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Structural superfluid–Mott-insulator transition for a Bose gas in multirods
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We report on a structural superfluid–Mott-insulator (SF-MI) quantum phase transition for an interacting one-
dimensional Bose gas within permeable multirod lattices, where the rod lengths are varied from zero to the
lattice period length. We use the ab initio diffusion Monte Carlo method to calculate the static structure factor,
the insulation gap, and the Luttinger parameter, which we use to determine if the gas is a superfluid or a Mott
insulator. For the Bose gas within a square Kronig-Penney (KP) potential, where barrier and well widths are
equal, the SF-MI coexistence curve shows the same qualitative and quantitative behavior as that of a typical
optical lattice with equal periodicity but slightly larger height. When we vary the width of the barriers from
zero to the length of the potential period, keeping the height of the KP barriers, we observe a way to induce
the SF-MI phase transition. Our results are of significant interest, given the recent progress on the realization of
optical lattices with a subwavelength structure that would facilitate their experimental observation.
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I. INTRODUCTION

Phase transitions are ubiquitous in condensed-matter
physics. In particular, at very low temperatures, quantum
phase transitions are the onset to distinguish new phenomena
in quantum many-body systems. Following the realization of a
Bose-Einstein condensate (BEC) in 1995 [1,2], a new and suc-
cessful research line has been to study BECs within periodic
optical lattices. It has been possible to study the properties
and behavior of atomic gases trapped in three-dimensional
(3D) multilayers, multitubes, or a simple cubic array of dots
through the superposition of two opposing lasers in one, two,
or three mutually perpendicular directions [3,4], respectively.
One of the most exciting achievements has been the obser-
vation of the superfluid (SF) to Mott-insulator (MI) phase
transition in a BEC with repulsive interactions, held both in
3D [3,5] and one-dimensional (1D) [6] optical lattices.

Although there have been great advances in the creation of
many types of optical lattices, efforts are still being made to
overcome their limited spatial resolution, which is of the order
of one-half the laser wavelength λOL/2, to manipulate atoms.
Recently, there has been a significant interest and advances
in developing tools to surpass the diffraction limit, not only
in the field of cold atoms but also in nanotechnology [7,8].
Nowadays, the physical realization of optical lattices formed
by subwavelength (ultranarrow) optical barriers of width be-
low λOL/50 [9–12] is a reality. These so-called subwavelength
optical lattices (SWOLs) can be seen as a very close experi-
mental realization of a sequence of Dirac-δ functions, forming
the well-known Dirac comb potential [13], and could be useful
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to test many mean-field calculations on the weakly interacting
Bose gas in this kind of potentials [14–18]. In the near future,
we might see the realization of complex subwavelength opti-
cal lattices, including multiscale design, as a niche to observe
new quantum phenomena [11,19]. From the point of view of
theoretical simplicity, adaptable periodic structures ranging
from the subwavelength to typical optical lattices could be
simulated and engineered by applying an external Kronig-
Penney (KP) potential, for example, to a quantum gas.

In this paper, we analyze the physical properties of a de-
generate interacting 1D Bose gas in a lattice formed by a
succession of permeable rods at zero temperature. To create
this multirod lattice, we apply the KP potential [20]

VKP(z) = V0

∞∑
j=−∞

{�[z − ( jl + a)] − �[z − ( j + 1)l]}, (1)

to the gas, where V0 is the barrier height and �(z) the Heavi-
side step function. The rods, distributed along the z direction,
have width b, and are separated by empty regions of length a,
such that the lattice period is l ≡ a + b. Here, we use the KP
potential to study quantum gases due to its relatively simple
shape, robustness, and versatility while preserving the sys-
tem essence coming from the periodicity of its structure. We
use it to model a typical optical lattice V (z) = V0 sin2(kOLz),
with kOL = 2π/λOL, in the symmetric case b = a. Also, we
model the subwavelength optical barriers in a SWOL through
a Kronig-Penney lattice with b � a. Furthermore, we take ad-
vantage of the KP potential versatility by defining a parameter
b/a, and analyze how its variation affects the ground-state
properties of the Bose gas within a fixed-period multirod
lattice. Then, we show a structural mechanism to induce a
reentrant, commensurate SF-MI-SF quantum phase transition,
by varying the ratio b/a while keeping the interaction strength
and lattice period fixed. We propose that this transition,
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FIG. 1. Multirod lattices: (a) square lattice with b/a = 1;
(b) very thin lattice with b/a = 1/10; (c) lattice with very broad
barriers, b/a = 10.

infeasible in experiments with typical optical lattices under
similar conditions, could be observed in experiments with
cold atoms in SWOLs.

