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Persistent currents in toroidal dipolar supersolids
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We investigate the rotational properties of a dipolar Bose-Einstein condensate trapped in a toroidal geometry.
Studying the ground states in the rotating frame and at fixed angular momenta, we observe that the condensate
acts in distinctly different ways depending on whether it is in the superfluid or in the supersolid phase. We find
that intriguingly, the toroidal dipolar condensate can support a supersolid persistent current which occurs at a
local minimum in the ground state energy as a function of angular momentum, where the state has a vortex
solution in the superfluid component of the condensate. The decay of this state is prevented by a barrier that in
part consists of states where a fraction of the condensate mimics solid-body rotation in a direction opposite to
that of the vortex. Furthermore, we find that superfluid condensates may enter the supersolid phase when forced
to take angular momentum. Last, the rotating toroidal supersolid shows hysteretic behavior that is qualitatively
different depending on the superfluid fraction of the condensate.
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I. INTRODUCTION

In a supersolid quantum many-body state, off-diagonal
and diagonal long-range order occur simultaneously [1–5].
Supersolidity has long been debated [6–9], particularly for
4He with the conclusion that its observation is not supported
[10]. Ultracold atomic Bose-Einstein condensates (BECs) are
alternative candidates, for which supersolidity was proposed
for BECs with soft-core two-body potentials [11–14], and
experimentally realized using condensates coupled to two op-
tical cavities [15]. Likewise, spin-orbit coupled BECs [16,17]
have a modulated density stripe phase showing supersolid
properties [18]. Quantum gases with long-range dipolar inter-
actions (see Refs. [19,20] for reviews) are another example:
For the dipolar BEC, phase transitions from a superfluid to
a density-modulated supersolid and a droplet crystal phase
were recently observed [21–27]. The discovery of long-lived
droplets came off as imperative for the realization of su-
persolidity in these condensates. In dysprosium and erbium
condensates, a transition from a superfluid to a metastable
state was observed where mutually repulsive droplets form
[28–32], each consisting of many atoms. Inducing droplets
and subsequently melting them back into a BEC by Feshbach-
controlling the short-ranged (contact) part of the atom-atom
interactions, a bistability in the gas-droplet transition oc-
curs [28]. As dipoles repel each other when side-by-side
but become attractive when head-to-tail, the droplets have
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spheroidal shapes being elongated along the dipolar polar-
ization direction [30]. The physical origin of the self-binding
mechanism for dipolar droplets [33–36] is similar to that in
binary Bose gases [37–39] realized with potassium in two
hyperfine states [40,41]. In either case, the stability of the
droplets and their critical size is controlled by the balance
between a residual mean-field interaction and quantum fluc-
tuation contributions to the total energy, often referred to
as the Lee-Huang-Yang corrections [42,43]. For the dipolar
BEC, increasing the ratio between the dipolar and short-range
interaction strengths beyond a critical value, the dispersion
relation shows the softening of the roton spectrum at a finite
momentum [44,45]. With further increase of this ratio, there
is a transition from the density modulated supersolid to the
droplet crystal phase, where the individual droplets possess
superfluid character but have no superfluidity and, hence,
no phase coherence between neighboring droplets. This sce-
nario was also confirmed by recent quantum Monte Carlo
studies [46]. Evidence came from the Higgs amplitude and
Nambu-Goldstone modes depicting the spontaneous symme-
try breaking in the supersolid phase [24–27,47].

