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Two Rydberg-dressed atoms escaping from an open well
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A comprehensive analysis of the dynamics of two Rydberg-dressed particles (bosons or fermions) tunneling
from a potential well into open space is provided. We show that the dominant decay mechanism switches from
sequential tunneling to pair tunneling when the interaction strength is tuned below a certain critical value. These
critical values can be modified by tuning the effective range of the interaction potential. By comparing the
dynamics of bosons and fermions, we show that there are significant differences between the two cases. In
particular, increasing the interaction range modifies the tunneling rate in opposite ways for fermions and bosons.
Furthermore, for the fermionic system much stronger attractive interactions are needed to achieve pair tunneling.
The results provide insight into the dynamics of tunneling systems and, in light of recent realizations of tunneling
few-body systems and Rydberg dressing of atoms, they offer promise for future experiments.
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I. INTRODUCTION

The tunneling of particles from a potential well into empty
space is one of the fundamental problems in quantum me-
chanics. It has been used in the analysis of such phenomena
as the nuclear α decay [1,2], proton emission [3,4], fusion
[5], fission [6], photoassociation [7], photodissociation [8], or
the functioning of tunnel diodes [9]. Many aspects of particle
tunneling into open space have been studied in detail over
the years. For example, the single-particle tunneling process
and the tunneling of a multibody Bose-Einstein condensate
are now well understood [10–17]. Between these two extreme
situations lies the problem of tunneling of a few strongly
interacting particles, which turns out to be a much more com-
plicated issue. In this case, strong interbody correlations play a
role in the dynamics of the system, and thus the physics cannot
be reduced to an approximate description at the one-body
level [18]. As a result, the problem of few-particle tunneling
raises many questions that still have no satisfactory answers.

In recent years, interest in the subject of quantum tunneling
has increased thanks to the rapid development of experimental
techniques in the field of ultracold atom physics. It is possible
to engineer systems with nearly any desired properties, such
as the shape of the external potential [19–21], the effective
dimensionality [22–25], the initial state [26], or the strength
of interparticle interactions [27,28]. Recent important exper-
imental achievements in this area include the experiments
in Selim Jochim’s group in Heidelberg, where the decay of
tunneling few-fermion systems was investigated [29,30].

The problem of a few particles tunneling from an open
well has received significant attention in recent years, and
multiple theoretical works on the subject have been published.
In most of these works [31–46], the interparticle interactions
are assumed to be dominated by short-range forces, with only
a few works [47–50] focusing on long-range interactions.
However, longer-range interacting systems can show interest-
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ing properties. There is a variety of approaches to creating
long-range-interacting systems, such as, e.g., using molecules
or atoms with strong dipolar interactions [51].

One such possibility which has raised significant interest
in recent years is the creation of cold atoms in so-called
Rydberg-dressed states, which can be achieved when the
ground atomic state is off-resonantly coupled to a high-lying
Rydberg state [52–57]. Atoms in Rydberg-dressed states can
exhibit strong interactions at large distances [58], which at
short distances saturate to a constant value [53]. These in-
teractions are highly controllable since the parameters of
the interaction can be tuned by changing the parameters
of the coupling laser. At the same time, Rydberg-dressed
atoms avoid problems associated with ultra-cold atoms in bare
Rydberg states, such as short lifetimes, or interaction energies
large enough to overwhelm typical trapping potentials [53].
Rydberg-dressed systems have been succesfully implemented
in various setups, for both small and large systems [59–63].
They have many possible applications and can also be applied
to systems in 1D geometry [57]. Recently, correlations in
trapped two-atom systems with interactions of this kind were
studied in [64,65]. However, the correlations between two
Rydberg-dressed particles tunneling from a potential trap have
not yet been considered.

In this paper, we numerically analyze the dynamics of
two particles (bosons or fermions) escaping from an effec-
tively one-dimensional potential well into open space. The
interaction potential is described by two freely tunable pa-
rameters: the approximate interaction range, and the effective
interaction strength. We explore the dynamics of the parti-
cle tunneling for different interaction parameters and particle
statistics. Similarly to our earlier studies of contact-interacting
bosons [66,67], here we focus mainly on determining the
dominant decay mechanism of the system: whether the par-
ticles tunnel sequentially (one by one), or as pairs. In this
way, we show how the tunneling dynamics of the system
can be modified by tuning the interaction parameters. We
additionally compare dynamical properties between bosonic
and fermionic particles, showing how the quantum statistics
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FIG. 1. The shape of the external potential at time t < 0 [V0(x),
gray continuous line] and after the sudden change at t = 0 (V (x), red
and blue dotted line), for two different values of the parameter λ =
1.5, 2.5. Energy and length are shown in units of h̄ω and

√
h̄/mω,

respectively.

affects the dynamical properties. It is worth mentioning that
various aspects of pair tunneling in few-particle systems have
been investigated previously [34,40,42,43,45,49,50]. How-
ever, in our work, we give a comprehensive analysis of pair
tunneling from different points of view, taking into account
the interplay of quantum statistics, interaction strength and
shape of interaction potential.

This work is organized as follows. In Sec. II, we describe
the model system under study and the interaction potential.
In Sec. III, we examine the initial state of the system at
t = 0, depending on the interaction parameters. In Sec. IV,
we describe the spectrum of eigenstates of the two particles
after opening the well. In Sec. V, we describe the dynamics of
the two-particle system, showing the basic nature of the tun-
neling dynamics, and the transition between distinct regimes
that occurs at a specific value of the interaction strength. In
Sec. VI, we focus on the long-time dynamics, analyzing the
exponential nature of the decay. Section VII is the conclusion.

II. THE MODEL

We consider an effectively one-dimensional system of two
identical spinless particles (bosons or fermions) of mass m,
confined in an external potential V (x) and interacting via the
two-body interaction potential U (r). The Hamiltonian of the
system has the form

H =
2∑

i=1

[
− h̄2

2m

∂2

∂x2
i

+ V (xi )

]
+ U (x1 − x2), (1)

where xi represents the position of the ith particle. We assume
that at time t < 0 the particles are confined inside a harmonic
well potential with frequency ω, V0(x) = 1

2 mω2x2. Then at
t = 0 the well is opened from one side, and the external
potential for t � 0 is given by

V (x) =
{

1
2 mω2x2, x <

√
2λx0,

1
2 mω2x2e−6(x/x0−

√
2λ)2

, x �
√

2λx0,
(2)

where x0 = √
h̄/mω is the initial oscillator length unit. This

potential has the form of a well separated from open space
by a finite barrier and it is parametrized by the dimensionless
parameter λ, approximately equal to the height of the barrier
in units of h̄ω. The external potential V (x) is shown in Fig. 1
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FIG. 2. The effective interaction potential U (r) (3) as a function
of interparticle distance r. The distance is expressed in terms of the
effective range Rc, and the potential energy is expressed in terms of
the interaction amplitude U0. At large distances the potential decays
as r−6, while at small distances (|r| � Rc) it saturates to the constant
value U0.

and compared to the harmonic oscillator potential V0(x). The
barrier height λ is chosen so that it is higher than the energy
of the system. This ensures that under-the-barrier tunneling
is the only way to exit the well. For the bosonic system, we
pick λ = 1.5. In the case of fermions, we pick λ = 2.5 since,
due to the fermionic statistics, the energy of the initial state is
different and a higher barrier height is necessary.

