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Optical pumping schemes for nuclear spin polarization of 35Ar
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Quantum-state preparation has a wide range of applications ranging from quantum optics to quantum metrol-
ogy to fundamental physics precision measurements. In the context of nuclear β-decay correlation experiments
such as the ones using argon, one needs to prepare a source of highly polarized atoms. Creating such a
state-prepared sample amounts to generating a so-called stretched state, i.e., a state with the maximal projection
of the total angular momentum along the quantization axis. This is typically achieved through optical pumping.
Since this technique inherently depends on cycles of absorption followed by spontaneous emission, it may
lead to undesirable heating and population loss. It is therefore crucial to devise polarization methods with both
optimized efficiency and minimized drawbacks. We propose and compare various schemes, which we have been
investigating numerically in the case of argon-35 atoms. We show that polarization degrees as high as 99.99%
can be obtained within less than 140 μs.
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I. INTRODUCTION

The standard model (SM) involves about 30 free parame-
ters that need to be determined experimentally [1]. This means
that the SM can be overconstrained and in principle tested to
any desired accuracy. Indeed, the more precise the measure-
ments of these parameters, the more precise the theoretical
SM predictions, which, in turn, makes it possible to design
experiments that are increasingly sensitive to deviations from
SM predictions and thus to new physics beyond SM [2].
In terms of methods, laser cooling and trapping techniques
provide well-controlled environments, which explains why
several experiments have been and are being developed that
use a magneto-optical trap (MOT) to prepare their source for
precision tests [3–12].

Historically, the study of nuclear β decay has played a
crucial role in the development of the electroweak standard
model, and it continues to be a central field for precision
tests of the SM [12–15]. The unitarity tests of the Cabibbo-
Kobayashi-Maskawa (CKM) quark-mixing matrix are very
sensitive probes to test the electroweak standard model and
to search for signatures of new physics [15–17]. To date, the
best precision is obtained from the top-row normalization test,
i.e.,

|Vud |2 + |Vus|2 + |Vub|2 = 1, (1)

where the elements Vud , Vus, and Vub describe the mixing
between the up quark (u) and the down-type quarks (d, s, and
b). Since Vud depends on the lightest quarks, it is the element
that can be determined most precisely [18].

Traditionally, three sources have been used to deduce
Vud , namely, superallowed 0+ → 0+ pure Fermi transitions
[19,20], neutron decay [2,21], and pion β decay [22]. Naviliat-
Cuncic and Severijns [23] have shown that superallowed β

transitions within isospin T = 1/2 doublets (often termed
mirror transitions) could be used as an independent sensitive
source to determine Vud . Among these transitions, the mirror
β decay of 35Ar has been identified as a promising candidate
[1]. The extraction of Vud from mirror nuclei can make use
of a spin-polarized sample [24], and in this context state
preparation of 35Ar atoms is a crucial issue. In this paper, we
investigate this question in order to identify optimal polariza-
tion schemes for future use in precision measurements. Spin
polarization can be achieved through different methods such
as optical pumping [6–9,25–28], low-temperature orientation
[29], projectile fragmentation [30], and beam interaction with
a tilted foil [31]. When applicable, optical pumping can yield
a high degree of spin polarization and it is particularly well
adapted to implementation in a cold-atom setup, which is the
focus of the work here. However, optical pumping can be ap-
plied more broadly: for example, at the versatile ion-polarized
technique on-line (VITO) beam line at ISOLDE [28,32], a
similar optical pumping scheme was investigated for spin
polarizing an 35Ar atomic beam. Instead of being trapped then
polarized, atoms in this setup are polarized then implanted
into a crystal host. We hope that discussing the matter from
a cold-atom point of view will provide additional insights.

The paper is organized as follows. Section II reviews how
Vud is extracted from mirror transitions. Section III describes
the model we used for studying the atom-field interaction
and comparing the different polarization schemes in 35Ar.
Section IV presents the results of our numerical simulations
and discusses the advantages of each method.

II. Vud AND MIRROR TRANSITIONS

As is the case with superallowed 0+ → 0+ pure Fermi
decay, extracting Vud from a T = 1/2 mirror β transition
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requires precise knowledge of the corresponding f t value
[33]. In practice, a corrected Ft value is introduced in order
to take into account corrections due to undetected radiative
effects (such as the emission of a Bremsstrahlung photon) as
well as to isospin-symmetry breaking [19]. For mirror transi-
tions, the relation between Vud and Ft is given by [23]

Ftmirror

(
1 + fA

fV
ρ2

)
= K

G2
FV 2

ud (1 + �V
R )

. (2)

Here, K/(h̄c)6 = 2π3h̄ ln 2/(mec2)5 and amounts to [34]

8120.276237(12) × 10−10 GeV−4 s.

The constant GF is the Fermi constant derived from the muon
lifetime formula [2], �V

R is the transition-independent part of
the radiative correction, and fA and fV are the statistical rate
functions for the axial-vector (A) and vector (V ) parts of the
interaction.

As is made clear by Eq. (2), extracting Vud from a mirror
β transition requires not only the determination of the Ft
value but also that of the mixing ratio ρ. The value of ρ

needs to be deduced from the measurement of an observable
that is a function of ρ. As is the case with neutron decay
[35], three correlation coefficients can be considered, each
providing transition-dependent sensitivities [1], namely, the
β-ν angular correlation a, the β-asymmetry parameter Aβ , and
the ν-asymmetry parameter B.