One of the most distinct features of superfluidity is the
quantization of circulation and formation of vortices in re-
sponse to rotation. The nonclassical rotational moment of
inertia quantitatively differentiates the supersolid from the su-
perfluid phase [48]. The interplay between droplet formation
and vortices in rotating pancake-shaped traps was analyzed in
Refs. [49], and characteristic interference patterns of rotating
supersolids were found [50]. Ring-shaped traps confining a
superfluid may support a persistent current [51]. This has been
extensively studied theoretically for bosons with contact inter-
actions (see, e.g., Refs. [52–57]), with optical lattices [58,59],
or for dipolar gases [60–65]. For soft-core bosons, metastable
superflow was also found in the supersolid phase [66]. Experi-
ments measuring phase slips and persistent currents with 23Na
[67–69] envisioned “atomtronic” applications [70].
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In this paper, we show that when a dipolar gas of dyspro-
sium in a torus confinement is set rotating, it acts in a distinctly
different way depending on whether it is in the superfluid or in
the supersolid droplet phase, yet exhibiting some surprisingly
general features largely independent of system parameters.
When there is a persistent current in a superfluid ring trap,
at L/Nh̄ = 1 (where L is the angular momentum and N the
number of bosons) the energy as a function of angular mo-
mentum has a characteristic sharp v-shaped minimum with
negative curvature [51–53], protecting the state from its dissi-
pative decay to a nonrotating state by an energy barrier. In the
supersolid regime, likewise there is a local energy minimum,
however, now at L/Nh̄ < 1 and with positive curvature. In this
case, the state carries a vortex in the superfluid component
of the condensate. We show that the decay of this state is
prevented by a barrier that in part consists of states where

a component of the BEC mimics solid-body rotation in a
direction opposite to that of the vortex. Furthermore, we find
that for certain parameter values the ground state of the BEC
may alternate between the superfluid and the supersolid phase
as a function of angular momentum. When the supersolid
is set rotating, it shows hysteretic behavior that is qualita-
tively different for different values of the superfluid fraction
of the condensate. We find that a toroidal confinement is a
particularly favorable setup, since the confinement inhibits the
lateral repulsion between the droplets, otherwise diminishing
the interdroplet tunneling [32].

II. MODEL

The dipolar condensate at zero temperature is modeled by
a nonlocal extended Gross-Pitaevskii equation

ih̄
∂

∂t
ψ (r, t ) =

[
− h̄2∇2

2m
+ Vtrap(r) + g|ψ (r, t )|2 +

∫
dr′Vdd(r − r′)|ψ (r′, t )|2 + γ |ψ (r, t )|3

]
ψ (r, t ), (1)

where ψ is the order parameter normalized to the particle
number N , with trapping potential in cylindrical coordi-
nates Vtrap(r) = mω2/2[(ρ − ρ0)2 + λ2z2], where ρ0 is the
radius of the ring, ω the axial trapping frequency, and
λ the ratio of transversal and axial trapping frequencies.
The contact interaction coupling constant is g = 4π h̄2a/m,
where a is the s-wave scattering length. The ratio between
the dipole and contact interaction strengths is quantified
by the dimensionless parameter εdd = add/a, where add =
mμ0μ

2/12π h̄2 is the dipolar length, μ is the magnetic
moment, and μ0 the permeability in vacuum. The dipolar
potential is Vdd(r) = μ0μ

2

4π

(1−3 cos2 θ )
|r|3 , where θ is the angle

between r and the alignment direction of the dipoles, here
taken to be the z direction. The last term includes quantum
fluctuations in the local density approximation [35,43], with
γ = 128

√
π

3
h̄2a5/2

m (1 + 3
2ε2

dd ). The validity of this term has been
discussed in Refs. [33,35,71]. Apart from requiring the local
density approximation, the condensate depletion has to be
small [33,43], which for the data shown in this paper is �0.06.

III. NUMERICAL RESULTS

The ground state is found by solving Eq. (1) in imagi-
nary time using the split-step Fourier method. In order to
study the system in a rotating frame the term −�Lzψ (where
Lz = xpy − ypx and � is the rotation frequency) is added
to the right-hand side of Eq. (1), which is then solved in
a similar manner. To obtain the ground state at a fixed an-
gular momentum L0, we instead minimize the quantity Ẽ =
E + Cω(L − L0)2, where E is the energy corresponding to
Eq. (1), L = ∫

drψ∗Lzψ and C a dimensionless positive num-
ber that, when large enough, causes the energetic minimum to
occur at L ≈ L0. (We note here that the numerical solution of
Eq. (1) is involved due to many close-lying local minima in the
energy surface, as commonly encountered in similar studies
[36,49,50,72]. This may lead to convergence into metastable
solutions, and we therefore perform an extensive sampling

over a large number of different initial conditions in order to
find the most probable lowest-energy solutions).