We assume the particles interact through a non-zero-range
potential U (r), in contrast to the contact interaction gδ(r)
which is typically used to model interactions in ultracold
systems. The form of the interaction potential U (r) is based
on the interaction between cold atoms in “Rydberg-dressed”
states [52–57,59,60]. Experimentally, Rydberg dressing can
be achieved by means of an off-resonant laser coupling be-
tween the atomic ground state and a highly-excited Rydberg
state. As a result of this coupling, the ground state gains
a small admixture of the Rybderg state. The effective in-
teraction potential between such Rydberg-dressed atoms has
a very characteristic form [53–55,65]. At long interparticle
distances, the interaction potential resembles the interaction
between Rydberg atoms. We assume that in the studied case,
the dominant contribution to this interaction are van der Waals
forces that depend on the interatomic distance r as r−6. For
short interparticle distances (below a certain critical range Rc),
the so-called Rydberg blockade effect suppresses a simulta-
neous excitation of two atoms, so the effective interaction
saturates to a constant value as r → 0 [53]. The resulting
effective interaction potential (under the assumption that the
spatial size of the system in the perpendicular direction is
much smaller than the interaction range) is modelled by the
function [54–57,60]

U (r) = U0

[
1 +

( r

Rc

)6]−1

, (3)

where U0 (having units of energy) is the interaction amplitude
at r = 0, and Rc (having units of length) can be treated as the
effective range of the interaction. Both these parameters can
be independently regulated experimentally, being dependent
on the detuning and the Rabi frequency of the coupling laser
[53,56,57,60]. The interaction potential (3) as a function of
the interparticle distance is shown in Fig. 2.

It is worth noting that in the limit Rc → 0, the interac-
tion potential (3) is approximately equivalent to a contact
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interaction potential gδ(r) with g = 2RcU0 [64]. Basing on
this fact, we adopt a convention that will allow us to compare
the strength of interactions for different values of the range Rc.
Namely, we make the substitution U0 → g/(2Rc), and rewrite
the potential (3) as

U (r) = g

2Rc

[
1 +

( r

Rc

)6]−1

. (4)

In this approach, the interaction is parametrized not di-
rectly by the amplitude U0, but rather the effective interaction
strength g in the Rc → 0 limit. This convention has the benefit
that it allows us to directly compare the bosonic system prop-
erties with those of a contact-interacting system, which have
been previously analyzed, e.g., in Refs. [66,67] (although for
a slightly different shape of the potential barrier).

For convenience, in the following we express all magni-
tudes in natural units of the problem, i.e., energy is given in
units of h̄ω, length in units of

√
h̄/(mω), interaction strength

in units of
√

h̄3ω/m, time in units of 1/ω, and momentum in
units of

√
h̄mω.

As the system is initially confined in the harmonic oscilla-
tor trap V0(x), the initial two-body state of the system at t = 0
is taken to be the ground state of the interacting two-particle
system confined in the potential V0(x). As there is no exact
solution available for the case of interaction potential U (r)
(in contrast to the celebrated Busch et al. solution for contact
interactions [68]), for given parameters g and Rc we find the
ground state numerically, by propagating a trial two-body
wave function in imaginary time. The trial wave function is
chosen as the ground state of two noninteracting particles
(bosons or fermions) in a harmonic oscillator well.

The evolution of the system for t > 0 is calculated by
integrating the time-dependent Schrödinger equation numer-
ically, using the fourth-order Runge-Kutta method with time
step δt = 0.005. The calculations are done on a dense grid
with spacing δx = 0.125, with the simulated region including
a large extent of space in the region where the external po-
tential vanishes. To clarify, we represent the two-body wave
function �(x1, x2; t ) by the amplitudes ψi j (t ), obtained after
the decomposition �(x1, x2; t ) = ∑

i j ψi j (t )[ϕi(x1)ϕ j (x2) ±
ϕ j (x1)ϕi(x2)]. Here ϕi(x) is a single-particle function being
nonzero on the ith grid cell, i.e., ϕi(x) = 1/

√
δx for |x − xi| �

δx/2. The extent of the simulated region is chosen as x ∈
[−4, 60], for a total of 512 grid points. To avoid reflections
of the escaped particles off the boundary of the simulated
region, we employ the complex absorbing potential technique
[69–72]. Specifically, in the region far from the trap (at x >

30), we add an imaginary potential term −i
(x) to absorb
particles. The form of the imaginary potential is chosen as
the smoothly rising function 
(x) = 10−3 × (x − 30)2. We
wish to emphasize we have carefully checked that the final
results presented in the following do not depend on the details
of 
(x). Details about the effects of the complex absorbing
potential are available in Appendix A [73].

III. INITIAL STATE AND ENERGY

As noted, the initial state of the system is chosen as the
ground state of two particles confined in a harmonic oscillator

potential. As the properties of the initial state are directly
connected to the subsequent evolution dynamics, we will now
examine those properties in detail, depending on the interac-
tion parameters.

A. Two-boson initial state

We first focus on the bosonic case. We will now directly
examine the spatial distribution of two bosons in the initial
state, to observe the relationship between interactions and par-
ticle correlations. In Figs. 3(a) and 3(b), we show the single-
and two-body density profiles [ρ1(x) = ∫

dx|�(x, x2)|2 and
ρ2(x1, x2) = |�(x1, x2)|2] of the initial state for two bosons,
for different interaction parameters. For clarity, the gray
dashed lines in the ρ2 plot indicate the boundaries of the two-
body configuration space region for which |x1 − x2| � Rc,
i.e., the distance between the bosons is less than Rc. For the
noninteracting case (g = 0), both bosons are in the harmonic
oscillator ground state, and thus both the two-particle den-
sity profile ρ2 and the one-particle density profile ρ1 have
Gaussian shapes. In this case, the boson positions are en-
tirely uncorrelated with each other, and the two-body wave
function is simply a product of two identical one-body wave
functions.

In the case of attractive interactions (g = −4), the boson
positions become correlated. As can be seen from the profile
ρ2, the density becomes concentrated around the diagonal
x1 = x2, so that the bosons are more likely to be near each
other. The attractive interactions also cause a narrowing of
the one-body profile ρ1, so the bosons are more likely to be
found near the center of the well. However, for larger inter-
action range Rc, the noninteracting wave function is already
nearly completely contained within the region |x1 − x2| � Rc

and within that region the felt interaction is nearly constant.
As a result, for higher Rc the attractive interactions do not
significantly change the shape of the density profile.