All in all, two sources of uncertainties determine the preci-
sion that can be obtained for Vud from mirror transitions: the
uncertainty in the Ft value and the uncertainty in the mixing
ratio, which is itself determined by the precision reached
when measuring the correlation coefficient. The value of Vud

extracted from the available data in the mirror decays of 19Ne,
21Na, 29P, 35Ar, and 37K is [36]

|Vud | = 0.9743(14), (3)

where the uncertainty, which is about eight times larger than in
the case of superallowed pure Fermi transitions, is dominated
by the uncertainties in the mixing ratios.

Severijns and Naviliat-Cuncic [1] have pointed out that
measurement of Aβ in the mirror β decay of 35Ar would be
the most sensitive of all correlation parameter measurements
for mirror nuclei. Determining Aβ for 35Ar with a relative
precision of 0.5% while improving the Ft-value precision by
a factor of 4.8 would yield an absolute precision on Vud of
0.0004, i.e., only about twice as much as the uncertainty of
0.00021 obtained from the set of superallowed pure Fermi
transitions [1,2].

The β-particle angular distribution from the decay of a
nuclear spin-polarized ensemble is given in leading order by
[24]

W (θ ) ∼ 1 + Aβ

〈I〉
I

· pβ c

Eβ

= 1 + Aβ

〈Iz〉
I

v

c
cos θ, (4)

where pβ , Eβ , and v are the momentum, the energy, and the
velocity of the emitted β particle, 〈I〉/I is the expectation
value of the nuclear spin polarization vector of the parent
nucleus, and θ is the angle between the polarization z axis
and the recoils [37].

From Eq. (4), it is clear that a measurement of Aβ to a
given relative precision requires the nuclear polarization to be
known with at least equal precision. In the case of a high polar-
ization degree such as 〈Iz〉/I = 99%, measuring 1 − 〈Iz〉/I =
10−2 with a relative precision of 20% would be enough to
reach a relative precision of �(〈Iz〉/I )/(〈Iz〉/I ) = 0.2%.

To sum up, the procedure to extract Vud from a given mir-
ror β transition is: (i) The measurement of the β-asymmetry
parameter Aβ makes it possible to access the mixing ratio ρ.
(ii) Together with the calculations of the statistical function
fV , the ratio fA/ fV , and the various theoretical corrections
introduced so far, the determination of ρ is used to determine
the Ft value. (iii) The value of Vud is then extracted from
Eq. (2).

Such a procedure has been successfully implemented by
Fenker et al. [8,9] using the TRIUMF Neutral Atom Trap
(TRINAT). They performed a 0.3% measurement of the β-
asymmetry parameter Aβ in the mirror β decay of 37K,

Aβ = −0.5707(13)syst(13)stat(5)pol, (5)

which is the nuclear Aβ measurement with best relative ac-
curacy [9]. Their result relies on crucial developments, which
enabled them to determine the average nuclear polarization of
their sample with a precision smaller than 0.1%, thus ensur-
ing that the final uncertainty of Aβ is not dominated by the
polarization uncertainty. Fenker et al. [8] are confident that
the polarization uncertainty could be further reduced down to
∼0.04%. The TRINAT 37K experiment highlights the poten-
tial of both MOT setups and optical pumping for precision
measurements. As such it provides a benchmark for our own
work with 35Ar.

III. 35Ar CASE

A. Level scheme

The mirror β decay of 35Ar,

35
18Ar → 35

17Cl + e+ + νe, (6)

occurs with a branching ratio of 98.16(5)% [38] to the stable
ground state of the daughter nucleus 35

17Cl. This process has
a half-life of T1/2 = 1.7756(10)s [38], which is compatible
with both the preparation of the sample and the collection
of data. Argon has a ground-state electronic configuration
1s22s22p63s23p6 ≡ [Ne]3s23p6. As is the case with other no-
ble gases [39], the cooling and trapping of argon atoms is
achieved by selecting an optically accessible closed transition
whose effective ground state is a metastable excited state. Two
of the first four excited states in the [Ne]3s23p54s configura-
tion, namely the [1/2]0 and [3/2]2 fine-structure states [38],
are metastable, the former with a calculated lifetime of 44.9 s
[40] and the latter with a measured lifetime of 38+8

−5 s [41].
The next set of excited states are in the [Ne]3s23p54p config-
uration, and are all short lived. Out of the allowed transitions
between these two sets, the 4s[3/2]2 → 4p[5/2]3 transition at
an air wavelength of λ = 811.5 nm [42] is a closed one and
hence of interest. Both stable 40Ar and long-lived radioac-
tive 39Ar have been cooled and trapped using this transition
[41,43–45]. In the following, the ground state (denoted g)
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FIG. 1. Hyperfine structure of the 811.5 nm 4s[3/2]2 → 4p[5/2]3

transition of 35Ar. The hyperfine splittings were calculated using the
estimated values of the dipolar and quadrupolar hyperfine structure
constants of Ref. [46]. The isotopic shift between 35Ar and 40Ar is an
estimate from Ref. [46].

refers to the 4s[3/2]2 state, and the excited state (denoted e)
refers to the 4p[5/2]3 state.