We exemplify our findings here for a system of 164Dy
atoms with N = 104 in a trap where ρ0 = 1 μm, ω/2π =
1 kHz, and λ = 1.7. Different phases of the BEC are identified
by the superfluid fraction, defined through its nonclassical ro-
tational inertia according to fs = 1 − I/Icl [5,48], where Icl =
m〈ρ2〉 is the classical moment of inertia and I = lim�→0 L/�.

The numerically calculated superfluid fraction as a func-
tion of εdd is shown in Fig. 1. It is seen that for some

FIG. 1. Superfluid fraction fs as a function of the interaction
strengths ratio given by the dimensionless parameter εdd. The
insets (left to right) show density isosurfaces, taken at density
values 2 × 10−4, 0.5 × 10−4, and 1.0 × 10−5 (in units of a−3

dd ), at
εdd = 1.95, 2.03, 2.06, and 2.12 (marked by bullets) where fs =
1.0, 0.81, 0.67, and 0.46.
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critical value of εdd the superfluid fraction fs drops from unity
in the superfluid case to smaller values fs < 1. The insets
show some typical density isosurfaces. When superfluid they
are azimuthally symmetric (see the top inset in Fig. 1 for
ε = 1.95). The drop in fs is accompanied by an onset of
localization (middle insets for ε = 2.03 and 2.06), where the
dipolar gas in the toroidal confinement begins to form a mod-
ulated density distribution as a precursor to droplet formation,
similar to what was found in a tube with periodic boundary
conditions [72,73]. As the superfluid fraction decreases the
density modulation becomes more pronounced, leading to
the characteristic form of spheroidal droplet-like formations
[21,30,32] elongated along the polarization axis of the dipolar
gas and submerged into a finite background of superfluid den-
sity, indicating the coexistence of off-diagonal and diagonal
long-range order. These droplets are clearly visible in the
isosurfaces (see bottom right inset for εdd = 2.12). Let us now
determine the ground state energy as a function of angular
momentum, E (L), for different values of εdd; see Fig. 2. In
the superfluid phase the energy has a v-shaped local minimum
at L/Nh̄ = 1. The dark-red line (dark-gray line first from top)
in Fig. 2 shows E (L) for εdd = 1.90. Upon increasing L/Nh̄
from the nonrotating state, a vortex enters in the usual way
[74] and becomes localized at the center when L/Nh̄ = 1,
accompanied by a phase jump of 2π [51]. Closer to the critical
value of εdd, when approaching the supersolid regime, as here
shown for εdd = 1.95 (orange/gray line second from top), the
entry of the vortex becomes qualitatively different. We can see
from the density isosurfaces shown in the upper panel that for
angular momenta either close to the nonrotating state, or the
state with one vortex, the ground state shows a supersolid-like
density modulation, as visible in the plots for L/Nh̄ = 0.2
and L/Nh̄ = 0.85. For these values it is energetically favor-
able to add energy in terms of solid-body rotation instead of
the usual vortex formation (we note that this vortex entry is
accompanied by density modulations; see the isosurface for
L/Nh̄ = 0.3).

For increased εdd, the condensate enters the supersolid
phase, as we have seen in Fig. 1. Curiously, when the sys-
tem becomes supersolid, a distinct local minimum in E (L)
for nonzero angular momentum remains, but now at a value
L/Nh̄ < 1 and with a positive curvature. As in the superfluid
case, this minimum is protected by an energy barrier against
dissipative decay to the nonrotating state. The insets at the
bottom in the lower panel of Fig. 2 show the phase and density
contours on either side of the energy barrier, at L/Nh̄ = 0.3
and at the position of the minimum at L/Nh̄ = 0.74. For
reference, we also include the phase and density contour in the
superfluid phase for εdd = 1.95 at L/Nh̄ = 1.0; see the inset
at the top of the lower panel in Fig. 2.

