D dark gap solitons in which we are interested, and col-
lect it at lattice depth V0 = 3 in Fig. 3(a). Such N (μ)
relation tells us that the dark gap solitons adhere to the
previous found stability criterion for localized gap modes,
the “anti-Vakhitov-Kolokolov” (anti-VK) criterion, dN/dμ >

0 [31,32,36,53,72]. The corresponding dependence in forms
of the maximal real segment of eigenvalues Re(λ) and μ is
as well depicted in Fig. 3(a), which is double checked by our
systematic simulations in directly solving the dynamical equa-
tion (2) with initial small perturbations. The stability results
imply that the dark gap solitons trapped in a shallow optical
lattice and under quintic nonlinearity are partially stable in
the first band gap, and even in the midst of where the unstable
region remains there; on the contrary, their counterparts in the
context of cubic nonlinearity are unstable only near the band
edge. Furthermore, we reveal that the dark gap solitons are
almost not able to be stabilized in the second band gap—the
stability region is extremely narrow; this is different from the
results obtained in the cubic model, where they are proved to
be robustly stable [53]. To expand the stability territory, we try
to increase the modulation depth of the lattice V0 and see what
happens next in terms of medium shallow and moderate deep
optical lattices, with the depth being, respectively, V0 = 6 and
9. As might be expected, the stability region of the dark gap

FIG. 3. Number of atoms N (left, blue y axis) and maximal real
part of eigenvalues Re(λ) (right, red y axis) vs chemical potential
μ for 1D matter-wave dark gap solitons supported by quintic non-
linearity and optical lattice potential. The lattice’s modulation depth
(a) V0 = 3, (b) V0 = 6, and (c) V0 = 9. The linear Bloch bands in
each panel are shaded gray. The structure feature and dynamics of
the dark gap solitons marked by circles (A1, A2, A3, B1, C1) are
shown in Fig. 4.

solitons in the first band gap has been greatly expanded at a
bit higher depth (V0). However, once again, the stability of the
dark solitons in the second band gap cannot be enlarged at
all, and the stable dark solitons can exist only within a limit
region, according to Figs. 3(a) and 3(b).

To show how the dynamic evolution process of the dark
gap solitons develops in perturbed evolution, we show five
characteristic examples of dark gap solitons supported by
the above-mentioned three types of lattices (shallow, medium
shallow, and moderate deep ones) in the first band gap and the
second one in Fig. 4. We also show their relevant shapes and
linear-stability spectra calculated from the eigenvalue prob-
lem given by Eqs. (6) and (7). Direct perturbed evolutions of
these dark gap solitons, both stable examples and unstable
ones, are portrayed in the bottom panels of Fig. 4, where
both the three-dimensional and top-down (projection) views
are shown. We can observe the dynamic process from the
panels and conclude that the stable dark gap solitons main-
tain their forms unchanged during the evolutions, while the
instability for the unstable solitons always begins from the
inside (the central dip); then they transform themselves into
oscillating waves and, finally, immerse into the background
with the nonlinear Bloch waves mentioned above. We stress
that these stability and instability properties are analogous to
their counterparts found in the similar physical model, but
under cubic repulsive nonlinearity conditions [53].

Apart from the fundamental dark gap modes, it is interest-
ing to see if our theoretical model can support higher-order
modes (the higher-order modes are usually characterized
by complex structures, which are different from the simple
and isotropic fundamental modes), e.g., the dark gap soliton
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FIG. 4. Profiles (top), linear-stability spectra (middle), and evolutions (bottom) for 1D stable and unstable dark gap solitons. (a) Stable
soliton at μ = 3.42 in the second band gap; (b) stable soliton at μ = 4.78 in the second band gap; (c) unstable solitons at μ = 1.82 in the first
band gap; unstable solitons at (d) μ = 3.62 and (e) μ = 6.67 in the second band gap. The modulation depth of the lattice: (a),(c),(d) V0 = 3,
(b) V0 = 6, and (e) V0 = 9. The contour plots for the temporal evolutions of the solitons (in the third row) are projected onto the bottom
surfaces. The evolutions are shown in the bottom panels, starting with adding a small initial perturbation to the 1D dark gap solitons (the
perturbed solutions), which are used throughout the paper.