Argon-35 has a nuclear spin I = 3/2 whose interaction
with the atomic electrons causes hyperfine splittings within
each fine-structure state. Both the 4s[3/2]2 and 4p[5/2]3
states split into four hyperfine-structure components–with F
going from 1/2 to 7/2 and from 3/2 to 9/2, respectively, as
illustrated in Fig. 1.

It must be noted that the lifetimes mentioned above for the
metastable states are those of the zero nuclear spin isotope
40Ar. In the presence of a nonzero nuclear spin, as is the
case with 35Ar, one must pay attention to hyperfine-induced
transitions (HIT), also referred to as hyperfine quenching
decay modes, which are known to alter the lifetimes of
metastable states [47–49]. The hyperfine interaction mixes a
small amount of the short-lived 4s[1/2]1 and 4s[3/2]1 states
into the metastable 4s[1/2]0 and 4s[3/2]2 states, thus opening
additional decay channels to the ground state. In xenon, hy-
perfine quenching lifetime reduction from ∼43 s to ∼5 s have
been measured [49]. In neon, similar orders of magnitude have
been predicted [48]. Similar theoretical investigations of ar-
gon would be a welcome addition to the literature. That being
said, one needs to keep in mind that the limiting timescale in
a magneto-optical trap using 35Ar will be the half-life of this
isotope, i.e., T1/2 ∼ 2 s [38].

In the presence of a magnetic field, each of the F hyper-
fine levels is further split up into 2F + 1 magnetic sublevels
(mF = −F, . . . , F ). All in all, the hyperfine structure of the
4s[3/2]2 → 4p[5/2]3 transition comprises N = 48 magnetic
sublevels. They are denoted hereafter by |g or e, F, mF 〉, and
the transition frequency between any two of these levels by
ν
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FIG. 2. Line strengths for the hyperfine-structure transitions in-
volved in the 4s[3/2]2 → 4p[5/2]3 transition of 35Ar, with respect to
the most intense transition, Fg = 7/2 → Fe = 9/2.

B. Polarization schemes

1. Optical polarization schemes

The atomic sample is fully polarized at the nuclear
level if it is pumped into any electronic Zeeman sublevel
|Fmax = J + I, mF = ±Fmax〉 [25]. We consider the case of
trapped atoms in the Fg = 7/2 manifold, and we choose
the maximally polarized ground-state |7/2, +7/2〉 sublevel as
our target state (we could have also chosen the |7/2, −7/2〉
state). To this aim, more than one optical pumping scheme
can be explored. We can either use one σ+-pump laser on
the Fg = 7/2 → Fe = 9/2 transition (one-laser scheme), or
use one σ+-pump laser on the Fg = 7/2 → Fe = 7/2 and
one σ+-repump laser on the Fg = 5/2 → Fe = 7/2 transition
(two-laser scheme).

An external homogeneous static magnetic field parallel to
the z axis of propagation of the pumping light is also con-
sidered. The addition of such a field may inhibit uncontrolled
Larmor precession [50]. In our case, the presence of a mag-
netic field is also helpful when highlighting and mitigating
the effect of coherent population trapping (CPT) [8,51,52].

(a) One-laser scheme. In this configuration, the target state
|7/2, 7/2〉 is a bright state. In other words, the laser keeps inter-
acting with the atoms even after they have reached the target
state. Such additional, unnecessary scattering processes might
lead to undesirable heating and disruption of the trapping
conditions.

(b) Two-laser scheme. In the two-laser configuration, the
target state |7/2, 7/2〉 is a dark state, as is the case, for example,
in the 37K experiment [9]. To understand why this configura-
tion has to involve two lasers, it is worth having a look at the
characteristics of the Jg = 2 → Je = 3 transition (see Fig. 2).
When an atom is excited to the Fe = 9/2 manifold, it has no
choice but to decay to the Fg = 7/2. By contrast, if an atom
is excited to the Fe = 7/2 manifold, it can decay either in the
Fg = 7/2 manifold or in the Fg = 5/2 manifold, with the latter
option being six times more likely. If the Fg = 7/2 → Fe =
7/2 transition was not excited by a so-called repump laser,

013105-3



F. LENAERS, R. D. GLOVER, AND T. BASTIN PHYSICAL REVIEW A 103, 013105 (2021)

the Fg = 7/2 manifold would end up being significantly de-
pleted. Moreover, as compared with other transitions, the line
strength of the Fg = 7/2 → Fe = 7/2 transition is relatively
weak.

