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NOON states with ultracold bosonic atoms via resonance- and chaos-assisted tunneling
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We investigate theoretically the generation of microscopic atomic NOON states, corresponding to the coherent
|N, 0〉 + |0, N〉 superposition with N ∼ 5 particles, via collective tunneling of interacting ultracold bosonic
atoms within a symmetric double-well potential in the self-trapping regime. We show that a periodic driving
of the double well with suitably tuned amplitude and frequency parameters allows one to substantially boost this
tunneling process without altering its collective character. The timescale to generate the NOON superposition,
which corresponds to half the tunneling time and would be prohibitively large in the undriven double well for
the atomic populations considered, can thereby be drastically reduced, which renders the realization of NOON
states through this protocol experimentally feasible. Resonance- and chaos-assisted tunneling are identified as
key mechanisms in this context. A quantitative semiclassical evaluation of their impact on the collective tunneling
process allows one to determine the optimal choice for the driving parameters in order to generate those NOON
states as fast as possible.
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I. INTRODUCTION

NOON states have attracted considerable attention in the
quantum physics community during the past decades. They
can be seen as specific examples of Schrödinger cat states
featuring a coherent superposition of macroscopically dif-
ferent quantum states [1]. Most generally, they are realized
within bosonic two-mode systems and correspond to the su-
perposition eiϕ1 |N, 0〉 + eiϕ2 |0, N〉 of the two quantum states
|N, 0〉 and |0, N〉, where one of the modes is populated with
N quanta while the other one is empty. While being an
important resource for quantum information processing, the
giant entanglement that is inherent in those NOON states
renders their experimental realization notoriously difficult.
Impressively large NOON states with N � 10 quanta were
nevertheless created with qubits in superconducting circuits
[2], with photons [3] as well as with phonons in ion traps [4],
to mention a few examples.

The realization of NOON states with ultracold bosonic
atoms is of particular interest as it enables the creation of
Schrödinger cat states made of massive matter. A key fea-
ture of atoms is that they generally interact with each other.
Rather than being a nuisance, the presence of atom-atom
interaction can be seen as an important asset since it allows
one to conceive protocols for the generation of the NOON
superposition that are based on the internal dynamics of the
atomic gas. Quite straightforwardly, for instance, the ground
state of an attractively interacting gas of bosonic atoms within
a perfectly symmetric double-well potential is a NOON state
where all atoms are located in the same (left or right) well.
If attractive interactions are to be avoided due to the en-
hanced instability of the atomic gas, one can resort to a
two-component Bose gas with an important intercomponent
interaction strength, which also features a NOON state as

the ground state [5]. However, preparing such ground states
through cooling techniques is a rather challenging task since
extremely low temperatures are required in order to distill the
symmetric NOON superposition |N, 0〉 + |0, N〉 with respect
to its nearly degenerate antisymmetric counterpart |N, 0〉 −
|0, N〉. As an alternative to ground-state cooling, a number
of dynamical schemes have been proposed in order to create
a NOON state with ultracold bosonic atoms. A widely dis-
cussed scenario consists in inducing a suitable phase shift [6]
between the two wells of a double-well potential hosting a
Bose-Einstein condensate of repulsively interacting atoms.
The subsequent dynamical redistribution of atoms between
the wells will, after a specific evolution time, give rise to
NOON superpositions with a fairly decent purity [7–12].
Other interesting proposals are based on well-designed mea-
surement schemes to distill the NOON superposition [13–15],
on generating the NOON superposition via an adiabatic pas-
sage through an excited-state quantum phase transition [16],
on two-component Bose-Einstein condensates in double-well
potentials [17], or on splitting processes of solitonic wave
packets transporting attractively interacting atoms [18,19].

A conceptually simple and hence rather appealing pro-
tocol, which was also discussed in Ref. [20], consists in
preparing a Bose-Einstein condensate in one of the two wells
of a perfectly symmetric double-well potential and then wait-
ing until it starts tunneling to the other well. This protocol
would have to be implemented in the so-called self-trapping
regime [21–30] where the (repulsive) atom-atom interaction
is so strong as compared to the interwell hopping that the
atoms are inhibited to go to the other well individually, due
to a mismatch of their chemical potentials in the two wells,
and can only tunnel there in a collective manner, by means of
a quantum sloshing process, as it was termed in Ref. [20].
A nearly perfect NOON state is then realized at half the
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time that it takes to undergo a complete tunneling process
of the condensate to the other well. The main drawback of
this proposal, besides the requirement of perfect symmetry,
is that the evolution timescale needed to reach this NOON
state is extremely long (see, e.g., [31]) such that it would most
generally exceed the typical decay time of the condensate due
to three-body collisions.

In this paper we show how to substantially speed up this
quantum sloshing process and hence also the production of
NOON states by subjecting the double-well potential to a
periodic shaking [32,33]. The amplitude and frequency of
this shaking are to be chosen such that a significant layer of
chaotic motion is induced within the classical phase space
of the mean-field dynamics within this two-mode system,
without appreciably altering the classical orbits that support
the |N, 0〉 and |0, N〉 states. The transition matrix element
between these two quantum states is then drastically enhanced
owing to chaos-assisted tunneling [34–38] which proceeds via
a perturbative coupling of the regular |N, 0〉 and |0, N〉 states
to the manifold of chaotic states that are strongly connected
with each other due to the presence of the periodic driving.
This regular-to-chaotic coupling can be further boosted by the
presence of one or several important nonlinear resonances in
the classical dynamics [39,40], thereby giving rise to a combi-
nation of resonance- and chaos-assisted tunneling [41–45]. As
we demonstrate below, NOON states can thereby be generated
at drastically reduced evolution timescales, without notably
affecting their purity.