While for lower angular momenta the phase shifts indicate
solid-body rotation, at the minimum beyond the energy barrier
the system has developed a singly-quantized vortex. The typ-
ical phase jump of 2π occurs simultaneously with the dipolar
density modulation. The density contours (white lines) well
reflect the density isosurfaces for the corresponding values
of εdd shown in Fig. 1. By increasing εdd further towards the
limit of droplet localization, the local energy minimum with
positive curvature eventually disappears, and the energy in-
stead becomes a monotonically increasing function, no longer

FIG. 2. Upper panel: Density isosurfaces for εdd = 1.95 (taken at
the density value 2 × 10−4a−3

dd ), at angular momenta as specified by
the numbers given (also indicated by the bullets on the second line
from the top in the lower panel). Lower panel: Ground state energy
relative to the nonrotating ground state, [E (L) − E (0)]/E0, where
E0 = h̄2/ma2

dd, as a function of angular momentum for values of εdd

as given in the legend (the numbers given apply to the lines from top
to bottom). The corresponding superfluid fractions fs at zero angular
momentum for these values are 1.0, 1.0, 0.81, 0.67, 0.46, and 0.30.
The insets in the lower panel show the phase plots in the ring plane (at
z = 0), with superimposed density contours (white lines), for εdd =
1.95 at L/Nh̄ = 1.0 (upper inset) and εdd = 2.03 at L/Nh̄ = 0.3 and
0.74 (lower insets). (Note the different color/ gray map scale.)

capable of supporting a persistent current. Complementary
to the data shown in Fig. 2, in Fig. 3 we also present the
angular momentum of the ground state in the rotating frame
as a function of the rotation frequency �. In the superfluid
regime, the angular momentum displays its familiar step func-
tion behavior with the characteristic jump from L/Nh̄ = 0 to
1 at a critical frequency �crit upon localization of the vortex at
the torus center. When the system is in the supersolid regime,
however, it also shows a linear gain in angular momentum
with increased �, reflecting its solid-body response to the ro-
tation. Note that the parameters chosen here are representative
for the general behavior of the system, as confirmed by the
analytic approach developed below.
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FIG. 3. Angular momentum L/Nh̄ of the ground state in the
rotating frame as a function of the ratio �/ω for given values of εdd.
In the superfluid phase for εdd = 1.95 one observes the typical jump
from L/Nh̄ = 0 to 1 (marked by the dashed line).

IV. ANALYTICAL RESULTS

To understand the results in the supersolid phase we adopt
a two-component picture and model the condensate as fsN
particles acting as a superfluid, and (1 − fs)N particles acting
as a classical solid. Considering the energy as a function of
angular momentum, the two lowest energetic branches must
then for low angular momenta correspond to classical rotation
in the solid part, plus either a single or no vortex in the
superfluid. For the branch without a vortex the energy relevant
to the angular momentum considerations here is thus E1 =
L2/2Isolid, where Isolid = (1 − fs)Nmρ2

0 (using 〈ρ2〉 ≈ ρ2
0 ) is

the approximate moment of inertia of the solid component.
Similarly, the energy for the single-vortex branch is E2 =
(L − fsN h̄)2/2Isolid + EV , where EV is the energy difference
between the states with zero and one vortex for a superfluid
with fsN particles. In order to estimate this energy we make
the following ansatz for the order parameter of a superfluid
with fsN particles

ψsf (r) =
√

fsNmω
√

λ

2π2ρ0 h̄
e−mω(ρ−ρ0 )2/2h̄e−mλωz2/2h̄ei�sf ϕ, (2)

where �sf the dimensionless angular momentum per parti-
cle in the superfluid. This is an approximate solution to the
Schrödinger equation with the Hamiltonian

H = − h̄2∇2

2m
+ mω2

2
[(ρ − ρ0)2 + λ2z2] (3)

in the limit ρ0 
 √
h̄/mω, corresponding to the neglect of

the bending of the torus (as is the case in, for example,
Refs. [75,76]). One may also consider a straight tube in
Cartesian coordinates, confined harmonically in two direc-
tions with periodic boundary conditions in the third direction.
This ansatz can thus be seen as a decent approximation for the
weakly interacting condensate when the bending of the torus

is small compared to the harmonic length. We further assume
that the density is the same in the states with and without a
vortex (which is reasonable for the ring geometry and also
corroborated by our numerical data). The vortex energy is then
estimated to be