When using a two-laser configuration, one should be mind-
ful of coherent population trapping (CPT). This phenomenon
can indeed affect the efficiency of optical pumping and lead
to false polarization signal [8,51,52]. CPT arises in 
-type
systems, when two coherent laser beams excite transitions
from two stable lower levels |g1〉 and |g2〉 to a common excited
state |e〉 [27]. When the frequency difference between the two
laser beams is equal to the frequency splitting between the two
lower states, atoms are trapped in a dark, i.e., nonabsorbing-
superposition state. In our two-laser scheme, the system of
interest, i.e., the set of transitions addressed by the laser
beams, is not a single three-level 
 system, but consists in
a series of five 
-type subsystems, which are interlinked
through decay pathways. Whenever the frequency difference
between the two lasers is equal to the frequency splitting
between two ground-state Zeeman sublevels |5/2, mF 〉 and
|7/2, mF 〉, some atoms are expected to be trapped in states
other than the target state, thus hindering the process of optical
pumping. We can identify six such frequency splittings, each
of which gives rise to a CPT resonance. The values of these
frequency splittings depend on Zeeman shifts, hence on the
amplitude of the magnetic field. If the frequencies νL

1 and νL
2

of the two lasers are chosen so that they are in resonance
with respect to the hyperfine splittings, i.e., νL

1 = ν
e,7/2
g,7/2 , and

νL
2 = ν

e,7/2
g,5/2 , then their frequency difference

δνL
12 ≡ νL

2 − νL
1 (7)

is equal to the hyperfine splitting between the lower hyperfine
manifolds Fg = 5/2 and Fg = 7/2:

δνL
12 = ν

g,7/2
g,5/2 = 1007 MHz.

This matches the CPT condition when the amplitude of the
magnetic field B is equal to zero—in that case, there is only
one resonance since there is no Zeeman shift. Furthermore,
for small nonzero values of B, δνL

12 is likely to be close to one
of the CPT resonances.

2. Nuclear polarization degree

We characterize the nuclear spin polarization by the quan-
tity

PI = 1

I

7/2∑
F=1/2

+F∑
mF =−F

〈Iz〉|F, mF 〉ρ(g,F, mF ),(g,F, mF ), (8)

where 〈Iz〉|F mF 〉 ≡ 〈F mF |Iz|F mF 〉 is the average nuclear spin
projection associated with a given |F mF 〉 Zeeman sub-
level. The operator Iz is diagonal in the uncoupled basis
{|J mJ〉 ⊗ |I mI〉} with J (I) the electronic (nuclear) total an-
gular momentum quantum number and mJ (mI ) the associated
magnetic quantum number [25]. It is therefore convenient to
rewrite the total-angular-momentum states |F mF 〉 as linear
combinations of the |J mJ〉 ⊗ |I mI〉 states using the transfor-

mation

|F mF 〉 =
∑

mI , mJ

〈J mJ I mI |F mF 〉|J mJ〉 ⊗ |I mI〉, (9)

where 〈J mJ I mI |F mF 〉 denote the Clebsch-Gordan coeffi-
cients. For the four ground-state manifolds, this yields

〈Iz〉|F, mF 〉 = aF mF , (10)

with a7/2 = 3/7, a5/2 = 13/35, a3/2 = 1/5, and a1/2 = 1. PI is
normalized so that its values range between −1 and +1; if
the atoms are all in the stretched state |7/2, +7/2〉 (|7/2, −7/2〉),
then PI is equal to +1 (−1), while PI is equal to zero when
the atomic ensemble is equidistributed in the sublevels of the
manifold.

In an experimental setup, PI is not extracted from one
optical pumping sequence. For example, in the TRINAT 37K
experiment [9], each duty cycle consists of a series of 100
subcycles, each of which consists in first polarizing the atoms
then recollecting them with the magneto-optical trap. This
duty cycle is itself repeated with the polarization of the optical
pumping light being flipped. The system that we are mod-
eling assumes that the trapped atoms are in the ground-state
Fg = 7/2 manifold. It is therefore crucial to make sure that
the amount of atoms, which are no longer in this manifold
at the end of the optical pumping sequence, is kept as low
as possible. To monitor this issue, we define the residual
population, i.e., the population that is not in the ground-state
Fg = 7/2 manifold, for both the one- (1L), and the two-laser
(2L) schemes,

ρ1L
res = 1 −

9/2∑
mF =−9/2

ρ(e, 9
2 ,mF ),(e, 9

2 ,mF )

−
7/2∑

mF =−7/2

ρ(g, 7
2 , mF ),(g, 7

2 , mF ), (11)

ρ2L
res = 1 −

7/2∑
mF =−7/2

ρ(g, 7
2 , mF ),(g, 7

2 , mF ). (12)

In the case of the one-laser scheme, the populations in the
excited-state Fe = 9/2 manifold is taken out of the residual
population, since atoms in that manifold can only decay in
the ground-state Fg = 7/2 manifold: they will therefore be
available for the retrapping sequence. Following a similar
argument, when we calculate PI for the one-laser scheme, we
add the population of the excited-state |9/2, 9/2〉 sublevel to
the population of the ground-state |7/2, 7/2〉 sublevel. Indeed,
in this scheme, the target state is not dark: once atoms have
reached the target state, they keep being excited to the excited-
state |9/2, 9/2〉 sublevel, and they will have no choice but to
decay back into the target state once the pumping laser is
turned off. This of course implies that the optical pumping
light should be turned off when the polarization is measured in
the one-laser scheme, which is not necessary in the two-laser
scheme.

3. Nuclear alignment

Since 35Ar atoms have a nuclear spin greater than 1/2,
they have additional degrees of freedom, which are associated
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with the second moment of the nuclear spin [8]. As far as the
angular distribution (4) is concerned, this means that a cos2 θ

term proportional to the nuclear alignment will appear [37].
For the sake of completeness, we therefore also keep track of
the nuclear alignment of our sample.