Our paper is organized as follows. Section II is devoted
to the description of the physical system under consideration,
namely, ultracold bosonic atoms trapped in a double-well
potential. The notions of the NOON state and NOON time are
introduced. In Sec. III the presence of a periodic shaking of
this double potential is considered. We show that this periodic
shaking gives rise to an enhancement of tunneling due to
chaos- and resonance-assisted tunneling. In Sec. IV we show
that it is also possible to drastically decrease the NOON time
in the near-integrable regime, where chaos is not present.

II. NOON STATES IN THE TWO-MODE BOSE-HUBBARD
MODEL

The physical framework consists in ultracold bosonic
atoms contained in a double-well potential. The latter can be
experimentally realized through an optical lattice restrained
to two sites by means of an additional harmonic confine-
ment [27] or through superlattice techniques [46]. These two
sites are coupled with each other through J , the hopping pa-
rameter. The on-site two-body interaction U tends to localize
atoms on a specific site. If the temperature is sufficiently low,
the system stays on the lowest-energy band, featuring one
orbital per lattice site, and the Hamiltonian reads [22,26,47]

Ĥ0 = − J (â†
1â2 + â†

2â1) + U

2
(â†

1â†
1â1â1 + â†

2â†
2â2â2). (1)

Figure 1(a) displays a numerical simulation of the in situ
measurement of the atoms in the left and right wells, as a
function of evolution time. This calculation was done with the
initial condition |0, 5〉, i.e., with five particles, all of them on
site 2. For a noninteracting gas (U/J = 0), this initial state

FIG. 1. (a) Sequential and [(b) and (c)] collective tunneling of
ultracold bosonic atoms in a double-well potential, in the [(a) and
(b)] absence and (c) presence of a periodic driving. (a)–(c) A mea-
surement process of the number of atoms within individual wells
is numerically simulated for various evolved times, based on the
numerical time evolution generated by the Hamiltonian (7). (d)–(f)
Corresponding phase spaces in the mean-field approximation [see
Eqs. (4) and (5) or the Hamiltonian (10)]. The population imbalance
and the phase difference between sites 1 and 2 are z = (N1 − N2)/2
and φ = θ1 − θ2, respectively. The red trajectories are the classical
counterparts of the upper quantum dynamics. [(a) and (d)] In the
absence of interaction, tunneling occurs one by one, leading to
Josephson oscillations. [(b) and (e)] In the presence of interaction
(U = 20J), collective tunneling takes place, but on a very long
timescale τ = 6.0 × 105 h̄/J . The phase space displays two quali-
tatively different dynamics, namely, Josephson oscillation for low
population imbalances and self-trapping for high population imbal-
ance. [(c) and (f)] In the presence of a periodic shaking characterized
by an amplitude δ/J = 19.5 and a frequency h̄ω/J = 20, collective
tunneling occurs on a much shorter timescale τ = 1.9 × 102 h̄/J .
The presence of a central chaotic layer and a 1:4 resonance roughly
situated at z = ±2 is able to explain the decrease of the NOON time.

gives rise to individual atomic transfer in a periodic way
[Fig. 1(a)] known as Josephson oscillations [48,49]. In this
case, the NOON state does not occur.
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For a sufficiently high ratio U/J , all five atoms initially
stay localized on site 2 in the so-called self-trapping regime.
Indeed, the mismatch between the chemical potentials of the
two sites inhibits individual transfer of atoms from the state
|0, 5〉 to the other states [see Fig. 1(b)]. On a very long
timescale, giant transfer of matter through collective tunneling
will nevertheless take place due to the quasidegeneracy be-
tween the symmetric and the antisymmetric superposition of
|0, Np〉 and |Np, 0〉 (with Np = 5 the total number of particles),
whose eigenvalues are ε+ and ε−, respectively. This process
occurs through a NOON state, meaning that the wave function
can be written as

|NOON〉 = cos

(
	ε

2h̄
t

)
|0, Np〉 + i sin

(
	ε

2h̄
t

)
|Np, 0〉, (2)

with 	ε = ε− − ε+ the level splitting. The expression (2)
is an approximation that neglects the perturbative admixture
of the other states |1, 4〉, |2, 3〉, |3, 2〉, and |4, 1〉. The time
needed to obtain a perfectly balanced superposition between
the two quasimodes |0, 5〉 and |5, 0〉 reads

τ = π h̄

2|	ε| . (3)

For Np = 5, U/J = 20, and δ/J = 0 [Fig. 1(b)], the nu-
merical result gives τ = 6.0 × 105h̄/J . This NOON time can
be expressed in physical units for the atomic species 87Rb
characterized by a mass m = 1.443 × 10−25 kg and an s-
wave scattering length as = 5.313 nm. If the optical lattice
is produced by a laser with a wavelength λ = 1064 nm, we
obtain h̄/J = 4.4 × 10−3 s and the NOON time becomes τ =
2.6 × 103 s (see Appendix A for the derivation). This time is
prohibitively large in comparison with the typical lifetime of a
condensate in an optical lattice equivalent to roughly 10 s [50].
The situation gets worse for an even larger number of parti-
cles, in a dramatic manner: With the same lattice parameters,
we obtain τ = 2.2 × 105 s for Np = 6 and τ = 2.3 × 107 s
for Np = 7. This is not surprising, as the NOON time is ex-
pected to increase exponentially with the number of particles.

