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We investigate the position- and momentum-space two-body correlations in a weakly interacting, harmonically
trapped atomic Bose-Einstein condensed gas at low temperatures. The two-body correlations are computed
within the Bogoliubov approximation and the consequences of the finite system size are highlighted in contrast
to the spatially homogeneous case. In the position space, we recover the antibunching induced by the repulsive
interatomic interaction in the condensed fraction localized around the trap center and the bunching in the outer
thermal cloud. In the momentum space, bunching signatures appear for either equal or opposite values of the
momentum and display peculiar features as a function of the momentum and the temperature. In analogy to
the optical Hanbury-Brown and Twiss effect, the amplitude of the bunching signal at closeby momenta is fixed
by the chaotic nature of the matter field state and its linewidth is shown to be set by the (inverse of the) finite
spatial size of the associated in-trap momentum components. In contrast, the linewidth of the bunching signal at
opposite momenta is only determined by the condensate size.
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I. INTRODUCTION

Correlation functions are among the most powerful tools to
characterize the properties of light beams in quantum optics
and to access the microscopic structure of condensed mat-
ter systems. In the former context, the distinction between
thermal light (a lamp) versus coherent light (a laser) and
single-photon source (a single two-level emitter) is typically
made by looking at the Glauber coherence functions via the
statistical properties of suitable photodetection signals [1,2].
In the latter context, proximity to a critical point and the onset
of an ordered phase are typically encoded in the correlation
functions of the order parameter, namely the local magnetiza-
tion (for the ferromagnetic transition [3]) or the Bose field (for
the Bose-Einstein condensation transition [4–7]).

In spatially large systems, position-space correlations be-
tween local observables are typically determined by the bulk
properties of the system and are only weakly affected by
its unavoidably finite size and the presence of edges. The
situation is completely different for what concerns correla-
tion functions in the reciprocal space, e.g., between different
momentum states. The Fourier transform relating position and
momentum spaces is in fact a strongly nonlocal operation and,
as such, is strongly affected by the overall size of the system.

The most celebrated example in this sense are the Hanbury-
Brown and Twiss (HB-T) correlations between different
momentum states of an atomic cloud [8–14]. These stud-
ies were inspired by pioneering quantum optics experiments
exploiting a subtle relation between the spatial profile of
the intensity correlation function of the light detected on
Earth and the angular size of a remote star [15]. Along sim-
ilar lines, the momentum-space correlation function of the

atoms showed a nontrivial bunching signal with a momentum-
space linewidth determined by the overall size of the cloud.
This is to be contrasted with the typical δ-shaped form of
momentum-space correlations of spatially infinite and homo-
geneous systems.

While first works on matter wave HB-T physics were
restricted to the simplest case of noninteracting atoms of
either bosonic [8,10,12] or fermionic [16] nature, recent de-
velopments have started investigating the richer physics of
interacting gases. In such systems, the excitation modes have a
collective nature and sizable quantum correlations among the
elementary constituents are present in the many-body ground
state [17–20]. On one hand, it is natural that signatures of
these many-body properties of the bulk should be well visible
in the position- and momentum-space correlation functions.
On the other hand, we can also expect that the detailed struc-
ture of the momentum dependence of the correlation function
should keep memory of the overall size of the system and
possibly of its spatial shape.

Motivated by the recent experiment [21], in this work we
report a complete theoretical study of such finite-size effects
in a simplest model of many-body system that is amenable
to ab initio numerical calculations and analytical insight,
but at the same time is rich enough to display a nontrivial
physics. We consider a gas of weakly interacting bosonic
particles in the presence of a harmonic trapping potential [20].
At low temperatures, this system can be described within
the Bogoliubov theory based on a macroscopically occupied
Bose-Einstein condensate (BEC) and a set of noninteracting
bosonic excitation modes, whose nature spans from low-
energy collective modes to high-energy single-particle states
[22]. At finite temperature, the thermal population of these
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excitation modes gives rise to the thermal cloud. Because of
interactions, the ground state also contains a sizable quantum
depletion, formed by pairs of particles that are excited out of
the condensate by virtual two-body collision processes into
states with exactly opposite momenta.

While this picture holds in spatially infinite and homo-
geneous condensates, several mechanisms were shown to
introduce additional features in the momentum space cor-
relation pattern, from quasicondensation effects in reduced
dimensions [23] to different states of bosonic matter in optical
lattices [24]. Here we specifically focus on the consequences
of the finite size of a dilute condensate on the linewidth of
the different features in the correlation pattern in momentum
space. Inspired by the Hanbury-Brown and Twiss argument,
one of the goals of this work is to assess the relation between
the momentum-space linewidth to the inverse physical size of
the system as recently explored in Ref. [21].

In order to achieve the momentum-space selectivity and
condensate size values that are required to access the fine de-
tails of the Hanbury-Brown and Twiss physics, we choose to
focus on one-dimensional (1D) geometries. Those quasicon-
densation features that are typical of low-dimensional systems
are suppressed by working deep in the weakly interacting
limit. For the rest, we do not expect that any new physics is
introduced into the problem when increasing the dimension
of the system to 2D or 3D. This statement appears to be
confirmed by the recent experiment [21].

The structure of the work is the following. In Sec. II, we
present the physical system under consideration (Sec. II), and
we review the basic concepts of the Bogoliubov approxima-
tion (Secs. II B and II C). These well-known facts are the basis
for our study of the spatial shape of the Bogoliubov modes
in trapped geometries that is reported in Sec. II D. The gen-
eral theory of two-body correlations within the Bogoliubov
approach is reviewed in Sec. III and its application to spatially
homogeneous systems is summarized in Sec. IV.

Section V presents the main results of our work. The in-
terplay of quantum antibunching features due to interactions
with the bunching features due to the thermal cloud are high-
lighted in the real-space correlations discussed in Sec.V A.
The role of the finite system size is even more visible in the
momentum-space correlations discussed in Sec.V B: A HB-T
effect is responsible for strong bunching correlations between
neighboring momentum states. The peak value of these cor-
relations is fixed by the Gaussian statistics to the usual HB-T
value; the momentum-space linewidth displays interesting be-
haviors as a function of temperature and momentum, which
can be related to the overall size of the condensed and thermal
components of the cloud. Similar features are also found in
the momentum-space linewidth of the correlation between
opposite momentum states. Conclusions are finally drawn in
Sec.VI.