II. MODEL AND THEORY

Our analysis relies on the ab initio diffusion Monte Carlo
(DMC) method [21], adapted for the calculation of pure es-
timators through the forward-walking technique. The DMC
method solves stochastically the many-body Schrödinger
equation, providing exact results for the ground state of the
system within some statistical noise. In Fig. 1, we show three
faces of the KP potential depending on the ratio b/a while
keeping V0 and l fixed: (a) the symmetric case where b = a,
which is our reference potential; (b) when the barriers be-
come very thin, i.e., b � a; and (c) when b � a. The limits
b/a → 0 and b/a → ∞ convert the KP potential in constant
potentials VKP = 0 and V0, respectively. The bosonic particles
interact through a contactlike, repulsive potential of arbitrary
magnitude. Consequently, our system corresponds to the Lieb-
Liniger (LL) Bose gas [22] within the multirod lattice Eq. (1).
The Hamiltonian of the system with N bosons is

Ĥ = − h̄2

2m

N∑
i=1

(
∂2

∂z2
i

+ VKP(zi )

)
+ g1D

N∑
i< j

δ(zi − z j ), (2)

where m is the mass of the particles, g1D ≡ 2h̄2/ma1D is the
interaction strength, and a1D is the one-dimensional scattering
length. In the absence of the multirod lattice, we recover the
LL Bose gas, which is exactly solvable for any magnitude
of the dimensionless interaction parameter γ ≡ mg1D/h̄2n1 =
2/n1a1D, with n1 = N/L the linear density.

The presence of a lattice can produce a quantum phase tran-
sition in the system from a superfluid state to a Mott-insulator
state or vice versa, commonly known as Mott transition
[5,6,23]. In deep optical lattices, that is, when the lattice height
is way larger than the recoil energy ER = h̄2k2

OL/2m, the well-
known Bose-Hubbard (BH) model [3,5,6,24–26] captures the
essence of the transition. According to this model, the com-
petition between the on-site interaction U and the hopping
energy J between adjacent lattice sites drives the transition
from the SF to the MI state. In the Mott-insulator state, each
lattice site contains the same number of particles. On the
other hand, the SF-MI transition can be also studied using the
low-energy description of the system given by the Luttinger
liquid theory and the quantum sine-Gordon (SG) Hamiltonian
[23,27–29]. In this approach, two system-dependent quanti-
ties, the speed of sound cs and the Luttinger parameter K =
h̄πn1/mcs, play a central role in the description of the ground
state. In particular, for any commensurate filling n1l = j/p,
with j and p integers, the system can undergo a SF-MI transi-
tion when K takes the critical value Kc = 2/p2 [23,28], where
p is the commensurability order. For p = 1, i.e., for an integer
number of bosons per lattice site, Kc = 2. The 1D Bose gas
remains superfluid while K > Kc, and variations in the inter-
action strength and the lattice height can push K towards Kc.
The excitation energy spectrum is nongapped and increases
linearly with the quasimomentum as E (k) = csh̄|k| in the SF
state [27,30], whereas it develops an excitation gap � in the
MI phase, E (k) =

√
(csh̄|k|)2 + �2 [23]. Remarkably, in 1D

gases, an arbitrarily weak periodic potential is enough to drive
a Mott transition provided that the interactions are sufficiently
strong [6,29].

A fingerprint of the Mott transition can be obtained from
the static structure factor S(k) [31,32]:

S(k) ≡ 1

N
(〈n̂1,k n̂1,−k〉 − |〈n̂1,k〉|2), (3)

where the operator n̂1,k is the Fourier transform of the density
operator n̂1(z) ≡ ∑N

j=1 δ(z − z j ). For small momenta, S(k) is
sensitive to the collective excitations of the system. For high-k
values, S(k) approximates to the model-independent value
limk→∞ S(k) = 1. Furthermore, the low-momenta behavior of
the energy spectrum E (k) is related to S(k) through the well-
known Feynman relation [32–34], E (k) ≡ h̄2k2/[2mS(k)].
This equation gives an upper bound to the excitation energies
in terms of the static structure factor. Using this expression,
we can estimate both the speed of sound cs and the energy gap
� from the low-momenta behavior of S(k). In the SF phase,
� = 0, and (cs/vF)−1 = 2kF limk→0 S(k)/k, where kF = πn1

is the Fermi momentum and vF = h̄kF/m is the Fermi velocity.
Also, K = (cs/vF)−1. In contrast, in the MI phase, S(k) grows
quadratically with k when k → 0.