clusters arranged with several fundamental modes. The idea of
generating dark gap soliton clusters is derived from the exper-
imentally observed nonlinear self-trapping in Bose-condensed
87Rb atoms—the phenomenon that is referred to as the trun-
cated nonlinear Bloch waves (the so-called gap waves), that
is, a novel type of bright gap states besides the bright gap
solitons [47–49]. The striking difference between the bright
gap solitons and gap waves is that the former were only
created with a few number of atoms in 87Rb condensate placed
in an optical lattice (e.g., about 250 atoms) [39]; in contrast,
the latter can be generated experimentally for arbitrarily large
initial atom numbers [49]. It is relevant to emphasize that
the truncated nonlinear Bloch waves also have been broadly
explored in other nonlinear periodic systems [50,51]. Our sys-
tematic simulations confirm that their dark counterparts, i.e.,
the dark gap soliton clusters, can be supported by our model.
The dependence N (μ) for the dark gap soliton clusters formed
in shallow periodic potential with lattice depth V0 = 3 is ac-
cumulated in Fig. 5(a), where the anti-VK stability criterion
dN/dμ > 0 prevails. Also shown is the corresponding stabil-
ity and instability area, expressed as Re(λ) versus μ, in the
same panel, demonstrating that such clusters are completely
unstable in the second band gap, although they are stable
inside some regions of the first band gap. By slowly increasing
the lattice depth, e.g., we set V0 = 6 to make the optical lattice
become a medium shallow one, we can see from Fig. 5(b) that
the soliton clusters have a much wider stability region in the
first band gap of the underlying linear spectrum, even though
they cannot be stable localized modes in the second gap either.
The fact that the dark gap soliton clusters are strongly unstable
can be explained by the interaction between their fundamental

counterparts (dark gap solitons), owing to the stability region
for the gap soliton clusters always being narrower than their
fundamental gap solitons which, as described above, are tough
to be stabilized in the second band gap. The stability and insta-
bility characteristics are also verified by our direct perturbed

FIG. 5. The chemical potential μ vs number of atoms N (left,
blue y axis) curve and maximal real part of the eigenvalues Re(λ)
(right, red y axis) curve for 1D matter-wave dark gap soliton clusters
under quintic nonlinearity. The lattice’s modulation depth (a) V0 = 3
and (b) = 6; the dark gap soliton clusters composed of five funda-
mental dark gap solitons within the range of x ∈ [−10π, 10π ] are
presented. The linear Bloch bands are shaded gray. The structure
feature and dynamics of the dark gap soliton clusters marked by
circles (D1, D2, D3) are depicted in Fig. 6.
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FIG. 6. Profiles (top), linear-stability spectra (middle), and evolutions (bottom) of the 1D stable and unstable five-soliton family of dark
gap soliton clusters. (a),(b) Stable soliton clusters at μ = 1.9 and μ = 3.5 in the first finite band gap; (c) unstable soliton cluster at μ = 1.9 in
the first band gap; (d) unstable cluster at μ = 3.5 in second band gap. The modulation depth of the lattice: (a),(c),(d) V0 = 3, (b) V0 = 6. The
contour plots for the temporal evolutions of the soliton clusters (at the base) are mapped onto the bottom surfaces.

simulations shown in Fig. 6. Profiles of the dark gap soliton
clusters constructed by five fundamental gap solitons, with
spacing (�) between adjacent dark solitons equaling three
times the period of the optical lattice (�latt = π ), which is
to say, � = 3π , are also depicted in the same figure. Our sim-
ulations demonstrate that such soliton clusters can be robustly
stable objects only when � � 2π , resembling the findings in
the cubic model reported recently [53]. Like their fundamental
counterparts shown in Fig. 4, the dynamics evolutions of dark
gap soliton clusters also prove that the stable modes keep their
excellent coherence, while the unstable solutions transform
themselves into oscillating modes and merge into the non-
linear Bloch waves background in the end, according to the
bottom panels in Fig. 6.