II. THE PHYSICAL SYSTEM AND THE
BOGOLIUBOV DESCRIPTION

In this first section, we introduce the physical system under
investigation and we review the basic concepts of the Bogoli-
ubov approach that we use in the following. The experienced
reader can go straight to Sec. II D, where we focus on some

intriguing yet less known features of the Bogoliubov modes
that are important for the following investigation of the two-
body correlations.

A. The physical system

We consider an ensemble of Bose atoms of mass m, pair-
wise interacting via an effective contact potential gδ(r). This
describes the low-energy limit of the bare two-body inter-
action and depends on the scattering length asc through the
coupling strength g = 4π h̄2asc/m. As mentioned in the intro-
duction, for our study it is crucial to be able to access large
system sizes so to maximize the selectivity in momentum
space. Rather than dealing with the technical complexity of
three-dimensional calculations, it is useful to focus on one-
dimensional (1D) geometries. To this purpose, we assume that
the atoms are confined by an external potential Vext (r) which
is tightly confined in the transverse y, z plane at a frequency
ω⊥ larger than the chemical potential and the kinetic and
interaction energies. In this way, the atomic sample behaves
effectively as a quasi-one-dimensional (quasi-1D) gas [20].

Under this condition, the many-body field operator �̂(r)
can be factorized as �̂(r) = χ (r⊥)�̂(x), where χ (r⊥) is the
wave function in the radial r⊥ = (y2 + z2)1/2 direction and
�̂(x) is the field operator in the longitudinal x direction. By
integrating over the transverse degrees of freedom, we get an
effective 1D Hamiltonian in the form

Ĥ =
∫

dx �̂†(x)
[
ĥ + g1D

2
�̂†(x)�̂(x)

]
�̂(x). (1)

Here, the single-particle Hamiltonian ĥ = −(h̄2/2m)∂2
x +

Vext (x) includes the kinetic energy along x and the confining
potential along this direction, Vext (x) = 1

2 mω2
x x2. The follow-

ing term describes interparticle interactions whose strength
g1D = 2asch̄ω⊥ is the effective quasi-1D interaction constant
for a cylindrically symmetric trap of frequency ω⊥ [20].

B. The Bogoliubov approximation

Following the number-conserving Bogoliubov formalism
developed in Refs. [25,26], we split the field operator �̂(x, t )
into the condensed component describing atoms occupying
the single-particle condensate state and the noncondensed
component that accounts for the population of the excited
single-particle states,

�̂(x) = �0(x)â0 + δ�̂(x). (2)

Here the operator â0 annihilates a particle from the condensate
mode �0(x), while δ�̂(x) annihilates a noncondensed particle
at position x. The process by which a particle is transferred
from the noncondensed into the condensate component is
described by the action of the operator 	̂(x), defined as

	̂(x) = 1√
N

â†
0 δ�̂(x). (3)

Here N is the total number of particles, which differs from
the (average) number of condensate atoms N0 ≡ 〈â†

0â0〉 by the
amount δN ≡ ∫

dx 〈	̂†(x)	̂(x)〉. In contrast to many treat-
ments of low-dimensional gases, in this work we do not adopt
the density or phase representation and we stick to the na-
tive form of the field operators �̂(x) for which momentum
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space observables are readily obtained by means of Fourier
transforms. Of course, this restricts our discussion to true
condensates with long-range order.

In the weakly interacting limit where N → ∞ and g1D →
0 at a fixed mean-field energy Ng1D, one has δN ≈ 1 and
one can adopt a perturbative approach in δN/N . Note that
in this limit the chemical potential μ remains constant as it
is related to the product Ng1D, while the critical tempera-
ture for condensation is pushed to high temperatures (strictly
speaking to infinity) and the characteristic coherence length of
the quasicondensate also grows. This supports our neglect of
quasicondensate effects.

The Gross-Pitaevskii theory accounts for the zeroth-order
term of this expansion, while the Bogoliubov theory of nonin-
teracting excitations living on top of the condensate accounts
for the first-order correction. At the lowest nontrivial level
in this perturbative expansion, the time evolution of 	̂(x, t )
and of its Hermitian conjugate 	̂†(x, t ) is governed by the
Bogoliubov–de Gennes equations [25]

ih̄
d

dt

(
	̂

	̂†

)
= L

(
	̂

	̂†

)
=

(
LQQ LQQ∗

LQ∗Q −LQQ

)(
	̂

	̂†

)
, (4)

where the (operator-valued) components of the Bogoliubov
operator L are defined as

LQQ = [HGP + Ng1D Q|�0(x, t )|2Q − μ], (5a)

LQQ∗ = Ng1D Q�2
0(x, t )Q∗, (5b)

LQ∗Q = (LQQ∗ )∗. (5c)

At this level of approximation, in Eq. (5a), �0(x)
coincides with the (normalized) ground-state solution of
the Gross-Pitaevskii equation [20] and HGP = −h̄2∂2

x /2m +
Ng1D|�0(x, t )|2 + Vext (x) is the Gross-Pitaevskii Hamilto-
nian. We denote the Thomas-Fermi radius of the Gross-
Pitaevskii ground state by Lbec in the following. In Eqs. (5a)–
(5c), the operator Q ≡ I − |�0〉〈�0| is the projector onto the
noncondensed component, that is, onto the Hilbert subspace
spanned by all single-particle excited states.

C. The Bogoliubov Hamiltonian and its ground state

The 	̂(x) operator can be conveniently expressed in the
basis of the Hilbert space composed by the positive norm and
positive frequency eigenvectors [un(x), vn(x)]T (with n ∈ N)
of L and the associated negative norm and negative frequency
ones [v∗

n (x), u∗
n(x)]T [22,25]. In terms of this basis, we can

expand the noncondensed operators as

	̂(x) =
∑

n∈(+)

(b̂nun(x) + b̂†
nv

∗
n (x)), (6)

where the sum runs over the positive norm modes only. Note
that for a trapped condensate, all un(x) and vn(x) can be taken
as real.

By combining this expansion with the decomposition
Eq. (2) of the field operator, the Hamiltonian of the system
in Eq. (1) can be conveniently written, to order O(1) in the
particle number N , in the diagonal form

Ĥ = E0(N ) +
∑

n

Enb̂†
nb̂n, (7)

where E0(N ) is the ground-state energy (see Eq. (71) in
Ref. [25] for the explicit form). The b̂n and b̂†

n operators satisfy
bosonic commutation rules, [b̂m, b̂†

n] = δm,n, and physically
correspond to the destruction and creation of quanta of ex-
citation in the different excitation modes of the condensate.
The Bogoliubov ground state |0〉bog is the (unique) state that
is annihilated by all quasiparticle operators b̂n,

b̂n|0〉bog = 0 ∀n. (8)

The Bogoliubov ground state |0〉bog is different from |�0〉 in
that it contains an admixure of (noncondensed) single-particle
excited states, which are referred to as the quantum depletion.
Note that the Bogoliubov theory does not include terms be-
yond quadratic order in the Hamiltonian (7), which physically
means that the different excitation modes are assumed to be
not interacting.