A semiclassical analysis can help in the understanding
of this phenomenon. The individual transfer of particles be-
tween sites in the Josephson regime is a classical transition
successfully described by the Gross-Pitaevskii equation. The
latter fails to reproduce the collective transfer of particles.
Figures 1(d)–1(f) show the phase spaces related to the quan-
tum numerical simulations in Figs. 1(a)–1(c). The red curves
represent the classical tori on which the symmetric and an-
tisymmetric combinations of |0, 5〉 and |5, 0〉 are anchored.
In the mean-field approximation, we can extract the discrete
Gross-Pitaevskii equation from the Hamiltonian (1) [21,28],

ih̄
∂ψ1

∂t
= −Jψ2 + U |ψ1|2ψ1, (4)

ih̄
∂ψ2

∂t
= −Jψ1 + U |ψ2|2ψ2. (5)

In this framework, a condensate amplitude can be associated
with sites 1 and 2, ψ1,2 = √

N1,2 + 1/2 eiθ1,2 , where Nj and
θ j are the number of particles and the phase of site j, re-
spectively. The transformation to (z, φ) coordinates following

z = (N1 − N2)/2 and φ = θ1 − θ2 enables us to introduce the
Hamiltonian related to Eqs. (4) and (5),

H0(z, φ) = Uz2 − 2J
√

(NQ/2)2 − z2 cos φ, (6)

with NQ = Np + 1 [21].
For a noninteracting gas all initial conditions give rise to

Josephson oscillations [Fig. 1(a)], while for finite U/J �= 0
self-trapping and Josephson oscillation coexist in the phase
space [21,27] [Fig. 1(e)]. The mean-field approximation (4)
and (5) is able to characterize those two classical regimes, but
fails to reproduce the collective tunneling that takes place in
the self-trapping regime in Fig. 1(b). For this a quantum or a
semiclassical approach is needed to model the giant transfer of
matter that takes place through tunneling across the dynamical
barrier. This gives rise to an exponential scale of the NOON
time with Np, which explains why this time is so large.

III. CHAOS- AND RESONANCE-ASSISTED TUNNELING

The NOON time can be significantly reduced by means
of a periodic driving. In this case, the system is no longer
integrable, meaning that chaos and nonlinear resonances can
emerge from the phase space. As an abundant amount of
literature suggests [39–45,51,52], these two structures and
their positions in the phase space have a huge impact on the
dynamical tunneling, whose inherent time can be reduced by
several orders of magnitude.

A specific driving which effectively corresponds to a peri-
odic tilting of the double-well potential is introduced through

Ĥ (t ) = Ĥ0 + δ cos(ωt )(â†
1â1 − â†

2â2). (7)

In a time-periodic system, the Floquet theory [53] is a suit-
able framework in which one can compute the quasienergies
ε± in order to determine the NOON time [see (3)]. Any
state |φ(t )〉 can be decomposed in the time-periodic basis
{|uσ

ν (t )〉 = |uσ
ν (t + 2π/ω)〉},

|φ(t )〉 =
∑
σ=±

Dσ∑
ν=1

cσ
ν (t0)e−iεσ

ν (t−t0 )/h̄
∣∣uσ

ν (t )
〉
, (8)

with cσ
ν (t0) = 〈uσ

ν (t0)|φ(t0)〉. Here D+ and D− are, respec-
tively, the dimensions of the symmetric and antisymmetric
blocks such that D+ + D− is the Hilbert space dimension of
the unperturbed system. The eigenvalue Schrödinger equation
reads [53]

[Ĥ (t ) − ih̄∂t ]
∣∣uσ

ν (t )
〉 = εσ

ν

∣∣uσ
ν (t )

〉
. (9)

The solution of the Fourier series of this equation leads to the
quasienergies εσ

ν and the Floquet eigenstates, in terms of the
Fourier coefficients of |uσ

ν (t )〉.
Figures 1(c) and 1(f) represent the same lattice parameters

as in Figs. 1(b) and 1(e) except that this system is periodically
perturbed (δ/J = 19.5 and h̄ω/J = 20). The upper and lower
margins of these phase-space plots are very similar, as they
both display a self-trapping structure, while the center of
Fig. 1(f) is dominated by a large chaotic sea. This prominent
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chaotic sea, which is characterized by an admixture between
the quasimodes |1, 4〉, |2, 3〉, |3, 2〉, and |4, 1〉, facilitates the
transition from |0, 5〉 to |5, 0〉. Moreover, a 1:4 resonance in
z1:4 � ±2 is symmetrically located between the quasimodes
|0, 5〉 and |1, 4〉, making easier a transition to the chaotic sea.
These two new structures in the phase have an impact on the
splitting that determines the NOON time τ = 1.9 × 102h̄/J .
For 87Rb and the experimental parameters mentioned in the
preceding section, this NOON time amounts to τ = 0.84 s.
The qualitative dynamics is the same as in the unperturbed
system [Fig. 1(b)], but the external shaking is able to reduce
the NOON time by more than three orders of magnitude.
This time can be compared to the period T = 2π/ω = 1.4 ×
10−3 s of the driving, meaning that the system must carry out
roughly 600 cycles to reach the NOON state.

