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Theoretical investigation of the Freeman resonance in the dissociative ionization of H+
2
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The dissociative ionization of H+
2 in linearly polarized, 400 nm laser pulses is simulated by solving a three-

particle time-dependent Schrödinger equation in full dimensionality. The joint energy spectra (JES) are computed
for cos8 and flat-top envelopes using the time-dependent surface flux (tSurff) methods. In JES, the energy sharing
of N photons with frequency ω by nuclear kinetic energy release (KER) EN and electronic KER Ee is well
described by EN + Ee = Nω − Up + E0 for the cos8 envelope, but satisfy EN + Ee = Nω + E0 for the flat-top
envelope, exposing a deviation of the ponderomotive energy Up, where E0 is the ground energy of H+

2 and this
observation has been observed in experiments. The analysis of the wave function for electrons and protons after
the pulse are presented, where we find Up is absorbed by the Freeman resonances between two excited ungerade
states of H+

2 .

DOI: 10.1103/PhysRevA.103.013113

I. INTRODUCTION

Being a typical candidate for the investigation of the three-
body Coulomb interaction problem in attosecond physics, H+

2
has been investigated a lot both on experimental and theoreti-
cal sides [1–14]. The JES of the KER for one electron Ee and
two protons EN of the H+

2 ion are predominant observables
that show how energy is distributed around the fragments.

As required by quantum mechanics and law of en-
ergy conservation, the equation EN + Ee = Nω + E0 − Up for
multiphoton ionization is preferred in JES, which means that
the total energy of the three particles is N photons ω sub-
tracted by the ponderomotive energy of the electron Up. Wu
et al. [13] reported the energy sharing of fragments of H2

in the JES in experiments using 400 nm linearly polarized
and long pulses. Their observations are also helpful for the
investigation of H+

2 , because in experiments, H+
2 are created

from H2. In their experiments EN + Ee lines do not move
considerably for intensities 5.9 × 1013 and 4.3 × 1013 W/cm2,
which means the contribution of intensity dependent Up is
missing, because of Freeman resonances [15]. However, rel-
ative theoretical studies on a 400 nm computation have not
been reported yet.

The difficulties for theoretical studies mainly comes from
the computational cost that grows exponentially with the
wavelength and intensities. The scaling problem can be re-
lived by using the time-dependent surface flux method (tSurff)
[16], which has been applied to another three-body system He
in full dimensionality [17,18], and also has been successfully
applied to two-dimensional (2D) models [9,10]. The dissocia-
tive ionization of the H+

2 has also been simulated in reduced
dimensionality by other groups [11,19–25], where the nuclear
KER is most probable around 0.5 atomic units, far from
experimental observations. Our previous paper [26] reported
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the dissociative ionization of H+
2 ion in full dimensionality

and gives the nuclear KER (2–4 eV) close to experimental
observables [12–14].

In this paper we will investigate the Freeman resonance of
dissociative of H+

2 by quantum simulations in full dimension-
ality based on the tRecX code.

II. COMPUTATIONAL DETAILS

In this paper, atomic units h̄ = e2 = me = 4πε0 ≡ 1 are
used if not specified. Spherical coordinates with center of the
mass of two protons as the origin are applied. Instead of using
the vector between two protons �R as a coordinate [9,10,22],
we specify the coordinates of the protons and electrons as
�r1, − �r1, and �r2. We denote M = 1836 atomic units as the
mass of the proton.

A. Hamiltonian

The wave function is depicted by ψ ( �r1, �r2, t ) that satisfies
i∂tψ ( �r1, �r2, t ) = Hψ ( �r1, �r2, t ). The total Hamiltonian can be
represented by the sum of the electron-proton interaction HEP

and two tensor products, written as

H = H (+) ⊗ 1 + 1 ⊗ H (−) + HEP, (1)

where the tensor products are formed by the identity operator
1 multiplied by the Hamiltonian for two protons (H (+)) or for
the electron (H (−)). With the coordinate transformation used
in Ref. [27], the single operator for the electron is

