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Absorption and analysis of unbound quantum particles one by one
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In quantum physics, the theoretical study of unbound many-body systems is typically quite demanding, owing
to the combination of their large spatial extension and the so-called curse of dimensionality. Often, such systems
are studied on truncated numerical domains—at the cost of information. Here we present methods for calculating
differential probabilities for unbound particles which are subject to a complex absorbing potential. In addition to
attenuating outgoing waves, the absorber is also used to probe them by projection onto single-particle scattering
states, thus rendering the calculation of multiparticle scattering states superfluous. Within formalism based on
the Lindblad equation, singly differential spectra from subsequent absorptions are obtained by resolving the
dynamics of the remaining particles after the first absorption. While the framework generalizes naturally to any
number of particles, explicit, compact, and intuitive expressions for the differential probability distributions are
derived for the two-particle case. The applicability of the method is illustrated by numerical examples involving
two-particle model-systems. These examples, which address scattering and photoionization, demonstrate how
energy distributions of unbound particles may be determined on numerical domains considerably smaller than
the actual extension of the system.
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I. INTRODUCTION

Simulating quantum many-body dynamics is often a chal-
lenging endeavor. One reason for this is the fact that the
complexity of such studies grows exponentially with the num-
ber of particles; this is the infamous curse of dimensionality.
For unbound many-body quantum systems, it becomes even
worse as the extension of the systems under study is not
limited. The numerical study of such systems requires a very
high number of degrees of freedom—for each particle. Com-
bined with the curse of dimensionality, this renders several
interesting simulations unfeasible.

A much applied way of dealing with the unbounded nature
of the wave function is to impose absorbing boundary condi-
tions. Such boundary conditions allow us to remove outgoing
waves, corresponding to unbound particles, and truncate the
numerical domain without introducing artifacts such as re-
flections at the boundary or wave packets reappearing at the
opposite edge of the grid, as would be the case with pe-
riodic boundary conditions. Absorbing boundaries may be
introduced in several ways [1]; exterior complex scaling [2]
or the closely related notion of perfectly matched layers [3]
are frequently used techniques. Another one is to introduce a
masking function in the propagation scheme [4–7] or, equiva-
lently, to augment the Hamiltonian with a complex absorbing
potential, a CAP, which vanishes in some interior region
[8–17]. Such a potential could, like exterior complex scaling,
depend on both position and momentum or it could be a
purely position-dependent potential. In this paper, we will
exclusively deal with the latter.

When a simulation of a dynamical quantum system is sub-
jected to absorption, information is lost during the course. In
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a many-body setting, this loss is devastating for simulations
based on the Schrödinger equation alone; if one particle is
absorbed, the entire wave function is lost [18]. No informa-
tion remains about the remaining subsystem. While this issue
is resolved by the Lindblad equation [19–22], the resulting
equation of motion is still such that the information about
the absorbed particles is discarded. However, since we know
precisely what is removed from one instant to the next, it
should be possible to analyze this removed part as it is ab-
sorbed. By aggregating such contributions from each time
step, information such as, e.g., the energy spectrum of the
unbound particles should be obtainable even on a truncated
numerical grid. This is what we aim to do in this paper.

This is, of course, by no means any new endeavor. Several
interesting methods for obtaining energy or angle-resolved
information about unbound particles using truncated numer-
ical grids have been put forward, see, e.g., Refs. [5,23–36].
These methods have enabled several interesting physical stud-
ies within atomic, molecular and optical physics, see, e.g.,
Refs. [37–53] only to name a few.

Many of these schemes are formulated in a one-
particle context—with no obvious generalization to a many-
body context. Single-particle approaches may, however, be
adapted within formalism based on single-particle orbitals
[25,28,33,34,54]. Formulations addressing general, fully cor-
related wave functions tend to be scarcer. The methods of
Refs. [27,30] are noteworthy exceptions, however, as they deal
explicitly with two-particle systems in a general framework.
In the former, exterior complex scaling is imposed to analyze
the wave function immediately after interaction. The need for
calculating correlated scattering states explicitly is circum-
vented by solving a set of time-independent inhomogeneous
Schrödinger equations. In this context, exterior complex scal-
ing is used to impose outgoing boundary conditions; it is not
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directly involved in the dynamical calculations. In Ref. [30],
on the other hand, absorbers are used to attenuate outgoing
waves for a two-electron atom while the interaction with a
laser pulse is still ongoing. It demonstrates how differential
information may be obtained by monitoring the flux through
a surface in the asymptotic region and reconstructing an
approximate wave function in terms of Volkov states. This ap-
proximation is valid when the surface and absorber is placed
in the asymptotic region in which the Coulomb interaction
with nucleus and the electron-electron repulsion may be ne-
glected.