An analysis of the phase space gives valuable information
for the optimal choice of the external frequency leading to a
significant increase of tunneling. Quantitative insight into the
role of ω can be obtained from the mean-field Hamiltonian
related to the phase space displayed in Fig. 1(f),

H (z, φ, t ) = H0(z, φ) + 2δ cos(ωt )z. (10)

The following strategy is adopted to determine the choice of
the external frequency. First, a range of ω can be chosen in
order to create a central chaotic layer [see Fig. 1(f) in compar-
ison with Fig. 1(e)]. Then a more refined analysis is needed
in order to act on the tunneling of a specific pair of quasi-
modes. Owing to the periodicity of the perturbation in the
Hamiltonian (10), the phase space can be represented through
a stroboscopic section. If this perturbation is not too strong,
the Kolmogorov-Arnold-Moser theorem [54–56] states that
tori with incommensurable winding numbers α = ω/�, with
ω the frequency of the driving and � the frequency of the
torus, will be preserved. Conversely, the Poincaré-Birkhoff
theorem states that the tori with commensurable α = r/s, with
integers r and s, will be destroyed and will lead to nonlinear
resonances with r pairs of stable and unstable fixed points and
chaos close to the unstable fixed points [54–56].

The location of a nonlinear resonance can be precisely
determined by means of classical perturbation theory. In the
phase spaces of Fig. 1, the torus z(φ) is characterized by the
action variable I = 1/2π

∫ 2π

0 z(φ)dφ. For δ = 0, the canoni-
cal perturbation theory [55] at the order 1 (valid for NQU/J �
1 and for high population imbalances) gives rise to

z(φ) � I + J

UI

√
(NQ/2)2 − I2 cos φ (11)

and the new Hamiltonian

H0(I ) � UI2. (12)

This enables us to compute analytically the frequency of the
tori via the relation h̄� = dH0(I )/dI � 2UI . The destroyed
tori display a commensurable winding number α = ω/�r:s =
r/s, where �r:s � 2UIr:s/h̄ is the frequency of the destroyed
torus. The external frequency that must be applied in order to
build an r:s resonance characterized by an action Ir:s (mean-
ing that the resonance will be roughly situated in z = Ir:s) is
obtained through the relation

h̄ω � r

s
2UIr:s. (13)
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FIG. 2. NOON doublet in the Floquet spectrum, as a function of
the driving amplitude: (a) a block of the periodic Floquet spectrum
(with even-parity levels being marked in black and odd-parity levels
in red), (b) a close-up of the block in (a), and (c) the NOON time cal-
culated from (b) and the relation (3). The minimal τ appears roughly
in δ/J � 19.5, which was used to produce Figs. 1(c) and 1(f). This
result is robust in the sense that a range between δ/J � 12 and 22 can
be chosen to observe the reduction by several orders of magnitude
of the NOON time. The parameters are Np = 5, U/J = 20, and
h̄ω/J = 20.

This relation is sufficient to find a suitable resonant frequency
that decreases the NOON time. Here h̄ω/J = 20 produces a
1:4 resonance in z1:4 � 2 that is symmetrically located be-
tween |5, 0〉 and |4, 1〉. Moreover, the interplay between the
1:1 resonance in z1:1 � 0.5 and the central island gives rise
to the chaotic layer as displayed in Fig. 1(f). Appendix B
presents semiclassical evaluations of the NOON time in the
near-integrable regime and in the mixed regime by taking into
account the presence of the chaotic sea. Note that even though
chaos- and resonance-assisted tunneling is able to reproduce
the order of magnitude of the NOON time, this semiclassical
theory is not sufficiently precise for experimental predictions
and a pure quantum analysis becomes necessary. Indeed, the
semiclassical estimate τ = 1.4 × 102h̄/J (see Appendix B)
must be compared to the exact NOON time τ = 1.9 × 102h̄/J
obtained with our numerical simulations.

In order to find an optimal value of δ, all the other pa-
rameters are fixed and the NOON time is computed as a
function of δ. Figure 2(c) suggests that the minimum NOON
time is reached for δ/J ≈ 19.5. This result is robust, meaning
that there is a range between approximately δ/J = 12 and 22
where the decrease of the NOON time is observable. This
range begins roughly at a level repulsion near δ/J = 10 for
which the doublet of the symmetric and antisymmetric com-
binations of |0, 5〉 and |5, 0〉 is crossed by the antisymmetric
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FIG. 3. Overlap between the quasimodes |n, Np − n〉 (n =
0, 1, 2, 3, 4, 5) and the Floquet eigenstate according to the rela-
tion (15). Even for the perturbed system in (b), the two-level
approximation can still be justified [see Eq. (2)] as M0 = MNp ≈ 0.5.
[(c) and (d)] Detection probabilities knowing that the system is pre-
pared in |0, 5〉. While (a) and (c) show the unperturbed case, (b) and
(d) display the situation with a frequency h̄ω/J = 20 that produces a
chaotic layer and a 1:4 resonance [see Fig. 1(f)].

combination of |1, 4〉 and |4, 1〉 (see the dashed line in Fig. 2).
After that, the splitting gains several orders of magnitude. The
more δ/J is increased, the more the chaotic sea is large. For
δ/J > 25, the quasimodes |0, 5〉 and |5, 0〉 begin to be diluted
in the central chaotic layer. Beyond this point, the notions of
splitting and NOON time are no longer meaningful.

In view of the latter considerations, a legitimate preoc-
cupation could be the implication of the external driving on
the purity of the NOON state. Indeed, the driving tends to
decrease the NOON time, but tends also to increase the ad-
mixture between the NOON state and the other quasimodes.
To obtain a time-independent indicator of the purity of the
NOON state, a simplified definition of the purity

p = M0 + MNp, (14)

based on the overlap

Mn = 1

T

∑
σ=±

∫ T

0

∣
∣
〈
n, Np − n

∣∣uσ
ν (t )

〉∣
∣

2
dt, (15)

is introduced. This definition of purity can formally be iden-
tified with the time average of the expectation value Tr[P̂ρ̂]
of the projector to the NOON doublet with respect to the
density matrix ρ̂ = |u+

ν (t )〉〈u+
ν (t )| + |u−

ν (t )〉〈u−
ν (t )|. The time

average over one driving period allows one to eliminate small
periodic oscillations of the purity related to micromotion,
which are not of interest here. Figure 3(b) suggests that the
resulting purity is roughly equal to p = 0.99. So the two-level
approximation seems to hold. Nevertheless, it is true that the
introduction of the perturbation decreases the purity, as this
one is better than p = 0.999 for the unperturbed case [see
Fig. 3(a)]. Figures 3(c) and 3(d) show that the time evolution
of the transition probabilities can be described in terms of
two-state dynamics in both cases.