For repulsive interactions (g = +2 and g = +12), bosons
are less likely to be found near each other. For large enough
interaction strength, the two-body density in the region |x1 −
x2| � Rc is nearly completely depleted, and the density profile
ρ1 splits into two maxima away from each other, indicating
that the bosons are likely to be found on the opposite sides
of the well. For large interaction ranges Rc, the effect of the
repulsions on the density profile is weakened, so that a larger
repulsive interaction strength is needed to empty the region
|x1 − x2| � Rc. This is because, as Rc increases, pushing the
bosons away from each other towards the well edges requires
a higher energy cost.

Now let us analyze the initial energy of the two-boson
system. In Fig. 4(a), we show the energy EINI(g, Rc) of two
bosons for different interaction strengths g and interaction
ranges Rc. Also shown is the energy calculated in the contact
interaction limit Rc → 0, i.e., for bosons interacting via the
contact potential gδ(r). The energy is calculated for a system
in the harmonic oscillator potential V0(x), but after the exter-
nal potential is changed to V (x) at t = 0, the energy of the
system is almost unchanged (since the potential in the initial
confinement region remains almost the same).

In the Rc → 0 limit, the energy is a monotonic function of
g. As the interaction range Rc increases, the energy becomes
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FIG. 3. (a) Two-body density distribution ρ2(x1, x2) of the initial state for the two-boson system, for varying values of interaction strength
g and interaction range Rc. Gray dashed lines demarcate the region |x1 − x2| � Rc, in which the distance between the bosons is within the
interaction range. (b) The corresponding one-body density distribution ρ1(x) of the initial two-boson state, for varying g and Rc. (c) Two-body
density distribution ρ2(x1, x2) of the initial state for the two-fermion system. (d) One-body density distribution ρ1(x) of the initial two-fermion
state. Lengths and range Rc are shown in units of

√
h̄/mω, interaction strength is shown in units of

√
h̄3ω/m.

overall less sensitive to changes in the interaction strength
[the slope of EINI(g, Rc) measured at g = 0 becomes smaller].
Although in this work we focus only on interaction ranges
Rc � 1.5 (on the order of a single natural length unit), it
should be pointed out that in the Rc → ∞ limit the interaction
U (r) is expected to vanish completely for all finite g. This
is because for Rc approaching infinity, the interaction is felt
simply as an energy shift constant in space, with magnitude
g/(2Rc). When Rc → ∞, this energy shift goes to zero for all
finite g.

To better understand the effect of the interaction range,
in Fig. 4(b), we examine the dependency of EINI(g, Rc) on
Rc, with fixed g. For attractive interactions, the energy has a
monotonic dependency on Rc and gradually approaches the
noninteracting value as Rc increases. This agrees with the
previously observed properties of the density profile: for in-
creasing Rc, the density profile is less squeezed and smoothly
approaches the noninteracting profile. On the other hand, for
repulsive interactions, the dependency of EINI(g, Rc) on Rc is
not monotonic. For smaller Rc, the energy increases with Rc

FIG. 4. (a) Initial state energy EINI(g, Rc ) for the two-boson system as a function of the interaction strength g, for different interaction
ranges Rc. (b) The energy EINI(g, Rc ) of two bosons as a function of Rc, with g constant. (c) Initial state energy EINI(g, Rc ) for the two-fermion
system, as a function of the interaction strength g. Note that EINI is a nonmonotonic function of Rc, as shown in the next subfigure. (d) The
energy EINI(g, Rc ) of two fermions as a function of Rc. Energy is given in units of h̄ω, range Rc in units of

√
h̄/mω, interaction strength g in

units of
√

h̄3ω/m.
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until a certain maximum value, then it begins decreasing, ap-
proaching the noninteracting value EINI = 1. This observation
can likewise be explained by considering the density profile
for repulsive systems. At first, increasing Rc causes the bosons
to be pushed away from each other towards further regions
of the harmonic well, increasing the system energy. Beyond
a certain interaction range, the interaction energy for a given
g is no longer sufficient to separate the bosons to a distance
∼Rc, thus for high Rc, the state density profile is identical to
the noninteracting one.

B. Two-fermion initial state

Let us now proceed to the two-fermion case. Owing to the
different particle statistics, already on the level of the initial
state this case differs visibly from the bosons. In Figs. 3(c) and
3(d), we show the two-body and one-body density profiles ρ2

and ρ1 for the initial two-fermion state, at different interaction
ranges Rc and interaction strengths g. As before, gray dashed
lines in the ρ2 plots indicate the region where |x1 − x2| � Rc.
In the noninteracting case (g = 0), the initial two-body state
is the antisymmetrized product of the two lowest harmonic
oscillator orbitals. As a result, the two-body density profile ρ2

is entirely different from the bosonic case. The particle posi-
tions are anticorrelated, so that the fermions are more likely to
be found on opposite sides of the well. The one-body density
profile ρ1 has a characteristic shape with two maxima located
at opposite sides from the well center. The Pauli principle is
manifested by the impossibility to find the two fermions at
exactly the same position (i.e., the density along x1 = x2 is
empty).

For attractive interactions (g = −12), the density is more
concentrated within the |x1 − x2| � Rc region, i.e., the two
fermions are more likely to be close to each other, although
the x1 = x2 diagonal remains empty. Furthermore, for strong
enough attractions, the two maxima in ρ1 fuse into one max-
imum located in the center of the well. As Rc increases, the
effect of attractions on the density profile becomes weaker, for
the same reason as for bosons: for large Rc most of the entire
noninteracting density profile is already contained within the
|x1 − x2| � Rc region.

In the case of repulsive interactions (g = +2, g = +12),
another important difference compared to the boson case can
be seen. Namely, for small interaction range (Rc = 0.5), the
density profile is almost unaffected by the repulsions. This is
because the noninteracting two-body wave function already
vanishes in such close vicinity to the diagonal, and any further
repulsions do not modify it significantly. Only for higher
interaction range (Rc = 1.5) the density profiles are seen to
be affected by the repulsive interactions, with the fermions
pushed further away from each other. It is worth pointing out
that for large Rc and g, both in the case of bosons and fermions
there occurs a complete separation between the particles, and
certain properties of the system (such as the density profile)
become insensitive to the particle statistics in this case.

We now turn our attention to the initial energy EINI(g, Rc).
In Fig. 4(c), we show the two-fermion EINI(g, Rc) for dif-
ferent interaction parameters g and Rc. The vanishing of the
two-fermion wave function at r = 0 means that the energy is
overall less affected by interactions than in the bosonic case.