D. The Bogoliubov modes of a trapped condensate

In the Bogoliubov approximation, the structure of the
excitations of a trapped condensate are readily obtained
by diagonalizing the Bogoliubov operator (4). We have
numerically diagonalized the Bogoliubov operator on a one-
dimensional lattice of Np points uniformly spaced by dx =
L/Np. The kinetic energy is implemented by evaluating the
spatial second derivative via a fourth-order finite difference
scheme [27]. Care has been paid to ensure convergence of
the results on the IR side against the integration box size
L and on the UV side against the lattice spacing dx. This
diagonalization provides us with both the eigen-energies (i.e.,
the spectrum) and the eigenmodes (i.e., the Bogoliubov exci-
tations modes) that we now briefly describe.

In Fig. 1(a), we report the numerical result for the spectrum
of the Bogoliubov operator L for a harmonically trapped
condensate of chemical potential μ = 11.2 h̄ωx. We compare
it with the analytical solutions obtained in the Thomas-Fermi
(red dashed) and noninteracting (blue dot-dashed) limits. The
former reproduces well the low-energy modes of collective—
phononic—nature. The latter recovers the high-energy part
of the spectrum, where modes have a single-particle nature
[20,22]. The crossover between the two regimes is set by the
interaction energy μ  g1Dn(0), where n(x) ≡ N |�0(x)|2 is
the condensate density.

In Figs. 1(b) and 1(c), we show the numerical results for a
few of the functions un(x) and vn(x) associated with the two
types of Bogoliubov excitation modes. We have plotted the
solutions for the n = 1, 10, 30 modes of energy E1,10,30 
1, 8.59, 26.0 h̄ωx. These values were chosen to highlight the
structure of the Bogoliubov modes in the collective (n = 1),
intermediate (n = 10), and single-particle (n = 30) part of
the energy spectrum. At low energies, i.e., small values of n,
where the excitations have a collective nature, the un, vn have
similar amplitudes. In the opposite regime of single-particle
excitations, i.e., at large values of n, the amplitude of the vn

tends to vanish while that of the un remains almost unaffected.
Also, the spatial profiles of both the un and vn functions

change drastically with n. These modifications are central to
understanding the structure of the two-body correlations that
we are going to discuss in the next sections. More specifically,
the un(x) and vn(x) functions of low-energy modes [e.g., the
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FIG. 1. (a) Bogoliubov spectrum in a one-dimensional condensate in the Thomas-Fermi regime with μ/h̄ωx = 11.2 � 1. Numerical
(black), hydrodynamic Thomas-Fermi limit (dashed red), and harmonic oscillator (dot-dashed blue) predictions for the spectrum of excitation
modes as a function of the mode label n. [(b), (c)] Spatial profiles of the un(x) and vn(x) functions for the n = 1 (dashed blue line), n = 10
(dot-dashed red line), and n = 30 (dotted green line) modes of energies E1,10,30  1, 8.59, 26.0 h̄ωx . (d) Density of the noncondensed atoms
δn for three different temperatures, KBT = 0 (dashed blue line), KBT = μ (dotted red line), and KBT = 2.5μ (dot-dashed green line). The
black solid line in panels [(b)–(d)] depicts the spatial profile |�0(x)|2 of the condensate [in units of 
−1

0 in panels (b) and (c) and in arbitrary
units in panel (d) for readability’s sake]. The plotted data have been obtained by diagonalizing the Bogoliubov operator in Eg. (4) in the text,
on a grid of Np = 2048 points and an integration box of size L = 80
0. Here, 
0 = √

h̄/2mωx is the harmonic oscillator length.

blue dashed line for the n = 1 dipole mode in Figs. 1(b) and
1(c)] have a similar shape and are localized within the con-
densate (whose density profile is indicated by the black solid
line). This is because the collective character of low-energy
modes requires the presence of the underlying condensate. In
the opposite regime of large energies and single-particle exci-
tations, the spatial extensions of the un(x) and vn(x) strongly
differ from one another. On the one hand, the functions un(x)
of high-energy modes [e.g., the green dotted line for n = 30
in Fig. 1(b)] display a standing-wave profile with a relatively
uniform envelope which extends well beyond the density pro-
file of the condensate. This is because highly energetic single
particles can freely climb along the sides of the harmonic
trap outside the condensate. On the other hand, the vn(x)
functions [red dash-dotted and green dotted lines in Fig. 1(c)]
have a significantly nonzero value only in the condensate
region. The envelope of their standing-wave profile smoothly
reaches the condensate edge but is largest around the trap
center: This feature can be ascribed to the nonhomogeneous
density profile of the condensate and to the way the collective
or single-particle character of a mode is related to the local
density: In a trap, a given excitation mode of frequency ω has
a more collective nature and thus a larger vn(x) in the central
high-density region where the local interaction energy g1Dn(x)
is larger.

As a final remark, we show in Fig. 1(d) the spatial profile
of the noncondensed fraction given, to order O(1), by

δn(x) = 〈	̂†(x)	̂(x)〉. (9)

First of all, the total number of noncondensed particles
increases with the temperature, as expected because the tem-
perature promotes particles outside the ground state. While the
quantum depletion at T = 0 is relatively flat up to the edge
of the condensate, the thermal component visible at higher

T ’s extends well beyond the condensate and is suppressed at
the center of the trap by the repulsive effect exerted by the
condensate [see the extra term ∼|�0(x)|2 in Eq. (5a)].

III. TWO-BODY CORRELATIONS: GENERAL THEORY

After having reviewed the basic concepts of the Bo-
goliubov theory and presented the spatial structure of the
excitation modes in a harmonically trapped geometry, we are
now in a position to attack the core problem of this work,
namely the two-body correlations in both the position and
momentum space. In this section, we outline the approach to
calculate the correlation functions in the Bogoliubov approxi-
mation.

To maintain full generality at this stage, we consider a
generic two-body correlation function of the form

G(2)(s1, s2) = 〈�̂†(s1)�̂†(s2)�̂(s2)�̂(s1)〉, (10)

where s1 and s2 are generic variables either in the position or
the momentum space.