FIG. 4. Evolution of the phase space with Np. The nonlinear
parameter (Np + 1)U/J and h̄ω/J are kept constant in order to
preserve the phase space for δ = 0. Here δ/J is chosen such that a
minimum of the NOON time is reached for Np = 5, 6, 7. We choose
δ/J = 19.5, 50, 44, respectively. Note that for Np = 6 and 7 the
NOON states (highlighted by red shading on the phase space) are
separated from the chaotic sea by a partial barrier.

As pointed out in the preceding section, the splitting
between two related quasimodes is known to decrease expo-
nentially with Np, leading to an exponential increase of the
NOON time. This is also the case for δ �= 0, but the increase
is not so extreme. In Fig. 4, Np is increased while keeping the
nonlinear parameter (Np + 1)U/J and h̄ω/J constant. From
an experimental point of view, this particular scaling can be
achieved by an adaptation of the lattice parameters without the
need to modify as. Keeping the nonlinear parameter constant
enables us to preserve the same phase space for δ = 0.

Figure 4 represents three phase spaces for Np = 5, 6, 7
with δ/J = 19.5, 50, 44, respectively, which correspond to
the minima of the NOON time τ . For Np = 6 and 7, the
NOON states (in red) appear to be inside the chaotic re-
gion. However, they are still isolated from the chaotic part
of the Floquet spectrum by the presence of an important
partial barrier in the phase space [36,37,45]. As shown in
Table I, the NOON time with a perturbation increases with
Np as expected. Nevertheless, this increase is slowed down
in comparison to the one in the unperturbed case. In addition
to reducing the NOON time, the external perturbation is also
able to decrease the slope of τ as a function of Np (see
Table I). Resonance- and chaos-assisted tunneling therefore

TABLE I. Comparison of the behaviors of the NOON time as a
function of the total number of particles Np in the unperturbed and
perturbed systems. The NOON time is expected to exponentially in-
crease with the semiclassical parameter Np. The third column shows
that this increase is softened by the external perturbation, suitably
tuned in order to reach a minimum of the NOON time. These min-
ima are obtained at δ/J = 19.5, 50, 44 for Np = 5, 6, 7, respectively.
As shown in the fourth column, the purities stay reasonable in the
perturbed case.

Np Jτδ=0/h̄ Jτδ �=0/h̄ pδ �=0

5 6.0 × 105 1.9 × 102 0.988
6 2.3 × 107 5.5 × 102 0.968
7 9.2 × 108 1.4 × 103 0.987
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FIG. 5. NOON states in a near-integrable regime for U/J = 20:
[(a) and (b)] stroboscopic sections of the phase space, [(c) and
(d)] admixtures of quasimodes, and [(e) and (f)] time evolution
of the detection probabilities. The left column represents the case
where a 2:1 resonance situated in z2:1 = 1.5 couples the quasimodes
|5, 0〉 and |3, 2〉 (δ/J = 75 and h̄ω/J = 120), while the right column
represents the case where the 1:1 resonance located in z1:1 � −2
couples the quasimodes |0, 5〉 and |1, 4〉 (δ/J = 12 and h̄ω/J = 80).
For the latter, the two-level approximation does not hold and the
dynamic takes place on two timescales [see the relation (16) for
(d) and (f)]. For the 2:1 resonance case, the NOON time is given
by τ = 2.4 × 103 h̄/J , with an excellent purity p = 0.999, while τs is
equal to 112.3 h̄/J in the 1:1 case.

opens interesting perspectives to create increasingly big en-
tangled states.

IV. NOON STATE IN THE NEAR-INTEGRABLE REGIME

As discussed above, the presence of chaos tends to de-
crease the purity, even though this one remains reasonably
good, as shown in Fig. 3 and in Table I. It is therefore in-
teresting to point out that chaos in the phase space is not
necessarily required to decrease the NOON time. This section
is devoted to the study of the effect of nonlinear resonances
without chaos on the NOON time. The left column of Fig. 5
displays a 2:1 resonance located in z2:1 � 1.5. The transition
of |5, 0〉 to the opposite part of the phase space is facilitated

by the coupling with the quasimode |3, 2〉. By means of the
relation (13), the external frequency that must be applied
amounts to h̄ω/J = 120. A procedure similar to the one used
in Fig. 2 enables us to determine δ/J = 75. With a NOON
time τ = 2.4 × 103h̄/J (and for 87Rb, τ = 11 s), the reduc-
tion is effective but limited while keeping excellent purity [see
Fig. 5(e)]. Indeed, we obtain p � 0.999, which is, from this
point of view, an improvement in comparison to the mixed
regular-chaotic case [see Figs. 3(b) and 3(d)].