III. TRANSITION IN A SYMMETRIC LATTICE

We study the SF-MI transition at unit-filling n1l = 1 and
b = a, i.e., our system has, on average, one boson per lattice
site. We determine the Mott transition by calculating K as a
function of the interaction strength γ and the lattice height
V0. The boundary between the SF and MI phases corresponds
to the condition K (γ ,V0) = 2. In Fig. 2(a), we show the
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FIG. 2. Phase diagram of the 1D Bose gas in a square multirods
potential at zero temperature. The region above the critical points is
the Mott-insulator (MI) phase, while the region below corresponds
to the superfluid (SF) phase. (a) We compare our results (black
circles) against experimental data from Ref. [6] (orange and red
squares); the dashed, red curve is the transition line for an optical
lattice according to Eq. (4) with (U/J )c = 3.85. The gray line is the
transition for (U/J )c = 2.571(12). (b) Comparison with data from
Ref. [35] (purple and pink squares), as well as with simulation data
from Ref. [36] (blue diamonds). Note that (b) is an amplification of
(a) in the strongly interacting region.

DMC zero-temperature phase diagram V0/ER vs γ −1 for a
1D Bose gas in a square multirod lattice (black circles). In
the same figure, we also show experimental data [6] (orange
and red squares) for a 1D Bose gas in an optical lattice at
commensurability n1 ∼ 2/λOL, with λOL/2 the spatial period
of the optical potential. Note that the recoil energy is ER =
h̄2π2/2ml2 since we require that both optical and multirod
lattices have the same periodicity, that is l = λOL/2.

We observe that our results are close to but below
the experimental data in the deep lattices zone, where the
BH model accurately describes the physics of the lattice.
According to the 1D BH model, for an optical lattice
the SF-MI transition occurs at the critical ratio (U/J )c =
3.85 [37]. Since U = (

√
2π/π2)ERγ (n1λOL/2)(V0/ER)1/4

and J = (4/
√

π )ER(V0/ER)3/4 exp[−2
√

(V0/ER)], it is possi-
ble to define a relation between the lattice height V0 and the

interaction strength γ at the transition [29,38]:

4V0

ER
= ln2

[
2
√

2π

γ

(
U

J

)
c

√
V0

ER

]
. (4)

In Fig. 2(a), we show Eq. (4) for the BH critical value
(U/J )c = 3.85 (dashed, red line). The BH transition line
agrees with the experimental data for lattices as high as V0 �
7ER, but fails for shallow lattices, a behavior discussed in
Ref. [6]. Remarkably, most of our DMC simulation results
follow the law Eq. (4), with a smaller energy ratio, (U/J )c =
2.571(12) (dark-gray line), except close to the transition point
γ −1

c = 0.28 for V0 = 0, where we do not expect a good fit
since the BH model Eq. (4) predicts γ −1 → ∞ when V0 → 0.
The range of V0 values for which the BH model fits the multi-
rods DMC results is, in fact, quite large, starting from lattice
heights as low as ≈2ER. As we can see in Fig. 2(a), the square
multirod lattice is more insulating than an optical lattice with
the same strength. Looking at the Fourier series expansion of
VKP(z), and considering only up to second order, we obtain
that VKP(z) ≈ Ṽ0[1 − cos(2πz/l )]/2 = Ṽ0 sin2(kOLz), where
Ṽ0 = 4V0/π . Hence, the multirod lattice is roughly equivalent
to an optical lattice with a larger height Ṽ0; accordingly, the
SF-MI transition in the former should occur at smaller V0 than
the latter; our numerical results corroborate this observation.