H (−) = − �

2m
− iβ �A(t ) · ��, (2)

and the Hamiltonian for protons can be written as

H (+) = − �

4M
+ 1

2r
, (3)
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FIG. 1. The regions of dissociative ionization time propagation.
The B stands for bound region, D for dissociation region where the
two protons are out of R(+)

c but the electron is not ionized and stays
inside. I represents the ionization region where the electron is out-
of-box R(−)

c but the two protons are still inside R(+)
c . DI stands for the

dissociative ionization region where both the electron and the protons
are out of R(+/−)

c . R(+/−)
c are the tSurff radii for r1 = |�r1| or r2 = |�r2|.

where we introduce reduced mass m = 2M
2M+1 ≈ 1 and β =

1+M
M ≈ 1 for the electron. The Hamiltonian of the electron-

proton interaction can be written as

HEP = − 1

| �r1 + �r2| − 1

| �r1 − �r2| . (4)

B. Computational methods

The tSurff method is applied for computing the JES and is
detailed in our previous works [17,26]. A simplified version
with important points is presented here for completion.

Following the essence of the tSurff method, we neglect the
interactions of protons and electrons beyond a sufficient large
tSurff radius R(+/−)

c , with the corresponding Hamiltonians be-
ing H (+)

V = − �
4M for two protons and H (−)

V = − �
2m − iβ �A(t ) ·

�� for the electron. The scattered states of the two protons and
the electron are Volkov solutions, which satisfy i∂tχ�k1

(�r1) =
H (+)

V χ�k1
(�r1) and i∂tχ�k2

(�r2) = H (−)
V χ�k2

(�r2), respectively, where
�k1/2 denote the momenta of the protons or the electron.

Based on the tSurff radius R(+/−)
c , we may split the disso-

ciative ionization into four regions, namely B, I , D, DI , shown
in Fig. 1, where bound region B preserves the full Hamiltonian
in Eq. (1), D, I are time propagations by single particles with
the Hamiltonians being

HD(�r2, t ) = H (−)
V (�r2, t ) = − �

2m
− iβ �A(t ) · �� (5)

and

HI (�r1, t ) = − �

4M
+ 1

2r1
, (6)

and DI is an integration process. The treatment was first
introduced in the double ionization of helium in Ref. [28] and
then applied in a 2D simulation of the H+

2 ion in Ref. [9].
We assume that for a sufficiently long propagation time T ,

the scattering ansatz of the electron and protons disentangle.
By introducing the step function


1/2(Rc) =
{

0, r1/2 < R(+/−)
c ,

1, r1/2 � R(+/−)
c ,

(7)

the unbound spectra can be written as

P(�k1, �k2) = |b(�k1, �k2, T )|2, (8)

where the scattering amplitudes b(�k1, �k2, T ) are

b(�k1, �k2, T ) = 〈
χ�k1

⊗ χ�k2

∣∣
1(Rc)
2(Rc)|ψ (�r1, �r2, t )〉

=
∫ T

−∞
[F (�k1, �k2, t ) + F̄ (�k1, �k2, t )]dt, (9)

with two sources being

F (�k1, �k2, t ) = 〈
χ�k2

(�r2, t )
∣∣[H (−)

V (�r2, t ),
2(Rc)]
∣∣ϕ�k1

(�r2, t )
〉
(10)

and

F̄ (�k1, �k2, t ) = 〈
χ�k1

(�r1, t )
∣∣[H (+)

V (�r1, t ),
1(Rc)]
∣∣ϕ�k2

(�r1, t )
〉
.