It is actually possible to produce a NOON state in the near-
integrable regime with the same timescale as in the mixed
regular-chaotic case [see Figs. 1(c) and 1(f)], namely, by tun-
ing the driving frequency to an exact resonance in the quantum
Floquet spectrum. However, some new complications arise.
As an example, a transition between |0, 5〉 and |5, 0〉 can be
enhanced by means of a 1:1 resonance situated in z = 2 (see
the right column of Fig. 5). In this case the coupling matrix
element with the quasimodes |1, 4〉 and |4, 1〉 is enhanced. In
order to have a maximal effect, i.e., the lowest tunneling time
τ , we obtain δ/J ≈ 12 in that case. For this value, the coupling
between |0, 5〉 and |1, 4〉 is so strong that the dynamics must
modeled by four-level oscillations (the system is initially in
|0, 5〉):
|φ(t )〉

� cos

(
�s

2
t

)[
cos

(
� f

2
t

)
|0, 5〉 − i sin

(
� f

2
t

)
|1, 4〉

]

− i sin

(
�s

2
t

)[
cos

(
� f

2
t

)
|5, 0〉− i sin

(
� f

2
t

)
|4, 1〉

]
.

(16)

The system presents two different frequency scales given by

h̄�s = ε+
4 − ε−

3 + ε+
2 − ε−

1

2
, (17)

h̄� f = ε+
4 − ε−

2 + ε+
3 − ε−

1

2
, (18)

with ε−
1 < ε+

2 < ε−
3 < ε+

4 and where we assume ε+
4 − ε−

3 �
ε+

2 − ε−
1 . Figure 5(f) displays the probabilities of measur-

ing the different site populations knowing that the system is
initially in |0, 5〉. For this particular combination of parame-
ters (U/J = 20, δ/J = 12, and h̄ω/J = 80), the two doublets
which mainly contribute to the dynamics present the following
energy values:

ε+
4 = 200.435J, ε−

3 = 200.419J,

ε+
2 = 199.767J, ε−

1 = 199.754J.

Each of these four levels corresponds to a strong admix-
ture between 1/

√
2(|0, 5〉 ± |5, 0〉) and 1/

√
2(|1, 4〉 ± |4, 1〉).

They determine the characteristic times of the slow oscilla-
tions τs = π/2�s = 112.3h̄/J and the fast oscillations τ f =
π/2� f = 2.357h̄/J . The former timescale determines the
time required to produce a NOON state, i.e., the NOON
time. For experimental parameters of 87Rb, the NOON time
becomes τs = 0.49 s, which corresponds to the NOON
timescale of the mixed regular case [see Figs. 1(c) and 1(f)].
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FIG. 6. Close-up of τs of the detection probabilities for the 1:1
resonance case [see Fig. 5(f)]. Even though this configuration is not
able to produce a perfectly unbiased NOON state (P|0,5〉 = P|5,0〉 =
0.5), a slightly biased NOON state with almost no impurity, i.e.,
P|0,5〉 + P|5,0〉 � 1 and P|0,5〉 − P|5,0〉 = 8.5 × 10−3, can be realized by
choosing the measurement time slightly larger than τs = 112.3 h̄/J ,
namely, tm = 113.25 h̄/J .

In order to obtain a perfectly balanced NOON state with-
out impurities, i.e., with P|0,5〉 = P|5,0〉 = 0.5, on time τs, the
frequency ratio � f /�s must by divisible by 4 according to
the relation (16). Fine-tuning of the amplitude of the driving
δ is a way to achieve this purpose, but this may become
very difficult in practice. Alternatively, if � f /�s is not ex-
actly a multiple of 4 (such as � f /�s = 47.62 in our case),
it is possible to create a NOON state without impurities
(P|0,5〉 + P|5,0〉 = 1), but with a small bias between P|0,5〉 and
P|5,0〉. By inspecting the zoom around τs shown in Fig. 6, the
measurement time tm can be chosen by hand in order to meet
these criteria. For example, if we choose a tm = 113.25 h̄/J
slightly larger than τs, we obtain P|0,5〉 ≈ P|5,0〉 ≈ 0.5, with
P|0,5〉 − P|5,0〉 = 8.5 × 10−3 and P|4,1〉 ≈ P|1,4〉 ≈ 10−3. Know-
ing that � f ≈ 0.03ω, the control of the measurement time tm
must be precise on the timescale 10T , with T = 2π/ω, in
order to reach a precision on τ f .

V. CONCLUSION

In summary, this paper has presented numerical evidence
that microscopic NOON states can be realized on a realistic
timescale with ultracold bosonic atoms trapped in a double-
well potential. The production of a giant entangled state in a
double-well potential through collective tunneling displays a
major obstacle, namely, a very large NOON time exceeding
the lifetime of a condensate. This obstacle can be bypassed by
an external perturbation. While the NOON time is prohibitive
in the unperturbed case, the addition of a periodic shaking
enables one to lower the NOON time by several orders of
magnitude. The resonant parameters for both the amplitude
and the frequency of the driving can be understood and fixed
through chaos- and resonance-assisted tunneling. The com-

bination of a central chaotic sea and nonlinear resonances
correctly placed in the phase space is able to facilitate the
transition through the dynamical barriers. In particular, the
paper showed that it is possible to reach, for five particles,
the coherent superposition between |0, 5〉 and |5, 0〉 after a
timescale of the order of 1 s while keeping a relatively good
purity of roughly 99%. Moreover, the slope of the NOON time
as a function of Np is lower compared to the unperturbed case.
This opens perspectives for realizing Schrödinger cat states
with an increasing number of atoms.