One may wonder about the impact of three-body loss on the
predicted dark gap solitons; we have considered such effect
by introducing the loss term, which is expressed by ik|ψ |4ψ
(here, k is the coefficient), with which the stationary solutions
and the direct perturbed simulations (2) can be performed.
We show two examples of dark gap solitons under the action
of this loss term in Fig. 7, from which one can see that the
three-body loss affects the stability of the dark gap solitons,
where the instability increases with increasing k. In fact, with
a small k, weak instability exists in the predicted dark gap
solitons, which is still stable over t = 1000. In dense BECs
with small loss, the dark gap soliton can keep its form for
quite a while during the evolution. Although a bigger loss
will quickly destroy its stability, this is an issue that deserves
to be studied in detail in the future; adding a small cubic

nonlinearity to balance such loss may be an alternative way.
On the other hand, such loss term can be ignored in the
context of nonlinear optics with transparent optical media.
Although the optics lattices in BECs and photonic crystals and
lattices in optics share some similarities, e.g., the existence
of forbidden band gaps and the possible nonlinear localized
waves, they have some differences; the distinctive feature is
that the depth, periodic, and structure of the optical lattices
can be tuned freely, while the physical parameters of periodic
optical materials are generally unalterable.

FIG. 7. Evolutions of the 1D dark gap solitons under different
three-body loss with loss coefficient (a) k = 0.001 and (b) k = 0.002.
Other parameters are V0 = 3 and μ = 3.42.
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IV. CONCLUSION

The optical lattice has been introduced as a powerful tool-
box for manipulating the emergent nonlinear phenomena in
Bose-Einstein condensates (BECs), wherein the experimental
observation of bright matter-wave gap solitons marks a ma-
jor breakthrough. The dark gap solitons, however, have not
been observed and the underlying physics remains largely
unexplored; in particular, their existence and properties in
dense ultracold atoms loaded onto external periodic potential
(optical lattice). We have dug deep into such issue by reporting
on theoretical analysis and systematic numerical simulations
of dark gap solitons for dense BECs with repulsive three-
body interaction (quintic nonlinearity) by using the mean-field
theory, that is, the Gross-Pitaevskii or nonlinear Schrödinger
equation with quintic nonlinear term. Two families of dark
gap solitons, such as the fundamental solitons and soliton
clusters, in optical lattices possessing shallow, medium shal-
low, and moderately deep lattices (modulation depths) are
found and their stability and instability regions in the under-
lying linear band-gap structures are identified by means of
linear-stability analysis and direct perturbed simulations (both
methods achieved consistent results). The stability regions
for both fundamental dark gap solitons and soliton clusters
within the first band gap are narrow at a shallow lattice and
become wider when increasing lattice depth (e.g., at a medium
shallow lattice), while both classes of dark gap modes cannot
be stabilized in the second band gap, posing a challenge to the
survey of dark gap solitons in higher band gaps. On the con-
trary, the dark gap solitons lying in the second gap predicted

in dilute BECs with repulsive atom-atom interactions (cubic
nonlinearity) can be stable objects.

The physical settings considered here can be realized for
matter waves in dense BECs trapped by an optical lattice
and for light waves in periodic optical materials with quin-
tic nonlinearity. We thus expect that the predicted dark gap
solitons can be observed in experiments on ultracold atoms
and beyond. Our results provide theoretical insight into the
physics of dark gap solitons in nonlinear atomic and optical
media with quintic nonlinearity, and put forward a different
problem for finding stable dark gap solitons within the second
band gap, which is a key issue to be explored next. From a
fundamental point of view, in addition to the quintic model
introduced here, the cubic-quintic model, representing the
BECs with both two-body and three-body interactions and
the nonlinear optical medium having Kerr and quintic non-
linearity, has presently been widely researched [56,58,73,74],
while the formation and properties of dark gap solitons in such
model have yet to be deeply explored.
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