(11)

The single particle wave functions ϕ�k1
(�r2, t ) and ϕ�k2

(�r1, t )
satisfy

i
d

dt
ϕ�k1

(�r2, t ) = HD(�r2, t )ϕ�k1
(�r2, t ) − C�k1

(�r2, t ) (12)

and

i
d

dt
ϕ�k2

(�r1, t ) = HI (�r1, t )ϕ�k2
(�r1, t ) − C�k2

(�r1, t ). (13)

The sources are the overlaps of the two-electron wave function
and the Volkov solutions shown by

C�k1
(�r2, t ) =

∫
d�r1χ�k1

(�r1, t )[H (+)
V (�r1, t ),
1(Rc)]ψ (�r1, �r2, t )

(14)

and

C�k2
(�r1, t )=

∫
d�r2χ�k2

(�r2, t )[H (−)
V (�r2, t ),
2(Rc)]ψ (�r1, �r2, t ),

(15)

with initial values being 0, where · · · means complex conju-
gate. The two tSurff radii could be set as equivalent R(+)

c =
R(−)

c , because all Coulomb interactions are neglected when
either the protons or electron is out of the tSurff radius. Ac-
cording to our previous researches, the spectrum computation
is independent of the Rc if all Coulomb terms are removed and
the wave function is propagated long enough after the pulse
[17,26,28]. Apart from the tSurff method, the infinite-range
exterior complex scaling (irECS) method is utilized as an
absorber [29].
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C. Laser pulses

The dipole field of a laser pulse with peak intensity I = E2
0

(atomic units, E0 is the peak electric field) and linear polariza-
tion in the z direction is defined as Ez(t ) = ∂t Az(t ) with vector
potential

Az(t ) = E0

ω
a(t ) sin(ωt + φCEP), (16)

where φCEP is the phase of the pulse. The pulses with wave-
length λ = 400 nm are applied with peak intensities 8.3 ×
1013 and 5.9 × 1013 W/cm2 as used in our previous works
[26]. Pulse duration of all the pulses are specified as full width
at half maximum (FWHM) TFWHM = 5 opt.cyc. with respect
to intensity. We choose a(t ) = [cos(t/TFWHM)]8, similar to the
Gaussian-like envelope to approximate the realistic pulses.
Apart from the cos8 envelope, a “flat-top” trapezoidal function
with a linear rise and descent over a single optical cycle is also
applied to simulate the long pulse. We use the flat-top enve-
lope pulse because it is suitable to investigate the Freeman
resonances.

III. NUMERICAL RESULTS

The discretization parameters used here are the same as
used in our previous work in Ref. [26]. The field free ground
energy value is E0 = −0.592 atomic units and the internu-
clear distance is 2.05 atomic units. With the kinetic energy of
protons excluded, the ground eigenenergy is −0.597 atomic
units, three digits exact to the ground energy from quantum
chemistry calculations in Ref. [30], where the internuclear
distance is fixed. The internuclear distance is 1.997 atomic
units, three digits exact to that from the precise computations
in Ref. [31].

A. Joint energy spectra

The JES of the two dissociative protons and the electron is
obtained by

σ (EN , Ee) =
∫

dφ1

∫
dφ2

∫
dθ1 sin θ1

∫
dθ2 sin θ2

× P(φ1, θ1,
√

4MEN , φ2, θ2,
√

2mEe), (17)

where EN , Ee are the KERs of two protons and an elec-
tron, respectively. The spectrum P(�k1, �k2, T ) is from Eq. (8).
σ (EN , Ee) is presented in Fig. 2. The blue tilt lines with

formula EN + Ee = Nω + E0 − Up with Up = A2
0

4m specify the
energy sharing of N photons for all computations. For the cos8

envelope computations in Figs. 2(a) and 2(c), the blue dashed
lines representing EN + Ee = Nω + E0 − Up fall in the peak
of the stripe in JES, representing the standard energy sharing
signatures. For the flat-top envelope in Figs. 2(b) and 2(d),
although each dashed line EN + Ee = Nω + E0 − Up labels a
certain tilt stripe in JES, it is not at the center of the stripes,
which, however, are well described by EN + Ee = Nω + E0.
This behavior was also observed in experiments with long
pulses [13] and was attributed to Freeman resonances. One
also observes that the JES yield with nuclear KER � 3 eV
are more considerable for flat-top computations, whereas the
peak of JES are mainly located with nuclear KER � 3 eV