We characterize the nuclear alignment by the quantity [53]

TI = 1

I (2I − 1)

7/2∑
F=1/2

+F∑
mF =−F

α2(F, mF )ρ(g,F, mF ),(g,F, mF ),

(13)

with

α2(F, mF ) = 3
〈
I2
z

〉
|F,mF 〉 − I (I + 1). (14)

TI is normalized in such a way that TI = +1 (−1) corresponds
to maximum prolate (oblate) alignment, i.e., all spins parallel
(perpendicular) to the quantization z axis [53].

C. Atom-field interaction

To study the interaction of the atoms with the laser fields,
we adopt the semiclassical approach, in which the atoms are
treated quantum mechanically while the fields are treated clas-
sically. The time evolution of the atomic density operator ρ̂ is
given by the Liouville-von Neumann equation [25,54],

˙̂ρ = 1

ih̄
[Ĥ, ρ̂] − 1

2
{̂, ρ̂} + Tr[F̂ ρ̂], (15)

where Ĥ is the total Hamiltonian describing the composite
system, i.e.,

Ĥ = ĤA + ĤB + ĤL, (16)

with ĤA the atomic Hamiltonian, ĤB the magnetic-field-atom-
interaction Hamiltonian, and ĤL the light-atom-interaction
Hamiltonian, the curly brackets denote the anticommutator
{Â, B̂} = ÂB̂ + B̂Â, ̂ is the relaxation operator, F̂ is the
spontaneous emission operator, and the trace is taken over
the excited-state pairs [54]. The last two terms in Eq. (15) are
phenomenological terms added by hand to account for relax-
ation and repopulation mechanisms due to the interaction of
the atomic system with its environment. In the following, the
notation used to designate the elements of the atomic density
matrix ρ will be adapted to the required level of specificity.
A generic density matrix element will be referred to as ρmn,
where m and n are shorthand notations for any two sublevels
of the atomic system.

In our model, we only consider intrinsic relaxation of ex-
cited states due to spontaneous emission, but the relaxation
operator ̂ may be further developed to include terms due to
collisions and transit relaxation [25,54]. The matrix associated
with the relaxation operator is a Hermitian diagonal matrix
whose diagonal elements are the spontaneous decay rates of
the states (zero for ground-state sublevels and  ≡ 1/τ , where
τ is the lifetime of the transition, for excited-state sublevels).
Let {g} ({e}) denotes the subset of ground-state (excited-state)
sublevels. Calculating the anticommutator in Eq. (15) for a

given density matrix element ρmn, one obtains

{̂, ρ̂}mn =

⎧⎪⎨
⎪⎩

2ρmn, if m, n ∈ {e}
0, if m, n ∈ {g}
ρmn, if m ∈ {e}, n ∈ {g}

or vice versa.

(17)

Intrinsic relaxation of excited-state sublevels and repopu-
lation of ground-state sublevels go hand in hand. The latter
process is described by the spontaneous-emission operator F̂ .
The rate of change of a given ground-state density matrix
element ρmn due to this process is given by [25]

ρ̇ (repop)
mn =

∑
r,s

ω3
0

3πε0h̄c3
dmr · dsn ρrs

≡
∑
r,s

F sr
mn ρrs = Tr(F̂mnρ̂e), (18)

where F rs
mn connects a pair of excited states r and s to a pair of

ground states m and n, ρ̂e is the excited-state density operator,
and the trace is taken over the pairs of excited states. The
matrix representing the spontaneous-emission operator F̂ is
a matrix of matrices [25]: each element of the outer matrix
is itself a matrix. The outer matrix is expressed in the basis
of the ground states referred to by the lower indices of F rs

mn,
while each inner matrix is expressed in the basis of the upper
states corresponding to the upper indices.

Applying Eq. (15) to the density operator describing our
system (see Fig. 1) yields a set of 2034 coupled differen-
tial equations, the so-called optical Bloch equations. Since
ρ is Hermitian and of unit trace, the number of independent
equations is reduced to 1175. The optical Bloch equations are
solved within the rotating-wave approximation.

With circularly polarized light, the density matrix elements
decouple into subgroups, which can lead to significant simpli-
fication of the optical Bloch equations. In our calculations,
the off-diagonal elements (i.e., the coherences) are initially
taken to be equal to zero. Only some of the diagonal elements
(i.e., the populations) have an initial nonzero value – we
start with an initial equidistribution of the populations in the
Fg = 7/2 manifold. In other words, if off-diagonal elements
are decoupled from the diagonal elements, they can simply be
left out of the calculations. For σ+ light, the density matrix
elements decouple into 15 subgroups, as illustrated in Fig. 3.
One of them contains the populations as well as two types
of coherences: the optical coherences for which �mF = +1
and the hyperfine coherences for which �mF = 0. We are
therefore left with 290 equations, and we keep them all, thus
taking into account the eight hyperfine levels of the 4s[3/2]2 →
4p[5/2]3 transition (see Fig. 1) and making our model sensitive
to population losses to levels not addressed by the laser beams.