In Fig. 2(b), we focus our analysis on shallow lattices only,
where we do not include the data of Ref. [6] to avoid excessive
piling of data. We compare our results with two additional rel-
evant sources: first, experimental and numerical data reported
in Ref. [35] (purple and pink squares), and second, DMC data
reported in Ref. [36] (blue diamonds). Overall, there is a no-
ticeable overlap between our DMC results and the data from
Refs. [35,36], which is stronger as the lattices get shallower.
The differences between the results for both lattices become
smaller as γ −1

c → 0.28 and V0 → 0, just as expected since
for both multirod and optical lattices the system resembles
more the Lieb-Liniger gas. Experimental data from [6,35] in
Figs. 2(a) and 2(b) seem to agree better with the BH model
predictions for multirods (gray line) than Eq. (4) for an optical
lattice with (U/J )c = 3.85 (dashed, red line). On the other
hand, Ref. [35] reports an estimation of (U/J )c = 3.36, for
which Eq. (4) agrees better with experimental data than the
BH model for multirods. Given the above, it is clear that the
experimental uncertainties in the data reported in Ref. [6] do
not allow for a good estimation of (U/J )c at the transition.

Complementary information on the MI phase can be ob-
tained through the estimation of the energy gap �. We
calculate � as a function of V0 for both the multirod and
optical lattices, with γ = 11. This particular value of γ cor-
responds to the one for available experimental data [6]. Under
these conditions, the system is a strongly interacting gas in
the MI phase. We plot our results in Fig. 3, together with
the experimental energy gap reported in Ref. [6]. We observe
a good agreement between our simulation results (for both
lattices) and the experimentally measured gap, better than
similar results for an optical lattice shown in Ref. [36]. How-
ever, there is a clear qualitative discrepancy for V0 > 0.8ER,
since the experimental results show something like a plateau,
while our results grow monotonically. For shallow lattices,
the SG model correctly describes the system’s low-energy
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FIG. 3. Energy gap for the 1D Bose gas, with γ = 11, in a square
multirod lattice (red circles) and in an optical lattice (orange crosses),
calculated using DMC. Both lattices have the same height V0. The
blue squares show experimental gap data from Ref. [6]. The solid
red line indicates the sine-Gordon model [6]. Inset: Gap behavior
including lattices with V0 � 1.6ER.

properties; in particular, it predicts that � increases with V0,
as our results. As commented in Ref. [36], the discussion on
how good the modulation spectroscopy method for measuring
� is remains open. Finally, the gap as a function of V0, for an
optical lattice is smaller than the gap for a multirod lattice, so
the latter is more insulating than the former, confirming the
observation made after analyzing the results shown in Fig. 2.

IV. STRUCTURAL TRANSITION

Motivated by the recent studies on SWOLs, we extend the
study of the interacting Bose gas within a square multirod
lattice to a nonsquare multirod lattice, with special emphasis
on describing the SF-MI quantum phase transition at com-
mensurability n1l = 1. We performed our analysis for a fixed
interaction strength γ = 1. We calculate the speed of sound
cs from the low-momenta behavior of the static structure
factor, and determine the V0 and b/a parameters such that
K (b/a,V0) = 2. In Fig. 4(a), we show the dependence of the
parameter K = (cs/vF)−1 as a function of b/a in four lattices
with heights V0 = 3, 3.5, 4, and 5 times ER. First, we can
see that, depending on the value of the lattice ratio b/a, K
can be greater or smaller than Kc = 2. This result shows that
the SF-MI transition can be triggered by changing the lattice’s
geometry if its height is large enough.

Variation of b/a always affects K ; however, although K
could diminish (starting from a SF state), a phase transition
may not necessarily occur for relatively shallow lattices. As
one can see, for b/a � 1 [thin barriers, see Fig. 1(b)] and
b/a � 1 [thin wells, see Fig. 1(c)], the gas becomes superfluid
independently of V0. On the one hand, as b/a diminishes and
the barriers become thinner, the trapping effect of the lattice
greatly reduces; in the limit b/a → 0 the system becomes
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FIG. 4. (a) K parameter as a function of the lattice ratio b/a,
for γ = 1. Independently of V0, for both b/a → 0 and b/a → ∞, K
approaches to the Lieb-Liniger Bose gas K = 3.43 value. (b) SF-MI
phase transition as a function of b/a and V0/ER for γ = 1. The
statistical error of the results is smaller than the symbol size.

the LL gas. On the other hand, as b/a increases, the system
tends to resemble more a succession of thin wells; in the
limit b/a → ∞, it becomes the LL gas subject to a constant
potential of height V0. Physically, there is no difference be-
tween both limits, except by a shift V0 in the total energy.
Also, in both limits, K approaches the corresponding value
for the LL model, K ≈ 3.43. It is worth noticing that the
minimum K in Fig. 4(a) occurs in the interval 1 < b/a < 2,
which interestingly shows that the largest trapping effect of
the lattice does not correspond to the most symmetric case,
i.e., the square lattice.