FIG. 2. Log-scale JES log10 σ (EN , Ee) represented by total en-
ergy of two protons EN and that of an electron Ee. Linear polarized,
400 nm, with (a) cos8 envelope, I = 8.3 × 1013 W/cm2, (b) flat-
top envelope, I = 8.3 × 1013 W/cm2, (c) cos8 envelope, I = 5.9 ×
1013 W/cm2, and (d) flat-top envelope, I = 5.9 × 1013 W/cm2 with
FWHM = 5 opt.cyc. pulses are applied to the H+

2 ion. The blue
dashed lines represent the energy sharing between the protons and
electron with formula EN + Ee = Nω + E0 − Up and white ones rep-
resent EN + Ee = Nω + E0, where ω is the photon energy.

for cos8 computations. The Freeman resonance is expected
with a flat-top envelope laser pulse with constant intensity. We
will show that the “missing of Up” in JES is from Freeman
resonance and investigate the underlying mechanism in the
following section.

To verify the above observation with the experimental data
from references, a long (FWHM = 13 opt.cyc.), cos8 shape
laser pulse as used in Ref. [13] is applied for the calculation,
where the JES is shown in Fig. 3(a). Because Freeman reso-
nance could be expected with a long pulse [15]. In Fig. 3(a)
we also find the white lines representing EN + Ee = Nω + E0

FIG. 3. Log-scale JES log10 σ (EN , Ee) represented by total en-
ergy of two protons EN and that of an electron Ee. Linear polarized,
390 nm at I = 5.9 × 1013 W/cm2, with (a) cos8 envelope, with
FWHM = 13 opt.cyc. as used in Ref. [13], and (b) flat-top envelope
FWHM = 13 opt.cyc. laser pulses are applied to the H+

2 ion. The
blue dashed lines represent the energy sharing between the protons
and electron with formula EN + Ee = Nω + E0 − Up and white ones
represent EN + Ee = Nω + E0, where ω is the photon energy.
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are in the middle of the stripes in JES, whereas the blue lines
representing EN + Ee = Nω + E0 − Up are not, indicating a
missing of Up from Freeman resonance. Another laser pulse
with flat-top envelope is also applied for a comparison with
the cos8 envelope in Fig. 3(b), where the missing of Up is
also observed, consistent with the flat-top computation with
400 nm laser pulses above.

B. Wave function analysis

The resonance is usually accompanied by states mixing
which contributes to populations of excited states that survive
after the pulse. The probability distributions of the electron
and the protons are calculated by integrating the 6D wave
function on radial coordinates r1/2 ∈ [R0, R1] and the whole
angular coordinates as

pN (φ1, θ1, r1, R0, R1, T ) =
∫

dφ2

∫
sin θ2dθ2

×
∫ R1

R0

r2
2dr2|ψ ( �r1, �r2, t )|2

(18)

for the protons, and

pe(φ2, θ2, r2, R0, R1, T ) =
∫

dφ1

∫
sin θ1dθ1

×
∫ R1

R0

r2
1dr1|ψ ( �r1, �r2, t )|2

(19)

for the electron. We split the radial coordinates into the inner
region and the outer region r1,2 ∈ [R0, R1], and the yields of
both regions are normalized by diving the maximum proba-
bility of the region over the flat-top and cos8 envelopes. We
only focus on the wave packets after the time propagation
at t = T (T � 330 atomic units for flat-top and T � 770
atomic units for cos8 envelopes), because they are important
for investigating the resonance.

The wave function evolution of the electron and the protons
at the end of the pulse is illustrated in Fig. 4. Before analyzing
the figure, we would like to point out that the values of the
two regions are normalized in order to make the illustration
better. The absolute values in the outer region are insignificant
compared to those of the inner region; the absolute values of
the outer region of the third row are much smaller than those
of the first two rows. For the distribution of the electron after
the pulse in the left column of Fig. 4, the yields of the inner
region are similar for the flat-top and the cos8 envelopes; in
the outer region, the distributions are less symmetric for the
flat-top envelope, indicating a dominance for ungerade 2�+

u
states. For the distribution of protons after the pulse, we scan
the R0, R1 values and only find the existence of enhanced
yields at two radial values as depicted in the right column of
Fig. 4. There exist discrete peaks of yields for fat-top envelop
computation, with r1 = 3.25, 3.7 (R = 2r1 = 6.5, 7.4) for I =
8.3 × 1013 W/cm2, and r1 = 4.5, 4.8 (R = 2r1 = 9, 9.6) for
I = 5.9 × 1013 W/cm2 atomic units. These enhanced yields
could serve as evidences for states mixing and Freeman res-
onances. However, for the cos8 envelope computation, the