IV. RESULTS

We investigate the effect of both the magnetic field ampli-
tude B and the saturation parameter s (i.e., the laser intensity)
on the internal dynamics of the atomic ensemble. We explore
a range of values for B such that the Zeeman splittings re-
main much smaller than the other energy intervals. For the
sake of readability and for ease of comparison, the degree of
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FIG. 3. Grouping of the density matrix elements when the atomic
system interacts with σ+ light. The elements in blue belong to the
group, which is kept in our simulations. These elements are all
coupled to the populations, i.e., the only matrix elements that are
initially nonzero. The various shades of gray correspond to the 14
other groups of coupled elements.

polarization PI is presented as 1 − PI in the figures illustrating
our results.

Obviously, knowing that a given degree of polarization can
be achieved has not real interest if we do not monitor both the
interaction time needed to reach it and the resulting population
distribution among the different hyperfine manifolds. In the
following, we give the degree of polarization as well as the
residual population after an interaction time of 140 μs. First,
we numerically observed that, within such an interaction time,
both the one-laser and the two-laser schemes could achieve
high degrees of polarization for a variety of (B, s) parame-
ters, thus allowing for a comparison of the various schemes
against a common backdrop. Second, the order of magnitude
of this timescale agrees with that used in existing experimental
setups, e.g., in Ref. [8], where 37K atoms were measured to
have reached maximal polarization after an interaction time
of 100 μs. The fact that we are considering trapped atoms
is crucial there: while longer interaction times would enable
us to achieve higher degrees of polarization, they would also

make recapturing the atoms harder. In order to complement
this, we also provide the time evolution of the degree of po-
larization for two sets of (B, s) parameters, which enables one
to appreciate how the time efficiency of the various schemes
compare in different regimes.

As mentioned in Sec. II, the nuclear spin polarization
should at least be measured to a precision of 0.5% so as to
make sure that the uncertainty on the nuclear spin polarization
does not dominate the uncertainty on Aβ . We also noted that
reaching 1 − PI = 10−2 and measuring it to a relative pre-
cision of 20% would yield a relative uncertainty �PI/PI =
0.2%. Does this mean that we should be satisfied if the stud-
ied schemes manage to reach 1 − PI = 10−2? Not quite. Our
model focuses on an ideal, well-controlled situation: even
though it includes population losses due to nonresonant exci-
tations, it does not account for other mechanisms that can limit
the efficiency of optical pumping, such as imperfections in the
circular polarization of the pumping light and the presence of
a transverse magnetic field [8,9]. This prompts us to adopt a
conservative approach and set a goal threshold at 10−4.

A. One-laser scheme

In the one-laser simulations, the laser frequency is tuned
to ν

e,9/2
g,7/2 no matter the value of the magnetic field B. In other

words, it is not fine tuned so as to take into account Zeeman
shifts. In such a way, no transition starting from the sublevels
in the Fg = 7/2 manifold is favored, which is particularly
interesting at the beginning of the optical pumping sequence.

We show in Fig. 4 that, after an interaction time of 140 μs,
the fractional population remaining out of the target state
space is kept below 10−4; the precise value depends on the
chosen regime of parameters (B, s). Full polarization within
10−4 of the sample can therefore be achieved while keeping
population losses below 10−4. The amplitude of the static
magnetic field is not critical to achieving efficient optical
pumping. Instead, larger values of B lead to larger detunings,
which results in poorer efficiency in terms of pumping speed.
As can be expected, optical pumping is faster when the laser
intensity is increased. However, it is to be noted that we will-
ingly restricted our calculations to low intensities in order to
limit heating effects as much as possible. In addition, when the
saturation parameter is kept low, the fraction of atoms lost to
inferior ground-state hyperfine manifolds is slightly smaller.

FIG. 4. (One-laser scheme.) Final nuclear polarization degree PI and final residual population ρ1L
res after an interaction time of 140 μs.
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(a) (b)

FIG. 5. (Two-laser scheme.) CPT spectrum for B = 1.5 G, tint = 140 μs, and (a) s ≡ s1 = s2 = 0.1, (b) s = 1.

The same observation also holds for the amplitude of the static
magnetic field.

B. Two-laser scheme

As mentioned earlier, one needs to be careful with the
laser frequencies in the two-laser scheme. On the one hand,
the frequency difference between the two lasers has to be
safely detuned from any CPT resonances. On the other hand,
the relatively weak line strength of the Fg = 7/2 → Fe =
7/2 transition needs to be compensated by a well-considered
choice of the detuning of the pumper: the closer to the ad-
dressed transition, the better.

Ultimately, the target transition that the pumper needs to
address is the |7/2, +5/2〉 → |7/2, +7/2〉 transition, while the
ultimate target transition of the repumper is the |5/2, +5/2〉 →
|7/2, +7/2〉 transition. The question therefore arises whether
it is advantageous to favor these transitions from the very
beginning of the optical pumping sequence. Obviously, both
lasers should not be tuned to their ultimate respective target
transitions, since the frequency difference δνL

12 would then
be equal to the splitting between the ground-state Zeeman
sublevels |5/2, 5/2〉 and |7/2, 5/2〉, hence it would match a CPT
resonance condition, namely δνL

12 = ν
g, 7/2, 5/2
g, 5/2, 5/2 .