In the limit Rc → 0, it furthermore means that the interaction
U (r) is not felt at all, and the energy in this case is independent
of interactions: EINI(Rc = 0) = 2. As Rc increases above zero,
the energy gradually becomes more sensitive to interactions
(as can be seen from the increasing slope of EINI near the
g = 0 point). Note that this is directly opposite to the boson
case, where increasing Rc causes the energy near g = 0 to
becomes less sensitive to interactions. However, it should be
noted that in the Rc → ∞ limit the interaction is no longer
felt by the two-fermion system, for the same reason as with
bosons. Thus, for large enough Rc the trend reverses, at which
point further increase of Rc causes the energy to approach the
noninteracting value.

For a clearer demonstration of how the two-fermion en-
ergy depends on the interaction range, in Fig. 4(d), we show
the dependency of EINI(g, Rc) on Rc, with g constant. The
major difference from the bosonic case is that the energy ap-
proaches the same constant value in the two limits Rc → 0 and
Rc → ∞. Thus, for intermediate values of Rc, the energy has
a nonmonotonic dependency on Rc, with a single minimum
(maximum) for attractive (repulsive) interactions.

IV. EIGENSTATES OF TWO PARTICLES IN OPEN SPACE

After the well is opened at t = 0, the initial state starts to
decay as the particles start tunneling into open space. To gain
a basic understanding of the tunneling process, it is helpful to
examine the many-body Hamiltonian spectrum for a system
of particles in the region outside the well. In this way we can
understand what configurations are available for the escaping
particles.

For this purpose, we describe the particles in their end-state
(after tunneling) via a simplified Hamiltonian. We assume that
the particles are far enough from the well that they feel no
external potential, and thus can be described by a simplified
Hamiltonian with V (x) = 0:

Hout =
2∑

i=1

[
− h̄2

2m

∂2

∂x2
i

]
+ U (x1 − x2). (5)

To find the eigenstates and eigenenergies of the Hamil-
tonian (5), it is convenient to perform a transformation
to the coordinates of the center-of-mass frame: X = (x1 +
x2)/2, r = x1 − x2. In these new variables the Hamiltonian
can be written as a sum of two independent single-particle
Hamiltonians, Hout = HX + Hr:

HX = −1

4

∂2

∂X 2
, (6)

Hr = − ∂2

∂r2
+ U (r). (7)

The total energy of the two particles in free space is corre-
spondingly a sum of eigenenergies of the two Hamiltonians,
E = EX + Er , and the wave function is given in terms of the
product of their eigenfunctions, �(x1, x2) = φX(X )φr (r).

Solutions for the center-of-mass motion Hamiltonian HX

are straightforward, representing free-particle wave functions.
In case of the relative-motion Hamiltonian Hr, an exact so-
lution is not available, and we obtain the eigenenergies and
eigenfunctions by numerical diagonalization.
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FIG. 5. (a) The two-body spectrum of the relative-motion Hamil-
tonian Hr (7) for two particles in empty space, interacting by the
potential U (r), as a function of interaction strength g. Results are
shown for two different interaction ranges: Rc = 0.5 and 1.5. For
all g, there exists a spectrum of scattering states with Er > 0 (gray)
that describe the relative motion of two almost-free particles. For
g < 0 there are also bound states available, with energy Er < 0
(black). Solid (dashed) black lines correspond to bound states which
have wave functions φr (r) symmetric (antisymmetric) about r = 0.
The general shape of the wave functions φr (r) is shown schemati-
cally near the corresponding energies. (b) The threshold interaction
strength gpair , below which there exists an antisymmetric bound state
in the Hr eigenspectrum and thus pairing of two fermions is possible.
The shown results are those calculated numerically for the exact
potential U (r) (solid line), and the result gpair ≈ −π 2/(2Rc ) for an
approximate rectangular potential (dashed line). Close agreement is
seen between the two values. Energies are expressed in units of h̄ω,
interaction strength in units of

√
h̄3ω/m, interaction range in units of√

h̄/mω.

In Fig. 5(a), we show the spectrum of eigenenergies of
Hr as a function of g, obtained by numerical diagonalization,
for two different values of Rc. There are two groups of states
distinguishable. The first group (indicated in gray) consists of
almost-free-particle states with positive energy Er, forming a
dense band. Their relative wave functions φr (r) have a density
distributed throughout all space and describe a configuration
of two (nearly) free particles. These states are present for all
values of g. The second group (indicated in black) includes
bound states with negative energy Er. They are much more
sparse than the scattering states and do not form a dense band.
Their wave functions φr (r), with density centered near r =
0, describe states of two bound particles traveling together.
These states only appear for negative interaction strengths
g < 0.

The wave functions φr (r) have a well-defined symmetry
in r, being even or odd functions of r: φr (−r) = ±φr (r).
A single symmetric bound state appears immediately below

g = 0 (indicated with a solid black line). For increasing at-
tractive interactions |g|, additional bound states make their
appearance, alternating between anti- and symmetric wave
functions φr (r) (their energies are indicated by dashed and
solid black lines, respectively). The spacing between values
of g at which subsequent bound states appear is dependent on
Rc. For decreasing Rc, the spacing between the bound states
increases, and in the limit Rc → 0 (where the potential be-
comes equivalent to the contact potential) only one symmetric
bound state is present.

The possibility that the particles will be able to form pairs
in the outside-well region depends on the availability of ap-
propriate bound states. For bosons, where the relative wave
function must be symmetric, the appropriate bound state be-
comes available as soon as interaction strength is below zero
(g < 0), regardless of the value of Rc. However, for fermions,
the necessary bound state must have an antisymmetric wave
function. Thus pairing for fermions is only possible below a
certain value gpair < 0, for which a second bound state (with
odd symmetry) appears in the spectrum. This value gpair is
directly dependent on Rc.

It is worth noting that the approximate value of gpair can
be obtained analytically when the interaction potential U (r)
in (7) is replaced by a rectangular well potential, since in
this case there exists an exact expression for the total number
n of bound states [74]. For the particular parameters in this
problem [mass 1/2, well length 2Rc, well depth |g|/(2Rc)],
the expression is n = �√2Rc|g|/π	, where �·	 is the ceiling
function, i.e., rounding up to the nearest integer. Therefore,
the condition for the existence of a second bound state is√

2Rc|g|/π > 1, giving the expression for |gpair| as π2/(2Rc).
In Fig. 5(b), we compare this expression with the numerically
obtained value of gpair for the Rydberg potential (defined as
the highest value of g at which there are at least two states
with negative energy). We obtain a close agreement between
the two cases. Note that in the limit of contact interactions
(Rc → 0) we have gpair → −∞, so that the pairing between
fermions becomes impossible, as expected for a contact po-
tential limited to the s-wave scattering level.

The above results have direct significance for the tunneling
dynamics. It can be surmised that the presence of pair tunnel-
ing depends on whether the particles are able to form pairs in
the open-space region. The above analysis indicates that for
bosons, pair tunneling will be present to some degree for any
value of attractive interactions. For fermions, much greater
interaction scales will be needed to analyze pair tunneling,
since a strong attractive interaction g < gpair is needed for pair
tunneling to even occur in the first place.