Up to terms of order O(1) of the Bogoliubov expansion in
powers of the particle number N , Eq. (10) can be expanded as

G(2)(s1, s2) = N2 G(2)
�0�0

(s1, s2) + N G(2)
�0	

(s1, s2)

+ G(2)
		(s1, s2), (11)

where the terms proportional to G(2)
�0�0

(s1, s2), G(2)
�0	

(s1, s2),

and G(2)
		(s1, s2) are of different orders in N and account for

different type of correlations. The first term G(2)
�0�0

G(2)
�0�0

(s1, s2) = |�0(s1)|2 |�0(s2)|2 (12)

describes the trivial correlations between particles in the con-
densate. Thermal and quantum fluctuations are captured by
the following terms. The second term is proportional to

G(2)
�0	

(s1, s2) = [−|�0(s1)|2|�0(s2)|2 + (|�0(s1)|2〈	̂†(s2)	̂(s2)〉 + |�0(s2)|2δ〈	̂†(s1)	̂(s1)〉).

+. (�∗
0(s1)�∗

0(s2)〈	̂(s2)	̂(s1)〉 + �∗
0(s1)�0(s2)〈	̂†(s2)	̂(s1)〉 + c.c.)] (13)
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and involves particles in and out of the condensate. Here,
“c.c.” indicates the complex conjugation operation. The third
term is proportional to

G(2)
		(s1, s2) = 〈	̂†(s1)	̂†(s2)	̂(s2)	̂(s1)〉, (14)

and describes correlations between the noncondensed parti-
cles.

In the position space, the correlation function that we are
considering is physically related to the correlation function of
the density fluctuations, namely the connected component of
the density-density correlation function

G(2)
c (x1, x2) = 〈: n̂(x1)n̂(x2) :〉 − 〈n̂(x1)〉〈n̂(x2)〉 . (15)

Depending on whether the x1,2 points are chosen inside or out-
side the spatial region occupied by the condensate, different
contributions to the fluctuations will dominate. The G(2)

�0	
is

of higher order in N and thus generally larger, but it quickly
becomes negligible when at least one of the two points x1,2

is moved outside the condensate. In this case, the leading
contribution is the G(2)

		 one.
In the momentum space, there is again a clear separation

of scales between the condensate that lives in low-momentum
states up to k  1/Lbec and the noncondensed fraction that
extends up to much higher momenta determined by the tem-
perature or the inverse healing length of the condensate. This
separation allows us to separately identify the three terms
in Eqs. (12)–(14). The correlations that are of interest for
the present work involve modes at k1, k2 located outside the
condensate and are described by the highest order G(2)

		(k1, k2)
term. In the rest of this work, we will focus on this term for
the momentum-space correlations.

The second-order correlators appearing in G(2)
�0	

(s1, s2) in-
volve products of respectively the normal and anomalous
averages of the Bogoliubov operator:

G(1)(s1, s2) = 〈	̂†(s1)	̂(s2)〉, (16)

A(1)(s1, s2) = 〈	̂(s1)	̂(s2)〉. (17)

Given the quadratic form of the Bogoliubov Hamiltonian, the
thermal equilibrium state has a Gaussian form at any temper-
ature and the Wick expansion is exact. As a consequence, the
quartic correlator G(2)

		(s1, s2) in Eq. (14) can be expanded in
terms of products of the second-order correlators as

G(2)
		(s1, s2) = G(2)

		,N(s1, s2) + G(2)
		,A(s1, s2), (18)

where

G(2)
		,N(s1, s2) = |G(1)(s1, s2)|2

+ G(1)(s1, s1)G(1)(s2, s2), (19)

G(2)
		,A(s1, s2) = |A(1)(s1, s2)|2. (20)

In position space, we can make use of the expansion in
Eq. (6) to write these expectation values in terms of the Bo-
goliubov modes as

G(1)(x1, x2) =
∑

n

[(1 + Nn)vn(x1)vn(x2)

+ Nnun(x1)un(x2)], (21)

A(1)(x1, x2) =
∑

n

[(1 + Nn)un(x1)vn(x2)

+ Nnvn(x1)un(x2)], (22)

where

Nn = 1

eβ h̄ωn − 1
(23)

is the thermal occupation of the excitation mode of freq-
uency ωn.

Analogous expressions can be straightforwardly written in
the momentum space by defining the Fourier transforms of the
Bogoliubov mode functions un(k) and vn(k)

[un, vn](k) = 1√
L

∫
dx [un, vn](x) e−ikx, (24)

where L is the size of the integration box. These become

G(1)(k1, k2) =
∑

n

[(1 + Nn)v∗
n (k1)vn(k2) (25)

+ Nnu∗
n(k1)un(k2)], (26)

A(1)(k1, k2) =
∑

n

[(1 + Nn)un(k1)vn(k2) (27)

+ Nnvn(k1)un(k2)] (28)

and can be directly used to evaluate G(2)
		(k1, k2) using (18).

IV. TWO-BODY CORRELATIONS IN A SPATIALLY
HOMOGENEOUS SYSTEM

As a first application of this approach, in this section
we consider the simplest case of a homogeneous system of
density n0 and finite spatial size L with periodic boundary
conditions, for which an analytical solution to the Bogoliubov
problem in Eq. (4) is available.

Thanks to the translation invariance of the system, solu-
tions for uk (x) and vk (x) in a plane-wave form can be found
with uk (x) = L−1/2 uk exp(ikx), vk (x) = L−1/2 vk exp(ikx),
and

uk =
√

1

2

(
ξk

εk
+ 1

)
, vk = −

√
1

2

(
ξk

εk
− 1

)
. (29)

Here, we have used the shorthand notation ξk = ε0
k + n0g1D,

εk =
√

ξ 2
k − (n0g1D)2 , and ε0

k = h̄2k2/2m.
In position space, the order O(N ) term of the correlation

function is proportional to

G(2)
�0	

(x1, x2) = −n0

L
+ n0

L

∑
k �=0

{(eik(x1−x2 ) + e−ik(x1−x2 ) )

× [(uk + vk )2(1 + 2Nk ) − 1]}, (30)

where we have exploited the condition Nk = N−k imposed by
the inversion symmetry of the system. Here, the first −n0/L
term arises because of the fixed number of atoms N that are
in the system and corresponds to the first term in Eq. (13). In
the homogeneous geometry where the condensate occupies all
the space, the following O(1) term G(2)

		 is not relevant for the
spatial correlation function.
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In the momentum space, the condensate only occupies the
k = 0 state, so for any finite value of k the correlation signal
is given by the G(2)