FIG. 4. The log-scale probability distribution of electron by
Eq. (19) (left column) and of protons by Eq. (18) (right column)
and with flat-top envelope at 8.3 × 1013 W/cm2 (first row), 5.9 ×
1013 W/cm2 (second row), and cos8 envelope at 8.3 × 1013 W/cm2

(third row). [R0, R1] are [0,3] and [3,7] atomic units for the inner
and outer regions of the first and third rows; [R0, R1] are [0,4] and
[4,7] atomic units for inner and outer regions of the second row. The
inner and outer regions are split by the white, dashed circle along
with the radial values, which are depicted in the electron figure in the
left column; values of each region are both normalized by dividing
the maximum number. The radial positions enhanced yields of the
protons in the outside region by Eq. (18) are illustrated by the dashed
red circles and ticks in the right column. The absolute value of the
outer shell is several orders smaller than the inner shell. The peaks
of yields of the protons near the white circle are neglected because
it comes from the normalization. The polarization direction is along
the horizontal axis and the direction electric field is labeled at each
subfigure with an arrow above E (t ).

yields are contiguous and no such enhanced yields are ob-
served.

Considering the radial position of the peaks of the en-
hanced yields, we find that the relative energy of the two
ungerade states at the enhanced radial coordinates above are
the ponderomotive energies, as is depicted by the two black
vectors in Fig. 5. Thus the enhanced yields in the analysis
of wave function is highly correlated with the energy transfer
between these two excited states, and Up is consumed during
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FIG. 5. The eigenstates of electrons of H+
2 with internuclear

distance R are calculated from the generalized Lambert W func-
tion [32]. The two vectors depict the energy transfer with the
help of ponderomotive energy Up. The energy transfer 4pσu(7.4) −
3pσu(6.5) = 0.0434 atomic units with Up(I = 8.3 × 1013 W/cm2) =
0.0455 atomic units and 4pσu(9.6) − 3pσu(9) = 0.0322 atomic units
with Up(I = 5.9 × 1013 W/cm2) = 0.0330 atomic units. The small
error may come from the neglect of EN , which is not included in this
figure.

this process. This contributes to the missing of Up in JES.
The internuclear distance of protons are changed during the
resonance and more intermediate, excited states of protons are
created. This also explains the higher yield in JES with nuclear
KER � 3 eV for the flat-top envelope than the cos8 envelope
in Fig. 2.

To sum up, from the analysis of the wave function after
the end of the pulse, we find a clear signature of Freeman

resonance in H+
2 when shot by the flat-top envelope laser

pulse, compared to the short, cos8 envelope laser pulse. The
energy transfer between the two corresponding excited states
contributes to the missing of Up in the JES.

IV. CONCLUSION AND DISCUSSION

We computed the JES for a 400 nm pulse with flat-
top envelope and cos8 envelope at 8.3 × 1013 and 5.9 ×
1013 W/cm2. In JES, the energy sharing of N photons with fre-
quency ω by nuclear KER EN and electronic KER Ee are well
represented by EN + Ee = Nω + E0 − Up for cos8 pulses, but
satisfy EN + Ee = Nω + E0 for the flat-top envelope. The
difference comes from the ungerade excited states with energy
difference Up. We propose that this is a universal effect for an
arbitrary intensity as the eigenenergies of H+

2 are contiguous
with the bound length R. At higher intensities there may also
exist other resonance states with energy difference Nω + Up,
which requires further investigation.
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