However, while this eigenspectrum gives information
about the availability of specific states, it does not directly
specify which of the tunneling mechanisms will dominate
in the dynamics. We therefore address this question by per-
forming a numerically exact time evolution and analyzing the
tunneling process in a time-dependent way.

V. DYNAMICS OF THE DENSITY DISTRIBUTION

The dynamics at t > 0 can be quite well understood
when the evolution of the two-body density distribution
ρ2(x1, x2; t ) = |�(x1, x2; t )|2 is analyzed. In a recent work
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[66], we have conducted an analysis along these lines for a
two-boson system with contact interactions. It was shown that
the dynamical properties depend significantly on the strength
g of interparticle interactions. As g is tuned from repulsive to
strongly attractive values, the dynamics undergoes a transition
between two regimes: the first one is dominated by sequential
tunneling, so that both bosons leave the well one after the
other, while the second one is almost completely dominated
by pair tunneling. Here we analyze how these results ap-
ply to systems with non-zero-range interactions by studying
the evolution of the two-particle density profile ρ2(x1, x2; t ).
To more easily tell apart the distinct tunneling processes in
our analysis, we divide the configuration space into three
regions Pi:

P2 = {(x1, x2) : x1 � xB ∧ x2 � xB},
P1 = {(x1, x2) : (x1 > xB ∧ x2 � xB)

∨ (x1 � xB ∧ x2 > xB)},
P0 = {(x1, x2) : x1 > xB ∧ x2 > xB},

(8)

where xB ≈ √
2λ is the position of the well boundary. The re-

gions P2, P1, P0 encompass configurations with exactly two,
one, or zero particles inside the well, respectively.

A. Two-boson dynamics

In Fig. 6, we show snapshots of the evolution of
ρ2(x1, x2; t ) at different times t after opening the well, for
two-boson systems with different interaction strengths g and
interaction ranges Rc. For better visibility, the well boundary
xB ≈ √

2λ is indicated with dashed lines, dividing the config-
uration space into the different regions Pn. At the beginning
(t = 0), the entire two-body wave function is contained within
the region P2.

For the noninteracting system (g = 0), both bosons tun-
nel entirely independently. After a short time t = 10 a large
amount of density is present in the region P1, indicating a
high probability of exactly one boson being outside the well.
Additionally, a non-negligible amount of density is present
in the region P0, corresponding to the event of two bosons
having tunneled out of the well. Throughout the entire evolu-
tion, the two-body density is completely uncorrelated, i.e., the
two-body wave function is simply the product of two identi-
cal one-body wave functions. The bosons are likely to leave
the well one after the other, but a coincidental simultaneous
tunneling of two bosons is also possible.

For the repulsive system (g = +2), the sequential tunnel-
ing of bosons is enhanced. In this case, there is a visible
anticorrelation in the boson positions, so that density close
to the x1 = x2 diagonal vanishes. The tunneling here occurs
solely via sequential tunneling, so that the probability flows
from P2 into the P1 region, and subsequently from the areas
of increased density in P1 into P0 (corresponding to the escape
of the second boson out of the well). The tunneling of bound
boson pairs is entirely absent. This is expected, since we have
already noted in chapter IV that no bound pair states are
available (in the outside-well region) for g � 0. Comparing
the Rc = 0.5 and 1.5 cases, we see that the density dynamics
remain qualitatively unchanged upon tuning of Rc.
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FIG. 6. Time evolution of the density distribution ρ2(x1, x2, t )
in an initially trapped two-boson system, for different interaction
strengths g and two different interaction ranges Rc. The dashed lines
demarcate the well boundary xB ≈ √

3. For the noninteracting and
repulsive systems (g = 0, g = 2) essentially the entire decay process
takes place via sequential tunneling of the two bosons. In the strongly
attractive system (g = −2), the system decays mostly via pair tun-
neling, with the participation of sequential tunneling depending on
interaction range Rc. Positions and interaction range are in units of√

h̄/mω, interaction strength in units of
√

h̄3ω/m, time in units of
1/ω.

The dynamics are significantly different for a strongly at-
tractive system (g = −2). Here, bound pair states are available
for bosons in open space, and so pair tunneling is possible.
For the Rc = 0.5 case, we see that pair tunneling is essentially
the only tunneling mechanism available. Therefore the density
flows directly from P2 into the P0 region and remains concen-
trated along the x1 = x2 diagonal, while it practically vanishes
in the region P1. This demonstrates that the bosonic system
with nonzero interaction range can undergo a transition into
the pair tunneling regime, similarly to a δ interaction system.

However, for the same g = −2 but a larger interaction
range Rc = 1.5, the density dynamics change. While the ma-
jority of the decay still takes place through pair tunneling,
there is also non-negligible participation from sequential tun-
neling, as seen by the flow of density into P1. This can be
explained by considering the system energy. The suppression
of sequential tunneling occurs when the total system energy
EINI falls below the threshold of one-particle energy [66].
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FIG. 7. Time evolution of the density distribution ρ2(x1, x2, t )
in an initially trapped two-fermion system, for different interaction
strengths g and two different interaction ranges Rc. The dashed
lines demarcate the well boundary xB ≈ √

5. For the noninteracting
and repulsive systems (g = 0, g = +5) essentially the entire decay
process takes place via sequential tunneling of the two fermions. In
the strongly attractive system (g = −11) the system decays mostly
via pair tunneling, with the participation of sequential tunneling
depending on interaction range Rc. Positions and interaction range
are in units of

√
h̄/mω, interaction strength in units of

√
h̄3ω/m, time

in units of 1/ω.

Since for larger Rc the energy of the attractive two-boson
system becomes less sensitive to g [as we have shown in
Fig. 4(a)], the energy is farther away from crossing the thresh-
old and the sequential tunneling is not as heavily suppressed.
This also indicates that the interaction range parameter Rc

can be treated as an additional knob to control the nature of
tunneling, in addition to the interaction strength g.

B. Two-fermion dynamics

We now proceed to analyze the density dynamics for a
system of two fermions, and compare the result with the
bosonic case. In Fig. 7, we show the evolution of ρ2(x1, x2; t )
for the two-fermion system at different interaction strengths g
and ranges Rc.

Already in the noninteracting case (g = 0), the two-
fermion dynamics differs significantly from the bosonic case.
Now, the two-body wave function is no longer a product of
two identical one-body wave functions. As a result, nonzero

interparticle correlations are present in the system (although
they are trivial, caused solely by the particle statistics). The
density at the x1 = x2 diagonal remains zero for all times, and
simultaneous tunneling of two fermions is suppressed. The
only tunneling mechanism in this noninteracting case is the
sequential tunneling, with density flowing from P2 to P1, and
from there to P0.