An aspect that comes into play in that case and that we
did not focus on in this paper is the possibility to realize
the NOON superposition not only via tunneling of an atom
to the ground mode of the initially empty well, but also via
tunneling to one of its excited modes [57–59]. As is detailed in
Appendix A, this scenario is not likely to occur for the choice
of parameters that we specifically consider in this study.
However, for larger atomic populations, such transitions to
excited modes will constitute important additional channels
through which the NOON tunneling process will take place.
Even though a semiclassical treatment of resonance- and
chaos-assisted tunneling will become more complicated in
that case [60], one can safely assume that the near-resonant
access to transversally excited states in the well will generally
give rise to a further enhancement of the NOON tunneling rate
and hence to a further reduction of the time needed to produce
the NOON superposition.

Another important obstacle that we did not discuss here is
to maintain a nearby perfect symmetry between the two sites
of the optical lattice on a timescale of seconds. A small shift
due to, for example, gravity can introduce a perturbation larger
than the matrix element coupling |Np, 0〉 and |0, Np〉, which
could inhibit the collective tunneling. One way to overcome
this problem could be to employ a time crystal for which the
symmetry is guaranteed by construction [61]. Specifically, one
could consider that the atoms are on a ring-shaped trap [62] in
a rotational state, which is generated by a 2:1 resonance via
an external driving, i.e., all atoms are prepared within one of
the two rotational motion states that are stabilized by the 2:1
resonance of the driving. After the NOON time, the coherent
superposition occurs between this initial state and the opposite
one on the ring-shaped trap. Further studies could be done in
this direction in order to meet the experimental challenge of
achieving the perfect symmetry.
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APPENDIX A: PARAMETER EVALUATION

The NOON times presented in Fig. 2 are dimensionless.
It is possible to calculate an approximate time in physical
units based on some assumptions. The Hamiltonian of a single
particle trapped in a homogeneous one-dimensional optical
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lattice surrounded by an harmonic confinement reads

H = − h̄2

2m
	 + V0

h̄2k2

m
[1 − cos(kx)] + 1

2
mω2

⊥(y2 + z2).

(A1)

If the oscillations inside the well are small, a harmonic
approximation can be made and the ground state on site l
reads ϕl (�r) = ϕ(�r − l 2π

k �ex ), where

ϕ(�r) � 1√√
πσ‖

exp

(
− x2

2σ 2
‖

)
1√
πσ⊥

exp

(
−y2 + z2

2σ 2
⊥

)
,

(A2)

with σ‖ = 1/kV 1/4
0 and σ⊥ = √

h̄/mω⊥. Still in the harmonic
approximation, the longitudinal trap frequency takes the form
ω‖ = √

V0h̄k2/m. The evaluation of the on-site interaction is
given by [63]

U = g
∫
R3

|ϕ(�r)|4d3r � 2h̄ω⊥kas

√√
V 0

2π
, (A3)

with as the s-wave scattering length, g = 4π h̄2as/m, and ω⊥
the transverse trap frequency. A semiclassical evaluation (by
means of WKB theory) of the transmission coefficient through
a potential barrier for a particle in its ground state gives rise to
the hopping parameter [64,65]

J = h̄ω‖√
eπ

exp

(
− 2

h̄

∫ π/k

a

√
2m[V (x) − E0]dx

)
(A4)

=
√

V0

eπ

h̄2k2

m
exp

(
−2

√
2V0

∫ π

arccos η

√
η − cos φdφ

)
,

(A5)

with η = exp(−1/4
√

V0) − 1/4
√

V 0, V (x) = V0h̄2k2/m(1 −
cos kx), and E0 = V (a) = √

V0(1 − η)h̄ω‖ the ground-state
energy of the one-dimensional system. By assuming ω⊥ =
ω‖, V0 can be determined by solving

U

J
�

√
2e

√
V0kas exp

(
2
√

2V0

∫ π

arccos η

√
η − cos φdφ

)
.

(A6)

The energy scale is then obtained by means of the rela-
tion (A3) or (A5).

The wavelength of the laser is assumed to be equal to
λ = 1064 nm with k = 2π/d = 2π/(λ/2) = 2kϕ (d is the
distance between two wells and kϕ is the frequency of the laser
photons). The s-wave scattering length and the mass of 87Rb
are as = 5.313 nm and m = 1.443 × 10−25 kg, respectively.
The solution of (A6) for U/J = 20 gives V0 = 0.8586. That
leads to ω‖ = ω⊥ = 9.4 × 104 s−1 and h̄/J = 4.4 × 10−3 s.
A harmonic approximation of the band energies takes the form
En � √

V0(n + 1/2)h̄2k2/m, with n the band index. Knowing
that the strength of the potential is 2V0 � 1.7, the wells have
the lowest-energy band near E0 � 0.46h̄2k2/m.

The role of the nonlinear resonances and chaos is striking
concerning the diminution of the NOON time. We obtain
τ (δ/J = 0) � 2.6 × 103 s for the unperturbed system whose

phase space is displayed in Fig. 1(e), τ (δ/J = 19.5) � 0.84 s
for the 1:4 resonance with the chaotic layer [Figs. 1(c)
and 1(f)], τ (δ/J = 75) � 11 s for the case with the 2:1 res-
onance (left column of Fig. 5), and τs(δ/J = 12) � 0.49 s for
the case with the 1:1 resonance (right column of Fig. 5).

A condition for the validity of our semiclassical approach
is that the particle removal energies of the sites (which are
identical to their local chemical potentials when their popula-
tions are large) have to be sufficiently low to avoid a transition
to the first excited band situated at E1 � 1.39h̄2k2/m. The
particle removal energy of site i (μi with i = 1, 2) is largely
dominated by the on-site interaction, giving rise to the relation
μi � U (ni − 1) (for ni � 1). For the quasimode |0, 5〉 the
energy cost to remove one particle reads μ

(0,5)
2 � 0.18h̄2k2/m.