EV = fsN h̄2

2mρ2
0

, (4)

which implies that the two energetic branches intersect at
L/Nh̄ = 1/2, i.e., the ground state in the supersolid phase
always changes between zero and one vortex at this value.
This in turn means that E (L) has a local minimum at L/Nh̄ =
fs whenever fs > 1/2, and there can thus exist a persistent
current also when the BEC is in the supersolid phase, which
agrees well with the numerical data shown in Fig. 2. With this
interpretation the energetic barrier that prevents the decay of
the vortex state consists of two parts: One with just solid-body
rotation (to the left of the local maximum), and the other with
a single vortex plus solid-body rotation in the reverse direction
(to the right of the local maximum). These peculiar counter-
rotating states are, however, not rotational ground states of
the system, as adding the energy term −�L never puts them
lower in energy than the single-vortex state with no solid-body
rotation. While the intersection of the two aforementioned
energy branches is the same under rotation, the locations and
values of the minima are changed. By comparing the two
energies in the rotating frame, we find the critical value for
the rotation frequency, where the minimum of the first-vortex
branch becomes lower than the one without a vortex, to be

�crit = h̄

2mρ2
0

. (5)

This critical frequency is independent of the superfluid frac-
tion, in agreement with the data shown in Fig. 3. The value
predicted by our model �crit/ω ≈ 0.03 overestimates the crit-
ical frequency compared with the numerical results due to a
deviation from the approximation 〈ρ2〉 ≈ ρ2

0 for our particular
parameters. Although states with a single vortex become ener-
getically favorable for rotations beyond the critical frequency
(5), there is still a barrier separating the states with and with-
out a vortex. If the condensate starts in a state with no vortex
and the rotation frequency is gradually increased, this bar-
rier will disappear when d (E1 − �L)/dL = 0 at L/Nh̄ = 1/2,
i.e., when � = �crit/(1 − fs). If we instead start from the vor-
tex state and decrease the rotation frequency, this barrier does
not completely vanish for fs > 1/2. On the other hand, for
fs < 1/2, the barrier will disappear when d (E2 − �L)/dL =
0 at L/Nh̄ = 1/2, which occurs at � = �crit (1 − 2 fs)/(1 −
fs). These results give rise to hysteretic behavior in the su-
persolid phase, which can be seen by considering a setting
where energy and angular momentum are not conserved (i.e.,
if there is dissipation, as would be realistic in an experimental
setting). Starting by increasing the rotation frequency from
zero the system then first takes angular momentum classically
according to L = Isolid�. When the rotation frequency reaches
� = �crit , a single vortex is energetically favorable but sepa-
rated by an energy barrier, i.e., the state with just solid-body
rotation is metastable against the first vortex. This metasta-
bility persists up until � = �crit/(1 − fs), where the barrier
disappears and the first vortex can enter the superfluid compo-
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FIG. 4. Schematic illustration of the change in angular momen-
tum as the rotation frequency changes for two different values of
the superfluid fraction, fs = 0.4 (dark blue/gray line) and fs = 0.6
(light blue/gray line), chosen on either side of fs = 1/2. The arrows
indicate the increase and decrease in �, respectively. The insets
qualitatively show the ground state energy as a function of angular
momentum in the rotating frame, at rotation frequencies as indicated
by the dashed lines. The bullet in each inset marks the current
rotational ground state.

nent. As � is instead decreased, we have two different types of
trajectories depending on the value of the superfluid fraction.
For fs < 1/2 the condensate loses angular momentum contin-
uously until the vortex leaves at � = �crit (1 − 2 fs)/(1 − fs),
i.e., there is hysteresis. For fs > 1/2, the vortex does not leave
the condensate since the energetic barrier as mentioned never
disappears. Consequently, the condensate only loses angular
momentum corresponding to solid-body rotation. This cycle
of bistability is illustrated in Fig. 4.