One characteristic feature is that, after a brief time, series
of stripes of zero density appear in the P0 region, parallel to
the x1 = x2 diagonal. Their presence can be simply explained
as a result of interference between the wave functions of
two approximately free particles with different momenta. In
this approximation, the two-body density in the P0 region
takes the form ρ2(x1, x2) ≈ |eik1x1 eik2x2 − eik2x1 eik1x2 |2 = 2[1 −
cos[(k2 − k1)(x1 − x2)]], reproducing the interference pattern.
If the momenta are chosen as k1 = 1, k2 = √

3 (to match the
initial fermion energies E = 1/2, E = 3/2), this approximate
form closely reproduces the observed spacing between the
stripes.

Now let us look at the fermion density dynamics in the case
of repulsive interactions (g = +5). For a relatively small in-
teraction range (Rc = 0.5), since the density is already nearly
zero close to the x1 = x2 diagonal, the dynamics remain nearly
unchanged from the noninteracting case. However, for a larger
range Rc = 1.5, the interactions are able to affect the dynam-
ics significantly. In particular, there is a visible change in the
shape of the interference minima within P0.

We now turn to a case of the strongly attractive system
(g = −11). At this value of g, a fermionic pair mode is avail-
able, and the initial state can decay via pair tunneling. For the
Rc = 0.5 case, the pair tunneling is seen as an area of high
density concentrated along the x1 = x2 diagonal. However,
sequential tunneling still plays a significant role, as indicated
by the flow of density from P2 into P1. For Rc = 1.5, however,
sequential tunneling vanishes and fermions are only emitted
as pairs. Thus, we see that for fermions, there exists a regime
dominated by pair tunneling just like for bosons. Note also
that the influence of Rc on the dynamics is quite opposite than
in the bosonic case: increasing Rc causes a greater suppression
of sequential tunneling. This effect is consistent with the total
energy of the system. As we have seen in Fig. 4(c), the energy
EINI becomes smaller upon increasing the interaction range to
Rc = 1.5, thus it crosses the critical threshold of one-particle
energy and one-body tunneling is suppressed more heavily.

VI. LONG-TIME DYNAMICS AND THE DECAY RATE

The short-time dynamics, expressed through the evolution
of ρ2, allow us to distinguish between specifical tunneling
mechanisms. However, a more in-depth understanding of the
tunneling process can be gained by simulating the time evo-
lution over longer timescales. In this section, we will focus
on long-time dynamics of the system, and in particular on
the exponential nature of the decay which becomes evident
at such timescales.

It is known that decaying systems typically obey an expo-
nential decay law [75]. That is, the survival probability, i.e.,
the probability that the system remains in the initial state,
obeys an exponential decay law to a very good approximation
(apart from very short and very long times [76–81]). For the
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FIG. 8. The time evolution of the probability P2(t ) over a long
time scale (red, solid) for the two-particle system with various inter-
action strengths g, for the two-boson and two-fermion system with
interaction range Rc = 1.5. Blue dashed line shows an exponential fit
to P2(t ). It can be seen that P2(t ) decays exponentially (apart from
very long times). Time is given in units of 1/ω, interaction strength
g in units of

√
h̄3ω/m, interaction range Rc in units of

√
h̄/mω.

two-body trapped system, the survival probability is closely
mimicked by the probability that both particles remain in
the well region, given by P2(t ) = ∫

P2
|�(x1, x2; t )|2dx1dx2.

Therefore its time evolution should be approximately given
by

P2(t ) ∼ e−γ t , (9)

with the decay rate γ constant in time. To confirm this as-
sumption, in Fig. 8, we show the long-time evolution of P2(t )
for various interaction strengths, for bosons and fermions with
interaction range Rc = 1.5. We compare the results to a fitted
exponential function (9). The obtained decay rate γ depends
essentially on the interaction parameters. It is seen that P2(t )
indeed decays exponentially throughout nearly the entire evo-
lution, regardless of g, both for bosons and fermions. Any
deviations from exponential decay only occur at very short
times, or at long times where the trapped system is practically
completely depleted and P2(t ) is negligible. The decay rate
γ can be therefore determined by measuring the evolution
of P2(t ) in time, and then fitting an exponential function to
the results. In this way, the decay process for any value of
g and Rc can be characterized by a single value γ . At this
point we wish to emphasize that the results presented for P2,
in contrast to other probabilities, are almost insensitive to the
details of the absorbing potential method used (for details, see
Appendix A).

A. Two-boson decay rate

For a two-boson system, the obtained decay rate is shown
in Fig. 9(a) as a function of g, for different interaction ranges

FIG. 9. (a) The decay rate γ (g) as a function of g and Rc, for the
two-boson system. (Inset) The susceptibility χ (g) = γ −1(∂γ /∂g).
(b) The ratio J0/J , expressing the relative participation of pair tun-
neling in the overall tunneling dynamics of the two-boson system.
Interaction strength g is expressed in units of

√
h̄3ω/m, interaction

range in units of
√

h̄/mω, decay rate in units of ω, susceptibility in
units of

√
m/h̄3ω.

Rc. We also include results in the contact interaction limit
Rc → 0, i.e., for bosons interacting via the potential gδ(r).
In the inset, we additionally show the susceptibility χ (g) =
γ −1(∂γ /∂g). Its peaks signal a large sensitivity of the decay
rate to small changes of the interaction strength.

It is seen that in the Rc → 0 limit, the decay rate γ (g)
displays a characteristic change in behavior approximately
around the critical interaction strength g0 ≈ −0.9, so that the
growth of γ (g) is a lot faster above this point than below
it, and a peak appears in χ (g). This change in behavior of
γ (g) is associated with the switch to the regime dominated
by pair tunneling. Below the critical interaction strength g0,
sequential tunneling is suppressed, and the much slower pair
tunneling is almost the only available decay mechanism [66].

As Rc increases from zero, the characteristic shape of γ (g)
and χ (g) is preserved (including the transition at some specific
point g0), but the sensitivity of the decay rate to the interac-
tions is modified. Specifically, as Rc increases, the decay rate
becomes less sensitive to a change in interaction strength. In
the Rc → ∞ limit, the interaction is not felt at all and γ (g) is
interaction independent.

The critical value g0 is dependent on Rc, and it moves
towards stronger attractive interactions as Rc increases. This
effect can likewise be treated as a reflection of an analogous
behavior of the total system energy. As explained previ-
ously, g0 is approximately equal to the interaction strength
for which EINI(g0) equals the energy of a single trapped
particle, EINI(g0) = 0.5. The energy EINI(g, Rc) becomes less
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sensitive to g as Rc increases, and so lowering EINI below this
energy threshold requires stronger attractive interactions. In
the Rc → ∞ limit, the interactions are not felt at all and thus
g0 approaches minus infinity.