As E1 − E0 � 0.93h̄2k2/m, the transition of one particle to the
first excited band is avoided. Note that virtual transitions to
such an excited state can nevertheless play a non-negligible
role in the case that the population on the site under consid-
eration is increased and the particle removal energy from the
occupied site therefore becomes closer to the transition to the
excited state. The main effect of such virtual transitions will
be to open up a secondary tunneling channel for the NOON
doublet under consideration. From the theory of resonance-
assisted tunneling in higher-dimensional systems [60] we
should expect that the presence of this secondary channel
will generally give rise to an additional enhancement of the
tunneling rate, and hence to a further reduction of the time
needed to produce the NOON superposition, as compared
to the study undertaken in this paper. The semiclassical and
numerical calculations will then become more involved [60]
even though the end result, concerning the reduction of the
NOON time, is expected to be qualitatively very similar to the
present study.

APPENDIX B: SEMICLASSICAL EVALUATION OF
THE NOON TIME

In the framework of resonance-assisted tunneling, the dy-
namics near an r:s resonance can be approximated by a
pendulum, whose classical Hamiltonian is written [45]

H (r:s)
res (I, θ ) = (I − Ir:s)2

2mr:s
+ 2Vr:s

( I

Ir:s

)r/2

cos(rθ + φr:s).

(B1)
Here Vr:s is the potential amplitude of the pendulum, Ir:s is
its action, mr:s is its effective mass, and φr:s is an arbitrary
phase. The coupling matrix elements between quasimodes are
introduced by means of a semiclassical quantization of H (r:s)

res ,

〈
n − r

∣∣Ĥ (r:s)
res

∣∣n〉 = Vr:se
−iφr:s

(
h̄

Ir:s

)r/2
√

n!

(n − r)!
. (B2)

In the integrable case, the two symmetric parts are con-
nected by a prominent central island [see Fig. 1(e)], which
produces the unperturbed splittings 	ε (0)

n = |ε (0)−
n − ε (0)+

n |.
The question is how the r:s resonance influences the tunneling
between the two symmetry-related parts of the phase space.
For Np = 5, there are three quantum eigenstates (n = 0, 1, 2)
within each symmetry subspace, knowing that the NOON
state refers to n = 2. The quantum perturbation theory in the
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near-integrable regime gives rise to [45]

	εn � 	ε (0)
n + |An,n−r |2	ε

(0)
n−r, (B3)

An,n−r =
〈
n − r

∣∣Ĥ (r:s)
res

∣∣n〉
ε

(0)
n − ε

(0)
n−r − sh̄ω

. (B4)

The r:s = 2:1 case (see the left column of Fig. 5) fulfills
the assumption. The amplitude V2:1 = 0.0239 and the action
I2:1 = 1.5014 are directly extracted from the phase space [41].
The unperturbed energies from the antisymmetric block are
used in the denominator of (B4) (it could have been the sym-
metric block). The semiclassical evaluation of the NOON time
reads

τ = π h̄

2	ε2
� 3.8 × 103h̄/J, (B5)

compared to the exact NOON time τ = 2.4 × 103h̄/J .
In a mixed regular-chaotic system, the chaotic sea, which

can be seen as the phase-space regions where the quasimodes
are strongly mixed, must be taken into account. In this con-
text, the chaotic part of the spectrum can be modeled by the
Gaussian orthogonal ensemble (GOE). The resulting effective
Hamiltonian matrix describing resonance- and chaos-assisted
tunneling can be cast in the form

En Veff 0 · · · 0 Δn

Veff 0

0 chaotic sea
...

... (GOE) 0

0 Veff

Δn 0 · · · 0 Veff En

,

(B6)

where En is the energy in the absence of hopping, Veff is the ef-
fective coupling matrix element between the NOON state and
the chaotic sea, and 	n = 	ε (0)

n /2. The square symbolizes a
full Hermitian matrix displaying a discrete symmetry with re-
spect to the counterdiagonal, due to the presence of the parity.
This matrix describes the chaotic part of the phase space and
can be modeled by a GOE. In this framework, one can show
that the level splittings are statistically distributed according to
a Cauchy distribution [38]. By defining a suitable cutoff, one
can show that the logarithmic mean 〈	ε〉g = exp(〈ln 	ε〉) is
given by [45]

〈	ε〉g = 2πV 2
eff

h̄ω
. (B7)

An additional ingredient is needed in order to accurately
describe the tunneling process in the mixed regular-chaotic
case, namely, the presence of partial barriers [35,36,45],
which tile the chaotic sea into subregions that are not well
connected. For example, the homoclinic tangle of the 1:3
resonance in Fig. 1(f) defines barriers in the chaotic sea that
have to be taken into account to evaluate the splitting.

In this particular case, tunneling mainly takes place via
a two-resonance process, involving the resonances r1:s1 =
1:4 (I1:4 = 2.004 and V1:4 = 0.06857) and r2:s2 = 1:3 (I1:3 =
1.511 and V1:3 = 0.3017). The effective coupling can be eval-
uated by means of the dominant contribution

V 2
eff =

∣∣V (n−r1 )
r1:s1

∣∣2

∣∣ε (0)
n − ε

(0)
n−r1

− s1h̄ω
∣∣2

∣∣V (n−r1−r2 )
r2:s2

∣∣2
, (B8)

with V (ν)
r:s = 〈ν|Ĥ (r:s)

res |ν + r〉. For Np = 5, the NOON state
refers to n = 2. Then the NOON time is semiclassically eval-
uated as

τ = π h̄

2〈	ε〉g
� 1.4 × 102 h̄/J, (B9)

compared to the exact time τ = 1.9 × 102h̄/J .
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