Finally, we wish to address the numerical results where
it was observed that condensates with fs = 1 at L = 0 could
enter a density-modulated phase by forcing them to take angu-
lar momentum; see Fig. 2 for εdd = 1.95. We investigate this
phenomenon by considering the different ways the conden-
sate can take angular momentum while simultaneously being
allowed to change its superfluid fraction, i.e., by letting fs be
a function of angular momentum. We make the assumption
that at an energy cost (1 − fs)� the condensate may change
such that a fraction (1 − fs) of its particles can take angular
momentum in a solid-body manner instead of a superfluid one.
In other words, the condensate is allowed to pay a price to be
able to add angular momentum in potentially cheaper way.
At low angular momenta the relevant energies per particle are
then

ε1(�) = ε̃V (�), ε2(�) = (1 − fs)� + h̄2�2

2(1 − fs)I
,

where � = �/Nh̄, I = mρ2
0 , and ε̃V (�) the usual positive cur-

vature energy associated with vortex entry in a superfluid,
satisfying ε̃(0) = 0 and ε̃(1) = εV where εV = h̄2/(2mρ2

0 ).
By letting ε2 be a functional of fs(�) and considering its first

variation, it is found that the functional form

fs(�) = 1 − �

√
εV

�

minimizes the energy. This result implies

ε2(�) = 2�
√

εV �,

that is, this branch has a linear increase in energy with angular
momentum as opposed to the one with positive curvature.
Whenever

2
√

εV � <
d ε̃V

d�

∣∣∣
�=0

it is thus energetically favorable for the superfluid fraction to
go below unity at low angular momenta, and density mod-
ulations will appear. We can apply the same reasoning for
angular momenta close to and lower than � = 1. Instead of
following the vortex trajectory corresponding to the energy
ε̃V (�) described above, we imagine that the condensate may
lower its angular momentum from � = 1 by keeping a cen-
tered vortex in the superfluid component but at a lowered
superfluid fraction. The total angular momentum can then be
lowered further by adding angular momentum to the resulting
solid component in a counterrotating manner. The relevant
competing energies are then

ε1(�) = ε̃V (�),

ε3(�) = (1 − fs)� + fs
h̄2

2I
+ h̄2(� − fs)2

2(1 − fs)I
,

to which we in a similar manner as before find the optimal
superfluid fraction

fs(�) = 1 − (1 − �)

√
εV

�
,

which leads to the energy

ε3(�) = εV + 2(1 − �)(
√

εV � − εV ).

Expressing � in units of the vortex energy according to � =
ξ 2εV where ξ > 0 is dimensionless, the relevant energies can
be summarized as

ε1(�) = ε̃V (�), ε2(�) = 2ξεV �,

ε3(�) = εV + 2(ξ − 1)εV (1 − �).

Since ε2 and ε3 correspond to physical systems with fs < 1,
this shows that it is possible for the condensate with fs = 1 at
� = 0 to enter the supersolid phase as angular momentum is
added to it, even when εdd is lower than its critical value. The
energy dependence on angular momentum should according
to these results be either a linear increase close to � = 0 or
a linear decrease (for ξ > 1) close to � = 1, where the slope
for the linear increase is greater than for the decreasing one.
This is in accordance to our numerical data, which can be seen
in Fig. 2. We have observed this behavior in general as long
as εdd is not too close to its critical value. As the relative
interaction strength nears this critical point, the previously
linear slopes take on a positive curvature similar to the results
for condensates that have fs < 1 at � = 0. This suggests that
the assumption where the angular momentum behavior of a
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particle can be changed at a constant energy cost � is no
longer a good one.

V. CONCLUSIONS

In conclusion, we have seen that a toroidal dipolar Bose
gas may support a persistent current also in the supersolid
phase, however, with a behavior qualitatively different from
the superfluid phase. Additionally, we have found that the
condensate may transition between the superfluid and the
supersolid phase simply by adding angular momentum to it.
The associated minimum in the rotation energy gives rise to

hysteretic behavior, similarly to what has been observed in
toroidally confined superfluid sodium BECs [68]. We expect
that these properties of supersolids in ring-shaped traps are
accessible in current experiments with gases of dysprosium or
erbium.
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