For example, when B = 1.5 G, ν
g, 7/2, mF

g, 5/2, mF
ranges from

1006.15 MHz to 1007.05 MHz for mF = −5/2 to 5/2. The
corresponding CPT resonance landscape is represented in
Fig. 5(a) for two values of the saturation parameter s. Starting
from the left, the resonances correspond, respectively, to

δνL
12 = ν

g, 7/2, mF

g, 5/2, mF
, with mF ranging from 5

2 to − 5
2 .

Therefore, if one of the two laser beams is not detuned from
resonance, we may expect–and we indeed observe optical
pumping to be suboptimal in this regime. To counterbalance
this effect and destroy the CPT condition, we introduce an
extra detuning δν. In the results presented here, this extra
detuning is applied to the repumper. We also considered a vari-
ation in which the extra detuning δν is spread on both lasers:

both are then detuned from the target transition by δν/2.
However, in that case, the advantage of shifting the value of
δνL

12 is outweighed by the drawback of reducing the efficiency
of optical pumping on the Fg = 7/2 → Fe = 7/2 transition.
Since this situation does not lead to any improvement of the
efficiency, we do not explicitly include the associated results
in the following. As for the value of δν, we tested a range
of them and noticed that an extra detuning of +1 MHz was
sufficient to destroy the CPT condition, which agrees with
Ref. [9]. As a consequence, when δν is used, δνL

12 is slightly
blue shifted with respect to the hyperfine ground-state split-
tings between the Fg = 5/2 and the Fg = 7/2 manifolds.

Table I summarizes the three variations of the two-laser
scheme that we investigated and whose efficiencies we com-
pared. In scheme 2A, the laser frequencies are both tuned in
the same way as in the one-laser simulations. The pumper is
tuned to the hyperfine Fg = 7/2 → Fe = 7/2 transition, while
the repumper is tuned to the hyperfine Fg = 5/2 → Fe = 7/2
transition. As a result, the frequency difference δνL

12 falls in
the range of the CPT resonances. In scheme 2B, the frequency
of the pumper is left unchanged, but the frequency of the
repumper is detuned by an amount δν from the hyperfine
transition that it addresses. As a result, δνL

12 is shifted, thus
destroying the CPT condition. In scheme 2C, the two lasers
are finely tuned to the ultimate target transitions that they
are meant to address, i.e., the |7/2, +5/2〉 → |7/2, +7/2〉 transi-
tion for the pumper and the |5/2, +5/2〉 → |7/2, +7/2〉 for the

TABLE I. Three two-laser scheme configurations investigated
here (see text).

νL
1 νL

2 ⇒ δνL
12

2A ν
e, 7/2
g, 7/2 ν

e, 7/2
g, 5/2 ν

g, 7/2
g, 5/2

2B ν
e, 7/2
g, 7/2 ν

e, 7/2
g, 5/2 + 1 MHz ν

g, 7/2
g, 5/2 + 1 MHz

2C ν
e, 7/2, 7/2
g, 7/2, 5/2 ν

e, 7/2, 7/2
g, 5/2, 5/2 + 1 MHz ν

g, 7/2, 5/2
g, 5/2, 5/2 + 1 MHz
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FIG. 6. (Two-laser scheme situations B and C.) Final nuclear polarization degree PI and final residual population ρ2L
res after an interaction

time of 140 μs. For schemes 2B and 2C: δν = 1 MHz (see text).

repumper. To avoid CPT effects, the repumper is then detuned
from its ultimate target transition. We also considered a fourth
situation in which the detuning is spread on both lasers: both
are detuned from their target transition by δν/2.

As illustrated by Fig. 6, scheme 2B is more efficient when
it comes to minimize the residual fractional population out of
the target state space: it makes it possible to almost reach the
levels reached when using the one-laser scheme. In contrast,
scheme 2A leads to significant population loss. The efficiency
of schemes 2A and 2C is far more dependent on the val-
ues of B and s than what is obtained with both scheme 2B
and the one-laser scheme. This is true both in terms of final

polarization and in terms of final residual population. Whereas
the residual population ρ2L

res can be kept around 10−4 with
scheme 2B, its value when using schemes 2A and 2C is highly
dependent on B and s, as is clear in Fig. 6. As far as polariza-
tion is concerned, the regions of the parameter space (B, s)
where it is possible to achieve a high degree of polarization,
i.e., where it is possible to reach the goal threshold of 10−4,
are slightly broader when using scheme 2B. Even though a
well-chosen regime of (B, s) can lead to encouraging results
using scheme 2A, the overall efficiency of this scheme is
poorer than that of the two other two-laser schemes and is
expected to be less robust once depolarizing mechanisms are
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FIG. 7. Time evolution of the nuclear polarization degree PI and of the normalized nuclear alignment TI .

taken into account. Such a variation in efficiency arises from
the value of the frequency difference between the two lasers.
In scheme 2B, the repumper is detuned from resonance, but
the tradeoff is that the system is shielded from CPT effects,
which are detrimental to optical pumping. Moreover, when the
detuning of the repumper is positive, it mitigates the effects of
the Zeeman shifts. As for whether it is advantageous to favor
the target transitions from the very beginning of the optical
pumping sequence, the comparison of schemes 2B and 2C
indicates that the potential gains are counterbalanced by an
increase in population losses and a narrower set of efficient
(B, s) parameters.