		(k1, k2) term. The latter can be decom-
posed in a normal and anomalous part according to (18). The
normalized normal correlation takes the form

g(2)
		,N(k1, k2) ≡ G(2)

		,N(k1, k2)

G(1)(k1, k1)G(1)(k2, k2)

= 1 + δk1k2

∣∣Nk1 u2
k1

+ (1 + Nk1 )v2
k1

∣∣2

G(1)(k1, k1)G(1)(k2, k2)

= 1 + δk1k2 . (31)

In a spatially homogeneous configuration, the populations of
the different momentum components are in fact independent,
so this correlation function differs from unity only for k1 = k2.
Its peak value on the diagonal is equal to 2, as typical for
thermal states. This is also true for the case of the quantum
depleted atoms at T = 0, as first noticed in Ref. [21] and
explained in the following. In the next section, we will see
how this bunching peak broadens in a trapped geometry, while
keeping a maximum value equal to 2.

Analogously, the normalized anomalous correlation func-
tion is written as

g(2)
		,A(k1, k2) ≡ G(2)

		,A(k1, k2)

G(1)(k1, k1)G(1)(k2, k2)

= |(1 + 2Nk1 )uk1vk2 |2
G(1)(k1, k1)G(1)(k2, k2)

δk1,−k2 , (32)

which is different from zero only for k1 = −k2. This condi-
tion can be physically understood from the properties of the
quantum depletion underlying the anomalous correlation at
T = 0: Since the particles belonging to the quantum depletion
form a coherent state of pairs of particles at opposite momenta
virtually ejected out of the condensate by the interactions, the
anomalous correlations are nonzero only for k1 = −k2.

In contrast to the normal correlations, the peak value of
g(2)

		,A(k1, k2) for k1 = −k2 has a nontrivial k dependence.
In particular, since uk → 1 and vk → 1/[2(ξk)2] → 0 in the
k → ∞ limit [according to Eqs. (29)], the peak correlation
diverges for k → ∞. In the simplest T = 0 case, one has
Nk = 0 and thus g(2)

		,A(k,−k) → 4(ξk)4. In the more general
T > 0 case, the large-k divergence has the same form, but it
is visible only at high enough values of the momentum for
which Nk � 1. Also, in this case, the finite spatial extension
of the condensate results in a broadening of this correlation
feature.

V. TWO-BODY CORRELATIONS IN A HARMONICALLY
TRAPPED SYSTEM

The detailed review of the spatially homogeneous case
presented in the previous section paves the way for the study
of the correlations in the harmonically trapped system that
we are now going to explore. In Sec. V A, we investigate the
position space two-body correlations. In Sec. V B, we provide
an in-depth study of the momentum-space correlations.

FIG. 2. Numerical solution for the two-body correlation
G(2)

�	(x1, x2) in real space. The panels [(a)–(d)] on the left column
show color plots of this quantity for growing values of the
temperature, KBT/μ = 0, 1, 1.5, 2.5. The panels [(e)–(h)] on the
right column show cuts G(2)

�	(x − δx, x + δx) along straight lines
parallel to the antidiagonal located at different spatial positions
x = 0 (black solid line) x = 2.5
0 (blue dashed line), and x = 5
0

(red dot-dashed line) for the same values of the temperature.
Numerical calculations have been performed on the same grid as in
Fig. 1.

A. Position-space correlations

The plots in the different panels of Figs. 2 and 3 il-
lustrate the modification of the density-density correlations
captured by the two-body correlation function G(2)

�0	
(x1, x2)

and G(2)
		(x1, x2), respectively, in the regions within and out-

with the condensate, at increasing values of the temperature.
Let us start from correlations within the condensate. At

T = 0, a well-contrasted antibunching stripe is visible whose
origin reflects the reduced probability of finding two atoms
close by because of the repulsive interaction. The typical
width of the antibunching stripe is given by the interaction
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FIG. 3. Numerical solution for the normalized two-body correla-
tion g(2)

		(x1, x2) in real space. In panel (a), we show the color plot
of this quantity for the value of the temperature, KBT/μ = 2.5. The
gray central square, of side Lbec ≈ 6.7
0 equal to the Thomas-Fermi
radius, identifies the spatial region where the condensate is located.
The panels (b)–(d) show the cuts g(2)

		(x − δx, x + δx) along straight
lines parallel to the antidiagonal, at the positions x = 2Lbec (black cir-
cles) x = 3Lbec (continuous lines), respectively, for the values of the
temperature: KBT = μ, KBT = 1.5μ, and KBT = 2.5μ. We compare
the numerical results with the analytical solution obtained for the
classical, noninteracting gas at the same temperature (red crosses).
Numerical calculations have been performed on the same grid as in
Fig. 1.

strength and is of order the healing length. In the Bogoliubov
theory, this feature is accounted for by zero-point vacuum
contribution (i.e., for Nk = 0) in Eq. (30).

At finite temperature KBT/μ = 1, 1.5, 2.5, in contrast,
thermal fluctuations induce a bunching associated with their
chaotic character. The width of this bunching bump, set by the
temperature, is initially broader than the antibunching feature
already present at T = 0 and gets narrower for growing T .
Upon increasing the temperature, the thermal fluctuations of
the density therefore progressively overtake the (quantum)
antibunching feature. When the temperature is much larger
than the interaction energy μ, the bunching ends up domi-
nating over the antibunching dip which is no longer visible
[Figs. 2(g) and 2(h)].

The antibunching effect originating from the repulsive
interaction and the bunching effect occurring at finite-
temperature change differently from one another along the
spatial profile of the cloud. As it appears in Figs. 2(e)–2(h), the
narrow antibunching dip has a larger amplitude at the center
of the cloud (solid black lines) where the density is largest
and the effect of repulsive interactions strongest. The inhomo-
geneous density profile also results in a smaller value of the
healing length at the center, and a correspondingly narrower
dip in the two-point correlations [Fig. 2(e)]. On the other hand,
at low temperatures [Figs. 2(b) and 2(f)], the broad bunching
bump starts being visible and has the strongest impact in the

spatial region outside the condensate where the thermal atoms
are mostly located, as shown in the previous Fig. 1(d). In the
bottom panels [Figs. 2(d) and 2(h)] for the highest temperature
kBT = 2.5μ, a substantial thermal component is present also
at the trap center, so the overall width of the bunching peak
is approximately constant throughout the cloud. Note that the
plateau at a slightly negative value that is visible as a bluish
uniform area in Figs. 2(a)–2(d) for widely separated positions
x1,2 is a consequence of the constant number of particles in
the system, which fixes the value of the integral of G(2)(x1, x2)
over the whole space.