To show that the g0 indeed corresponds to a transition
between two different dynamical regimes, we calculate the
relative participation of the two decay mechanisms (pair and
sequential tunneling) by theoretical calculation of different
probability fluxes through the potential barrier (for details of
this procedure, see Ref. [66]). This participation is expressed
by the magnitude J0/J , where J is the total probability flux go-
ing out of the region P2, and J0 is the total flux going directly
from region P2 into P0. Therefore the ratio J0/J expresses
the relative probability that the initial state will decay by the
emission of a bound pair, as opposed to a single boson. In
Fig. 9(b), we show the relative participation J0/J as a function
of g, for different Rc. It can be seen that an abrupt transition
between two regimes indeed occurs at g0. For g > g0, the
participation J0/J is near zero, indicating that nearly the entire
tunneling takes place via sequential tunneling. For g < g0, on
the other hand, J0/J is close to one, indicating a near-total
dominance of pair tunneling.

It should be noted that the above analysis has signifi-
cance for experimental practice, since it points to a method
of achieving a more complete experimental control over the
properties of the tunneling system. Specifically, by regulating
the parameter Rc one can regulate the value of the critical
interaction strength g0 where the tunneling mechanism dom-
inance is changed. Conversely, experimentally finding the
value of g0 can help in determining the effective interaction
range Rc.

B. Two-fermion decay rate

Now let us compare the above results with the case of the
two-fermion system. In Fig. 10(a), we show the determined
values of decay rate γ (g) and its susceptibility χ (g) as a func-
tion of g, for different interaction ranges Rc. It is seen that the
decay rate behaves much the same as in the boson case, and in
particular it is possible to identify an interaction strength g0 at
which the behavior of γ (g) changes abruptly and a maximum
appears in χ (g). The value of g0, as in the bosonic case, can
be approximately determined as the interaction strength for
which the total energy of the system equals the one-particle
energy, EINI(g0) = 0.5.

Analogously to the two-boson system, the dependence of
γ on Rc mimics the previously observed behavior of the initial
energy EINI(g) for two fermions. Thus, in the contact interac-
tion limit (Rc → 0), the decay rate becomes independent of g
as the interactions vanish for fermionic atoms. For increasing
Rc, the sensitivity of γ to a change of the interaction strength
g grows, quite opposite to the two-boson case. It should be
noted, however, that this trend applies only to fairly small
interaction ranges Rc � 1.0. In the limit Rc → ∞, the decay
rate approaches a constant, just as in the Rc → 0 case, for
the same reason as in the bosonic case. Thus, for very high
Rc (which are outside the scope of our work), the trend of
increasing sensitivity is predicted to reverse. For example,
it can be seen that at Rc = 1.5 the slope of γ (g) does not
increase further, but is very close to that of Rc = 1.0.

FIG. 10. (a) The decay rate γ (g) as a function of g and Rc, for the
two-fermion system. (Inset) The susceptibility χ (g) = γ −1(∂γ /∂g).
(b) The ratio J0/J , expressing the relative participation of pair tun-
neling in the overall tunneling dynamics of the two-fermion system.
Interaction strength g is expressed in units of

√
h̄3ω/m, interaction

range in units of
√

h̄/mω, decay rate in units of ω, and susceptibility
in units of

√
m/h̄3ω.

In Fig. 10(b), we show the pair tunneling participation
J0/J as a function of g for different interaction ranges Rc.
By comparing the figure with Fig. 9(b) we see that, similarly
to bosons, the interaction strength g0 corresponds to a rapid
transition between regimes dominated by pair and sequen-
tial tunneling. For small Rc, increasing the interaction range
causes the value of g0 to move towards weaker attractions,
which is quite opposite to the behavior of bosonic systems.
However, also this trend is expected to reverse for larger
interaction ranges. In the limit Rc → 0, fermion pairing and
pair tunneling vanishes completely, and so in this limit the
value of g0 approaches minus infinity, just like in the bosonic
case.

It is also worth noting that the magnitude of g0 for the
two-fermion system is significantly larger than in the bosonic
case. To illustrate this, one may consider that, while for the
bosonic case changing the interaction range from Rc = 0.5 to
1.5 causes a relatively small shift of g0, for the fermionic case
the analogous shift of g0 is an order of magnitude greater.
This can be explained by the fact that fermions in general
feel the interactions less strongly than bosons, and the fact
that, for fermions, pair tunneling doesn’t appear at all until
the interaction strength g is below a value gpair ∼ −R−1

c .
Similarly as in the bosonic case, by tuning Rc one can

manipulate the value of g0. Furthermore, as the value gpair is
also dependent on Rc, it can be treated as a second tunable
parameter. In Fig. 11, we show gpair and g0 as a function of
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FIG. 11. The value of two critical interaction strengths of the
two-fermion system as a function of Rc: the value of gpair , below
which fermions can form bound pairs, and the value g0, below which
the system transitions to a regime dominated by pair tunneling. In-
teraction strength is expressed in units of

√
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in units of
√

h̄/mω.

Rc. It is seen that they can be regulated fairly extensively
(though not independently) by tuning the interaction range
Rc, opening ways to experimental control over the system
properties. Conversely, one can attempt to find gpair and/or
g0 to determine the value of Rc. It is also worth noting that the
value of the transition interaction strength g0 can be to some
degree manipulated by changing the shape of the potential
outside of the well [66], which suggests an additional way to
change g0 and gpair independently from each other.

VII. CONCLUSION

We have examined the dynamical properties of a system
of two Rydberg-dressed bosons or fermions with finite-range
interactions, tunneling from a leaky potential well into the
open space. The nature of the tunneling dynamics is found to
depend significantly on the interaction strength. For the sys-
tem with repulsive interactions, only sequential tunneling of
two particles is available, independently of quantum statistics.
For attractive interactions, the tunneling significantly depends
on statistics. In the case of bosons, pair tunneling can be
observed at any strength of the attractive interactions. In the
case of fermions, pair tunneling can occur only for sufficiently
strong attractive interactions g < gpair, with gpair dependent on
interaction range.

The proportional participation of pair tunneling in the
overall tunneling process depends on the strength of the attrac-
tive interaction. We find that the dominant decay mechanism
changes abruptly as the interaction strength crosses a critical
value g0. For weaker attractions (g > g0), the decay process
occurs mainly by the sequential emission of two particles from
the well. For stronger attractions (g < g0), sequential tunnel-
ing is suppressed, and the particles tunnel mainly as bound
pairs. This transition occurs in a similar way both for bosonic
and fermionic systems. However, the evolution of two-particle
density correlations shows visible differences between the two
cases.

The interaction strengths required to reach the regime of
dominant pair tunneling are found to be significantly differ-
ent for bosons and fermions. For fermions, a much greater
strength |g| of attractive interactions is needed. This is both

due to the vanishing of the fermion wave function at x1 = x2,
which weakens the influence of attractive interactions, and the
fact that antisymmetric bound pair states become available
only for g < gpair < 0, with |gpair| having particularly large
values at short interaction ranges.