As for the relative speed of the four schemes, it is illus-
trated in Fig. 7, which displays the time evolution of both PI

and TI . It is noteworthy that time efficiency is tightly depen-
dent on the values of the (B, s) parameters. Even though the
overall speed of the one-laser scheme is better than than of
the two-laser schemes, Fig. 7(a) makes it clear that a well-
considered choice for (B, s) can bring the time efficiency of
schemes 2B and 2C close to that of the one-laser scheme.
Conversely, Fig. 7(b) provides an example where the gap in
time efficiency between the one-laser and two-laser schemes
is far bigger.

V. CONCLUSIONS

Comparing the efficiency of the various two-laser schemes
makes it clear that CPT effects should be avoided at all costs.
Whether a CPT-free two-laser scheme is preferable to the one-

laser scheme depends on the priorities of a given experiment.
It is easier to minimize the required interaction time with the
one-laser scheme, but we have shown that choosing wisely the
values of (B, s) could significantly increase the time efficiency
of the two-laser scheme. Our results therefore highlight that
the two-laser scheme is an alternative method, which provides
both a dark state and very good optical pumping efficiency.

The present work focused on the internal dynamics of
the atomic ensemble, that is, we did not investigate how the
optical pumping process affects the velocity and position of
the atoms. As optical pumping is applied to a cloud of trapped
atoms, the external dynamics of the system remains a relevant
issue and would be worth investigating in an extension of
this study. Substantial variations in the atomic velocity would
make the detuning time-dependent, thus complicating the pro-
cess. Note that the use of counterpropagating beams, as in
Ref. [8], may prove useful in circumventing such problems
and controlling heating effects. An interesting line of further
research would therefore consist in including the external
dynamics of the system so as to quantify the advantages of
using a dark state and/or counterpropagating beams in terms
of heating effects.

This work also motivates further developments of the
model, namely the inclusion of depolarizing mechanisms.
Moreover, even though scheme 2C does not perform better
than scheme 2B, it is still worth looking into how the ad-
dressed transitions can be optimized. As more and more atoms
are pumped towards the stretched state, it would make sense to
specifically address transitions starting from sublevels whose
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populations are increasing. One way to produce such an effect
is to use a time-dependent magnetic field [52].

Another extension of this study would be to investigate
how to precisely measure the polarization in a given setup.
Such a measurement must be non destructive so that the
β-asymmetry parameter can be observed in the very same
atomic sample [8]. One way would be to monitor fluorescence
as a function of time, even though this method may not be the
most convenient when working with a relatively low number
of atoms [8]. An alternative method, which is used by Fenker
et al. [8,9] in their work on 37K, is to probe the partially
polarized or unpolarized atoms with photoionization. The

measuring approach goes hand in hand with the reconstruction
of the population distribution within the ground state, which
stresses the importance of quantum-state preparation and de-
termination [55,56].

ACKNOWLEDGMENTS

We thank the Interuniversity Attraction Poles Programme
initiated by the Belgian Science Policy Office (BriX net-
work P7/12) and the Belgian FNRS through IISN convention
4.4512.08 for financial support.

[1] N. Severijns and O. Naviliat-Cuncic, Phys. Scr. T152, 014018
(2013).

[2] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98,
030001 (2018).

[3] J. A. Behr and G. Gwinner, J. Phys. G: Nucl. Part. Phys. 36,
033101 (2009).

[4] J. A. Behr and A. Gorelov, J. Phys. G: Nucl. Part. Phys. 41,
114005 (2014).

[5] N. D. Scielzo, S. J. Freedman, B. K. Fujikawa, and P. A. Vetter,
Phys. Rev. Lett. 93, 102501 (2004).

[6] D. Melconian et al., Phys. Lett. B 649, 370 (2007).
[7] F. Fang, D. J. Vieira, and X. Zhao, Phys. Rev. A 83, 013416

(2011).
[8] B. Fenker et al., New J. Phys. 18, 073028 (2016).
[9] B. Fenker et al., Phys. Rev. Lett. 120, 062502 (2018).

[10] H. Kawamura et al., Hyperfine Interact. 236, 53 (2015).
[11] B. Ohayon et al., Hyperfine Interact. 239, 57 (2018).
[12] M. González-Alonso, O. Naviliat-Cuncic, and N. Severijns,

Prog. Part. Nucl. Phys. 104, 165 (2019).
[13] N. Severijns and O. Naviliat-Cuncic, Annu. Rev. Nucl. Part. Sci.

61, 23 (2011).
[14] O. Naviliat-Cuncic and M. González-Alonso, Ann. Phys.

(Berlin) 525, 600 (2013).
[15] A. A. Valverde, Precision Measurements to Test the Standard

Model and for Explosive Nuclear Astrophysics (Springer, Berlin,
2019).

[16] J. C. Hardy and I. S. Towner, Ann. Phys. (Berlin) 525, 443
(2013).

[17] J. C. Hardy et al., EPJ Web Conf. 93, 01001 (2015).
[18] I. S. Towner and J. C. Hardy, J. Phys. G. Nucl. Part. Phys. 29,

197 (2003).
[19] J. C. Hardy and I. S. Towner, Phys. Rev. C 91, 025501 (2015).
[20] J. C. Hardy and I. S. Towner, PoS (CKM 2016), 028 (2016).
[21] H. Abele, Prog. Part. Nucl. Phys. 60, 1 (2008).
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