As expected, the contribution G(2)
�0	

vanishes when at least
one of the two points x1,2 lies outside the condensate. In this
region, the correlations are then dominated by the higher order
G(2)

		 term. In Fig. 3(a), we report the plot of the (normalized)
second-order correlation function

g(2)
		(x1, x2) = G(2)

		(x1, x2)

G(1)(x1, x1)G(1)(x2, x2)
, (33)

for a temperature value KBT/μ = 2.5. A single correlation
line appears along the diagonal x1 = x2, as expected for the
cloud of noninteracting particles. Very similar plots are found
for other values of the temperature (not shown).

To understand the dependence on the temperature, it is
useful to look at the cuts g(2)

		(x − δx, x + δx) along straight
lines parallel to the antidiagonal, at different positions. Some
such curves are shown in Figs. 3(b)–3(d) for different values
of the temperature, KBT/μ = 1, 1.5, 2.5. These plots clearly
show the position-space HB-T bunching of the thermal cloud,
g(2)

		(x, x) = 2: The spatial extension of the bunching peak is
independent on the position and scales with the thermal de
Broglie wavelength

λT =
[

2h̄

mωx
tanh

(
h̄ωx

2KBT

)]1/2

, (34)

at the corresponding temperature T . In each panel, the numer-
ical results are compared with the analytical solution obtained
for the classical, noninteracting gas at the same temperature,

g(2)
		(x − δx, x + δx) = 1 + e−4δx2/λ2

T , (35)

obtaining an excellent matching between the two curves in
this limit.

B. Momentum-space correlations

The plots in Figs. 4(a)–4(c) show examples of the
two-body correlations in the momentum-space at different
temperatures. In typical experiments [21], these momentum
space correlations are extracted as two-body correlations after
a long time-of-flight expansion from the source of trapped
atoms. In doing this, care must be paid that the signal is
not distorted by interaction effects during the time-of-flight
expansion. Here, we calculate the normalized contribution
that dominates once the momenta k1 and k2 are taken outside
the condensate region (see Sec. II),

g(2)
		(k1, k2) = G(2)

		(k1, k2)

G(1)(k1, k1) G(1)(k2, k2)
. (36)

The condensate region is indicated by the vertical and hori-
zontal gray stripes in Figs. 4(a)–4(c).
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FIG. 4. Numerical results of the two-body correlation function g(2)
		(k1, k2) in momentum space. Panels (a)–(c) show the profiles of

g(2)
		(k1, k2) for the values of the temperatures KBT/μ = 0, 1, 2.5. The gray vertical and horizontal stripes, of width k
0 = 0.5π , identify

the region of the momentum space where the condensate contribution to the correlations is located. This region is not relevant for our
purposes. We notice the presence of two main features in the two-body correlations in momentum space: (I) the diagonal stripe accounts
for the normal contribute g(2)

		,N(k1, k2) to the fourth-order correlator, and (II) the antidiagonal stripe accounts instead for the anomalous
contribute g(2)

		,A(k1, k2) to the fourth-order correlator. Note that the seeming increase of the linewidth of the antidiagonal stripe for large values
of |k1,2| is a graphical artifact due to clipping of the color scale at large values of g(2)

		; see also Eq. (32). Such a clipping was necessary to
guarantee readability of all features of the figure.

In analogy with the analytical results discussed in Sec. IV
for the homogeneous case, two characteristic features can
be identified in these plots: (I) a positive correlation along
the k1 ≈ k2 diagonal, due to the normal average of particle-
particle correlations g(2)

		,N(k1, k2), and (II) a positive correla-
tion along the k1 ≈ −k2 antidiagonal, due to the anomalous
average of particle-particle correlations g(2)

		,A(k1, k2). In con-
trast to the homogeneous, infinite case, both these features are
here broadened by the finite size of the system. In particular,
the k dependence of the linewidth provides detailed informa-
tion on the microscopic physics of the fluid.

1. Normal averages

The positive correlation signal along the k1  k2 diagonal
in Figs. 4(a)–4(c) can be interpreted as a HB-T phenomenon.
It indeed corresponds to the bunching of bosons with chaotic
(thermal) statistics and is characterized by a remarkably uni-
form value of the peak amplitude g(2)(k1, k2 = k1) = 2 for all
values of k. This value is in quantitative agreement with the
usual HB-T picture, but, as recently pointed out in Ref. [21],
the underlying physics is more subtle than the usual HB-T of
noninteracting bosons.

The bunching phenomenon results in fact from two dis-
tinct contributions, that of the thermally excited Bogoliubov
modes (at T �= 0) and that of the quantum depletion in the
Bogoliubov ground state. The chaotic character of the statis-
tics associated with those two contributions has a different
physical origin. On the one hand, the Bogoliubov excitation
modes are noninteracting bosons whose population has a ther-
mal distribution and their statistics is therefore the well-known
chaotic (thermal) statistics of ideal bosons. On the other hand,
for the quantum depletion, the chaotic character results from
the destruction of its quantum coherence when the correla-
tions are probed locally, k1  k2, in the momentum space.
Indeed, while the quantum depletion is formed by pairs of
particles at opposite momenta, the local two-body correlations
probe the statistics of particles belonging to two different
pairs, discarding the second partner of each particles in a pair.

Even richer is the dependence of the linewidth σk of this
HB-T peak on the system temperature T and on the specific

position in k at which the linewidth is measured. Extending
the usual HB-T argument to our more complex configuration,
we can anticipate that the width of the bunching peak is in-
versely proportional to the spatial size of the components that
provide the strongest contribution at position k at temperature
T . With this general trend in mind, we now turn to the detailed
discussion of the numerical results shown in Figs. 5. More
specifically, we plot there the root-mean-square width σk of
the HB-T peak. For any values k and T , σk is extracted from
the analysis of cuts along the line k1 + k2 = 2k in the two-
dimensional plots of g(2)(k1, k2) at temperature T , like those
in Figs. 4(a)–4(c).

a. Temperature dependence. At zero or low temperatures,
the width σk is dominated by the contribution from the quan-
tum depletion of the condensate. For the relatively large value
μ/h̄ωx = 11.2 considered in the figures, the quantum deple-
tion spreads over many Bogoliubov modes of the trapped
system. The spatial size of the quantum depletion is deter-
mined by the Bogoliubov functions vn(x) in Eq. (21), which
are nonzero only in the region of the condensate. As a conse-
quence, the width σk tends to a finite value in the T → 0 limit,
inversely proportional to the condensate size Lbec (defined as
the Thomas-Fermi radius). For the parameters of Fig. 5(a),
this corresponds to the value σk
0 ≈ 0.13. Quite remarkably,
this corresponds to a value of σkLbec ≈ 0.9 which hints at a
1/Lbec dependence. This feature will be further investigated
in Fig. 6.