Changing the interaction range Rc affects the decay rate
of the system and the participation of the different decay
mechanisms, in a quite opposite way for bosons and fermions.
For bosons, increasing Rc (with interaction strength fixed)
diminishes the effect of the interactions, so that the decay
rate approaches the value of the noninteracting system. Also,
the pair tunneling induced by attractive interactions becomes
less dominant. For fermions, the situation is different because
in the limit of zero-range interactions (Rc → 0), the interac-
tion vanishes completely. As a result, in this case, increasing
Rc instead enhances the effect of the interactions. However,
in the limit of very large interaction ranges, the decay rate
approaches the noninteracting value both for bosons and
fermions.

Compared to results for a system of contact-interacting
bosons [66], the tunneling of atoms with long-range inter-
actions remains qualitatively similar. However, the use of
longer-range interactions allows to extend the investigation
to systems of identical fermions as well. The longer-range
interactions also give an additional dimension of control
over the system properties. Specifically, the critical values
of the interaction strength, g0 (below which pair tunneling
becomes dominant) and gpair (below which bound fermion
pairs can appear), are dependent on the interaction range Rc.
This indicates that the interaction range Rc can be treated as
an additional tunable parameter to exercise more complete
control over the system properties. In light of the recent
experiments with few-body tunneling systems [29,30] and
Rydberg-dressed atoms [59–63], the results presented in this
paper have potential significance for future research in this
direction.

Finally, it should be noted that in this work, we have delib-
erately limited ourselves to interaction ranges Rc � 1.5, on the
scale of the extension of the initial wave function. For higher
ranges, the existing model may break down and the dynamical
properties might become more complicated. In particular, the
decay of the system may become significantly nonexponential
in such cases, necessitating a new approach to analysis.

ACKNOWLEDGMENT

This work was supported by the (Polish) National Science
Center Grant No. 2016/22/E/ST2/00555.

APPENDIX A: APPLICATION OF THE COMPLEX
ABSORBING POTENTIAL

In order to simulate the infinite extent of space within the
finite simulated domain x ∈ [−4, 60], we use the complex
absorbing potential (CAP) technique. Namely, we add an
imaginary potential term −i
(x) to the single-particle Hamil-
tonian. Here 
(x) is chosen as a function which is zero in the
region x < xCAP, and has a smoothly rising form α(x − xCAP)β

for x � xCAP. Throughout the work we use the parameter val-
ues α = 0.001, β = 2, and xCAP = 30. To ensure numerical
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JACEK DOBRZYNIECKI AND TOMASZ SOWIŃSKI PHYSICAL REVIEW A 103, 013304 (2021)

 0

 0.05

 0.1

 0  10  20  30  40  50

ρ 1
(x

)

x

xCAP=40
xCAP=30
xCAP=20

FIG. 12. The one-body density distribution ρ1(x) of a tunneling
two-boson system with g = −0.5, Rc = 1.5 at a specific time t = 70,
for different values of the CAP position xCAP. Dashed lines indicate
the positions xCAP at which the absorbing potential begins. It can be
seen that the wave function for x > xCAP is gradually absorbed, so
that the particles escaping from the well do not reach the simula-
tion region boundary at x = 60. However, the one-body density in
the well region around x = 0 is also visibly affected by changing
the CAP parameters, which indicates a limitation of the approach.
Length is expressed in units of

√
h̄/mω.

accuracy, it is necessary to verify that the simulation results
remain insensitive to changes to these parameters.

First let us demonstrate the effects of the absorbing po-
tential. In Fig. 12, we show a snapshot at time t = 70 of the
one-body density ρ1(x; t ) for an example two-boson system,
obtained for three different values of the CAP position xCAP.
It can be seen that the parts of the wave function which
overlap with the CAP region (delimited by the dashed lines)
are gradually absorbed during the time evolution, which pre-
vents unwanted reflections off the domain wall at x = 60.
As a result, the evolution is nonunitary and the norm of
the wave function P (t ) = ∫ |�(x1, x2; t )|2dx1dx2 is no longer
conserved in time. This is shown in Fig. 13(a), where we
show the time evolution of P (t ) for the example two-boson
system. For short times, the norm of the wave function is
equal to unity, but it begins decreasing as soon as the tunneling
particles start entering the CAP region, which occurs at an
earlier time if xCAP is placed closer to the well.

The CAP technique allows to properly simulate unbounded
systems. However, the use of complex absorbing potentials
for few-body systems requires caution, since quantities that
depend on the microscopic state of the system in the ab-
sorption region can be strongly affected by this artificial
mechanism. For example, in Fig. 12, one can see that the
one-body density in the well region becomes different when
the simulation is performed with different CAP parame-
ters. However, quantities that depend only on the two-body
wave function �(x1, x2) calculated far away from the CAP
(x1, x2 � xCAP) are captured properly. To demonstrate this,
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FIG. 13. (a) Time evolution of the norm of the wave func-
tion P (t ) = ∫

ρ2(x1, x2; t )dx1dx2 for a two-boson system with g =
−0.5 and Rc = 1.5. Results are shown for different values of the
CAP position xCAP. The norm diminishes over time as parts of the
wave function are absorbed. [(b)–(d)] Time evolution of the partial
probabilities Pn(t ) (n = 2, 1, 0), i.e., the total probabilities in the
regions Pn, for different xCAP. For the probability P2(t ), the evolution
remains insensitive to the CAP parameters (since it is only dependent
on the state of the particles far from the CAP region). The probabil-
ities P1(t ) and P0(t ), on the other hand, are significantly affected.
Time is expressed in units of 1/ω, length in units of

√
h̄/mω.

we divide the total probability P (t ) into partial probabili-
ties Pn(t ) = ∫

Pn
ρ2(x1, x2; t )dx1dx2 (n = 2, 1, 0), where the

regions Pn are defined as in (8). Note that P0(t ) and P1(t )
are dependent on the state of the particles far from the well,
while P2(t ) depends only on the state of particles close to the
well. In Fig. 13, we show the evolution of these probabilities
for the example system of two bosons (g = −0.5, Rc = 1.5),
with different values chosen for xCAP. It is clear that the
obtained values of P1(t ) and P0(t ) [Figs. 13(c) and 13(d)]
are highly sensitive to CAP parameters, indicating that they
cannot be accurately predicted with this approach. On the
other hand, the evolution of the probability P2(t ) [Fig. 13(b)]
remains essentially unaffected by the absorbing potential. A
similar analysis performed for fermionic systems leads to
the same conclusions. Note that for larger particle numbers
(N > 2), only the total N-particle density ρN (x1, . . . , xN ; t ) =
|�(x1, . . . , xN ; t )|2 is insensitive to the CAP approach (in the
region where x1, . . . , xN � xCAP).
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