We show the zero-temperature phase transition diagram
V0/ER vs b/a in Fig. 4(b). As noted before, the minimum
interaction V0 to produce the Mott transition is slightly shifted
to nonsquare potentials, b/a � 1.4. When the asymmetry is
b/a < 1, the strength V0 increases quite fast, favoring the
stability of the SF phase. When b/a > 1.4, V0 also increases
but with a slightly smaller slope. The blob in the phase dia-
gram is therefore not symmetric and interestingly shows the
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possibility of a double transition SF-MI-SF for V0 > 3.4 by
just changing the relation b/a keeping both V0 and γ constant.
Note that Fig. 4(b) is a cross section of a MI tubular volume in
the V0/ER vs γ −1 vs b/a diagram the asymmetric V-boat-hull
shape surface of which contains the SF-MI phase coexistence
line shown in Fig. 2(b).

V. CONCLUSIONS

Using the ab initio DMC method we calculate the zero-
temperature SF-MI quantum phase transition, in a V0/ER vs
γ −1 diagram, for a 1D Bose gas with contact interactions
within a square multirod lattice. We show and justify a notable
similarity with the phase transition diagram of a Bose gas in
a typical optical lattice by comparing it with several experi-
mental and numerical data sources, finding that the multirod
lattice favors the insulating phase. We also confirm that the
BH model accurately predicts the transition in the regime of
weak interactions and deep enough wells. For the Bose gas
in both a multirod and optical lattices with the same strength
and period, we calculate the energy gap � as a function of
the lattice height V0 for γ = 11. As expected, the gap is
larger within the multirods lattice than in the optical lattice,
validating what has already been observed in the phase tran-
sition diagrams. In the range of V0 values where experimental
data exist for the gap, our results are of the same order of
magnitude but do not match the experimental behavior that

shows something similar to a saturation with V0. Finally, we
show a structural mechanism to induce a robust reentrant,
commensurate SF-MI-SF phase transition, triggered by the
variation of the parameter b/a at fixed interaction strength
and lattice period. We propose that such a mechanism could
be experimentally implemented using the recently realized
SWOLs, so the SF-MI structural phase transition could be
observed.

ACKNOWLEDGMENTS

We acknowledge partial support from the Programa de
Apoyo a Proyectos de Investigación e Innovación Tec-
nológica (PAPIIT), the Dirección General de Asuntos del
Personal Académico (DGAPA), and the Universidad Nacional
Autónoma de México (UNAM) (PAPIIT-DGAPA-UNAM),
under Grants No. IN-107616 and No. IN-110319. We also
thank the Coordinación de Supercómputo de la Universidad
Nacional Autónoma de México for the provided comput-
ing resources and technical assistance. This work has been
partially supported by the Ministerio de Economia, Indus-
tria y Competitividad (MINECO, Spain) under Grant No.
FIS2017-84114-C2-1-P. We acknowledge financial support
from Secretaria d’Universitats i Recerca del Departament
d’Empresa i Coneixement de la Generalitat de Catalunya, co-
funded by the European Union Regional Development Fund
(ERDF) within the ERDF Operational Program of Catalunya
(QuantumCat Project No. 001-P-001644).

[1] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman,
and E. A. Cornell, Science 269, 198 (1995).

[2] K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten,
D. S. Durfee, D. M. Kurn, and W. Ketterle, Phys. Rev. Lett. 75,
3969 (1995).

[3] D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller,
Phys. Rev. Lett. 81, 3108 (1998).

[4] I. Bloch, Nat. Phys. 1, 23 (2005).
[5] M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I.

Bloch, Nature (London) 415, 39 (2002).
[6] E. Haller, R. Hart, M. J. Mark, J. G. Danzl, L. Reichsöllner, M.

Gustavsson, M. Dalmonte, G. Pupillo, and H.-C. Nägerl, Nature
(London) 466, 597 (2010).

[7] X. Luo, Adv. Mater. 31, 1804680 (2019).
[8] R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-

Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wangüemert-
Pérez, Í. Molina-Fernández, and S. Janz, Laser Photon. Rev. 9,
25 (2015).
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