On the other hand, at high temperatures the thermal
component described by the Bogoliubov functions un(x) in
Eq. (21) dominates. The spatial size of these functions in-
creases with the mode index n and ends up extending well
beyond the condensate size. This provides the decrease of the
width σk with the temperature T that is visible in Fig. 5(a).
More quantitatively, the overall rms size of the thermal cloud
of a harmonically trapped noninteracting nondegenerate gas
follows a

σx =
√

kBT

mω2
x

= 
0

√
2kBT

h̄ωx
(37)
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FIG. 5. Numerical results of the normalized two-body corre-
lation function g(2)

		(k1, k2) in momentum space. Panel (a) shows
how the rms of the cuts g(2)

		,N(k + δk, k − δk) through the diago-
nal feature varies with the temperature, for the values of k
0/π =
0.25, 1, 2, 3, 4. At the higher temperatures (and for sufficiently
high momentum values so that the Bose-Einstein statistics can be
approximated by the Boltzmann one) the curves asymptotically fol-
low the typical 
0

√
2kBT/h̄ωx dependence of the nondegenerate,

harmonically trapped gas (gray-dashed line). Panel (b) shows how
the rms of the cuts g(2)

		,N(k + δk, k − δk) varies with the wave vector
k, for the values of the temperature KBT/μ = 0, 0.5, 1, 1.5, 2, 2.5.
The inset shows the scaling with the temperature of the value of the
plateau (red markers), compared with the analytical result in Eq. (40)
relative to the noninteracting, classical gas.

dependence. Taking into account the explicit form of the
one-body density matrix of the harmonically trapped, nonde-
generate gas [28]

ρ (1)(x1, x2) = exp

[
− mω2

x

8kBT
(x1 + x2)2

]

× exp

[
−mkBT

2h̄2 (x1 − x2)2

]
, (38)

where we have assumed that kBT � h̄ωx, and transforming
this expression to momentum space

ρ (1)(k1, k2) = exp

[
− h̄2

8mkBT
(k1 + k2)2

]

× exp

[
− kBT

2mω2
x

(k1 − k2)2

]
,

(39)

FIG. 6. Scaling of the rms of the cuts g(2)
		,N(k + δk, k − δk)

through the diagonal (black) and g(2)
		,A(−k + δk, k + δk) through

the antidiagonal (blue) features with the size Lbec of the condensate
at T = 0. In panels (a) and (b), we respectively show the exponent
b and the prefactor a of the fit of the numerical data with the power
law a/Lb

bec.

we obtain the explicit expression

σk =
√

mω2
x

8kBT
= 1√

8 σx

(40)

for the momentum space linewidth [29], which confirms
the inverse proportionality on the spatial size of the system
expected from the HB-T picture. This curve is displayed
here as a dashed line and is found to accurately capture the
numerical results for sufficiently high temperatures. The cor-
rections that are visible on the small-k curves are due to the
quantum degeneracy of the thermal occupation of the lowest
modes.

The two low- and high-temperature regimes are separated
by a sharp transition. The position of the transition is deter-
mined by the value of the temperature for which the thermal
population of the Bogoliubov excitation mode starts dominat-
ing over the quantum depletion. As expected, the transition
point moves toward higher values of T for growing k since
the energy of the Bogoliubov eigenmodes giving the dominant
contribution increases with k.

b. Wave-vector dependence. In Fig. 5(b), we plot the width
σk as a function of the momentum k where it is evaluated
for different temperatures. Our interpretation associating the
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FIG. 7. Numerical results of the normalized two-body corre-
lation function g(2)

		(k1, k2) in momentum space. Panels (a) and
(b) show the rms of the cuts g(2)

		,N(−k + δk, k + δk) through the
antidiagonal feature for the same values of the parameters as in
Fig. 5.

HB-T width to the spatial size of the corresponding k com-
ponent is confirmed. At zero temperature T = 0 (black), σk

slightly increases with the momentum k, which can be in-
terpreted in terms of the stronger localization of the vn(x)
functions of the high-n Bogoliubov modes contributing to the
quantum depletion, as shown in Fig. 1(c).

At nonzero temperatures, the curves exhibit a nonmono-
tonic and richer behavior with k. At large k, all the curves
at different temperatures collapse on the T = 0 result for
σk . This happens because the high-k components are not
thermally populated as their energy is larger than the tem-
perature, and the only contribution is that from the quantum
depletion.

As k decreases, one observes a sharp decrease of σk fol-
lowed by a plateau. This sharp jump corresponds to the sharp
transition between the low- and high-temperature regimes
identified above in the T -dependent analysis. Indeed, for mo-
menta k whose Bogoliubov energy is sufficiently small for the
thermal population to dominate over the quantum depletion,
the dominant contribution comes from the un(x) functions
which extend beyond the condensate and provide a wide ther-
mal cloud of (almost) noninteracting particles as discussed
above. This interpretation is confirmed by the close to 1/

√
T

scaling of the value of σk on the plateau displayed in the inset
of Fig. 5(b).

For even smaller values of k, the plateau ends and σk

displays a slight increase for decreasing k. This feature can

be connected to the phononic character of such modes as well
as to the corrections to the σk ∝ 1/

√
T dependence due to the

quantum degeneracy of the low-lying noncondensed modes,
as already noticed in Fig. 5(a).

c. System-size dependence. To further reinforce our con-
clusions that the HB-T width σk is inversely proportional to
the spatial size of the corresponding k component, we now
explicitly study the dependence of the width σk with the con-
densate size Lbec. In the high-T case, analytical insight on the
inverse proportionality on the size of the thermal cloud was
provided in Eq. (40). Here, we focus on the bunching of the
quantum depletion in the interacting T = 0 case, where the
condensate size Lbec is controlled by varying the strength of
interactions, that is, the chemical potential.

For different values of the cut position k, we fit the de-
pendence of σk on Lbec with a power law of the form a/Lb

bec,
with the results plotted in Fig. 6 (black line). Except for a
relatively small deviation for small values of k, the result in
Fig. 6(b) confirms the expected L−1

bec dependence for values of
k
0 � 5π . Comparison with Fig. 5(b) shows that this value is
comparable to that at which the width σk reaches the asymp-
totic value discussed in the previous section.

2. Anomalous averages

Figure 7 shows an analogous analysis for the positive cor-
relation bump located on the antidiagonal k1 + k2 = 0. This
feature is associated with the anomalous averages and only ap-
pears in interacting gases. According to Eq. (22), this feature
is determined by the products of un(x) and vn(x) Bogoliubov
amplitudes and the overall spatial size is determined by the
latter. As we have seen in Fig. 1(c), the vn(x) roughly follow
the condensate shape for all Bogoliubov modes, so we do not
expect a marked temperature dependence for the width σk .
This physical picture is confirmed by the numerical results
shown in Fig. 7(a) for different positions k of the cut, which
clearly display a much weaker T dependence as compared to
the corresponding curves in Fig. 5(a).

The same physics is also visible in the k-dependent curves
shown in Fig. 7(b), which feature an analogously weak de-
pendence for all considered temperatures. In contrast to the
complex behaviours observed for the diagonal feature studied
in Fig. 5(b), the k dependence is here a monotonically growing
one and can be again interpreted in terms of the weaker local-
ization of the vn(x) functions for the lower modes displayed
in Fig. 1.

An explicit illustration of the condensate-size dependence
at T = 0 is provided by the blue curves in Fig. 6. Also in this
case, for sufficiently large values of k, the scaling in Fig. 6(b)
points to an inverse proportionality of the momentum-space
linewidth on the condensate size, σk ∝ 1/Lbec. The smaller
value of the prefactor a visible in Fig. 6(a) can be interpreted
in terms of the dependence of the antidiagonal features on
vn(x), rather than the vn(x)2 dependence that characterizes the
diagonal one.

VI. CONCLUSION

In this work, we have taken inspiration from the recent
experiment in Ref. [21] to carry out a detailed study of
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the consequences of the spatial inhomogeneity of a har-
monically trapped Bose-Einstein condensate on the two-body
correlation functions in both position and momentum spaces
at low temperatures. To reduce the technical challenge and be
able to unravel the basic physics of the system, we have made
use of the Bogoliubov description of the weakly interacting
gas and we have restricted our attention to the computationally
easier one-dimensional geometry. We are, of course, aware
that the severe assumptions made in our work prevent us
from quantitatively capturing all features of the experiment.
Nonetheless, our calculations for an idealized model pro-
vide a crucial step in view of unraveling the subtle interplay
of the finite spatial size with interaction and temperature
effects.

As a first step, we have unveiled intriguing features in the
spatial structure of the Bogoliubov excitation modes, which
result from a subtle interplay of the inhomogeneous density
profile and the collective versus single-particle character of
the mode in the different spatial regions. This understanding
of the excitation modes provides a crucial tool to investigate
the two-body correlations in both the position and the momen-
tum spaces.

In the position space, we find markedly different behaviors
in the center of the trap and in the outer region: In the central
region, the zero-temperature antibunching due to interactions
in the condensate is slowly replaced by bunching of thermal
atoms as temperature grows. The outer regions are instead
dominated by thermal atoms that show thermal bunching at
any finite temperatures.

In the momentum space, two main features are clearly vis-
ible in the correlation pattern. On the main diagonal, namely
for k1 ≈ k2, a marked Hanbury-Brown and Twiss bunching
signal is visible with the normalized correlation function
going up to the usual value g(2) = 2 of chaotic fields, as ex-
perimentally observed in Ref. [21]. Depending on the specific
values of the momentum and the temperature under consid-
eration, the origin of this chaotic character is very different,
however. For thermally occupied modes, it is related to the
Bogoliubov description of the thermal cloud in terms of non-
interacting quasiparticles. For modes that are only populated
by the quantum depletion, the thermal character originates
from tracing out the opposite momentum states with which
each state is quantum correlated. This physical difference
results in a different scaling of the linewidth of the HB-T
bunching feature in different regions of k space at a given
temperature: For low-k, thermally occupied modes, this is
determined by the inverse spatial size of the thermal cloud;
for the high-k modes occupied by the quantum depletion only,
the linewidth is determined by the inverse condensate size.

Another bunching feature appears on the antidiagonal for
k1 ≈ −k2. This feature is due to the anomalous average of the
atomic field operator, that is, the quantum correlation between
pairs of opposite momentum atoms forming the quantum de-
pletion. In contrast to the diagonal feature, the antidiagonal
one gets monotonically weaker for increasing temperatures
without changing its qualitative shape. In all regimes, its
linewidth is in fact fixed by the size of the condensate and
displays a weak temperature dependence.

Our natural next steps will consist in looking for the k1 ≈
−k2 features and exploiting the k dependence to get deeper

FIG. 8. Scaling of the rms of the cuts (a) g(2)
		,N (k + δk, k − δk)

and (b) g(2)
		,A(−k + δk, k + δk) with the size of the condensate, for

the value of the temperature T = 0. The numerical data (symbols)
are compared to the fitted curves (continuous lines), for the values
of the wave vectors k
0/π = 0.25, 1, 10 (respectively in black dots,
red triangles, and blue squares).

insight on the structure of the atomic gas in upgraded exper-
iments along the lines of Ref. [21]. Future theoretical work
includes the investigation of correlations in regimes of higher
temperatures and/or stronger interactions where excitations
can no longer be considered as noninteracting quasiparticles
and non-Gaussian corrections to the Bogoliubov theory must
be included. All these studies will eventually contribute to
establishing Hanbury-Brown and Twiss techniques as a pow-
erful experimental window on the microscopic physics of
strongly correlated quantum gases.
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APPENDIX: FITS FOR THE SCALING OF THE WIDTH OF
THE CORRELATION LINES WITH

THE SIZE OF THE SYSTEM

In Fig. 8, we show an example of the fits that led to the
results reported in Figs. 6(a) and 6(b) in the main paper,

respectively, for the scaling of the rms of the diagonal and
antidiagonal correlation lines in momentum space, with the
size Lbec of the system. The discrete points are the numerical
data, while the continuous lines are the curves fitting the data
according to the power law a/Lb

bec.
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