The method presented here follows a rather different path.
It takes the proper formulation of particle loss due to an
absorber as the starting point. This implies a departure from a
pure wave-function description. Beyond the introduction of
a CAP, it does not resort to any approximation, ansatz, or
model, and probability is conserved manifestly without the
introduction of any heuristic arguments. It involves projec-
tions onto single-particle scattering states only—irrespective
of the initial number of particles involved. This introduces a
significant reduction in complexity since it evades the need for
calculating many-particle scattering states, which, in general,
involve several, possibly multiple, continua.

The ability to analyze the unbound particles using single-
particle scattering states relies on the fact that the absorber is
a one-particle operator. It only removes one particle at a time,
and no two-particle interaction is involved in the absorption
process. The CAP is used actively to probe the outgoing
waves. We will demonstrate how differential information
about unbound particles can be obtained by accumulating
information about the particles which are absorbed—one by
one. Our approach provides a generic and intuitive scheme
which generalizes naturally to any number of particles. More-
over, analyzing the outgoing waves introduces little extra
effort in terms of implementation, computation and memory
requirements. A drawback may be that it produces a set of
singly differential probability distributions only, no fully dif-
ferential distributions for several particles simultaneously.

In the next section, the method is explained in detail.
Explicit formulas are derived for the two-particle case. In
Sec. III, we illustrate the scheme by applying it to two specific
model systems, one involving scattering and another involving
photoionization. Conclusions are drawn in Sec. IV.

II. THEORY

Our starting point is a quantum system consisting of
N identical particles. We impose absorbing boundaries by
adding a CAP to the Hamiltonian. The resulting effective
Hamiltonian is then

Heff = H − i�, (1)

where the actual Hamiltonian, H , and the CAP, �, are both
Hermitian. Moreover, � is positive semidefinite. In a many-
body context, it is convenient to express the interactions in
terms of second quantization; this allows us to write up H
and � in a manner which does not explicitly depend on the
number of particles. We assume that H contains interactions
between at most two particles, while the CAP, �, is a one-
particle operator. With a local potential, the CAP is diagonal

in position representation. Specifically,

� =
∫

γ (x)ψ̂†(x)ψ̂ (x) dx, (2)

where ψ̂ (x) annihilates a particle with the position coordinates
of x while ψ̂†(x) creates a particle with coordinates of x.
For identical fermions, these field operators obey the usual
anticommutation rule

{ψ̂ (x), ψ̂†(x′)} = δ(x − x′), (3)

where the anticommutator is replaced by a commutator in the
case of identical bosons. Here x is taken to mean all degrees
of freedom, including position, for each particle, and

∫ · · · dx
refers to the definite integral or sum over the entire domain.

The CAP function γ (x) is assumed to be zero within some
finite interaction region and positive beyond. We will, as men-
tioned, take it to depend exclusively on the spatial coordinates.
It is usually imposed to avoid artifacts such as reflections at
the boundary. In case of too-high γ (x) values, hard absorption
may still induce reflections, however [11]. As the CAP is
not introduced on physical grounds, any dependence on � in
the results of numerical simulations is unphysical. Results of
simulations which prevail in the limit that � vanishes, may,
however, be considered physical and correct.

A. Absorption from an N-particle system

The evolution of an N-particle system subject to a CAP is
governed by a non-Hermitian Schrödinger equation:

ih̄
d

dt
|�N (t )〉 = Heff |�N (t )〉. (4)

In going from time t to t + τ , the state evolves into

|�N (t + τ )〉 = |�N (t )〉 − i
τ

h̄
H |�N (t )〉 − τ

h̄
�|�N (t )〉 (5)

to leading order in τ . The last term above leads to depletion
of the original N-particle system; the part −τ/h̄ �|�N (t )〉
has been removed in this time step. Since we know what we
remove, we can also analyze this removed part. Specifically,
one could project this part onto the appropriate scattering
states and accumulate their contributions over time. Naively,
this would correspond to accumulating contributions of the
form ∣∣∣〈ϕN

ε

∣∣τ
h̄
�|�N 〉

∣∣∣2
, (6)

where ε specifies the set of physical quantities of interest for
the N-particle scattering state |ϕN

ε 〉. This is indeed naive since
such contributions, being of order τ 2, would not integrate to
the total probability of absorption. If one, alternatively, tries to
integrate such contributions in time in a coherent manner, it is
still not obvious how such a formulation would be consistent
with norm conservation.

Instead, it is more instructive to consider the density matrix
ρN = |�N 〉〈�N |. The evolution of Eq. (4) may equivalently be
described by the non-Hermitian von Neumann equation:

ih̄
d

dt
ρN = HeffρN − ρN H†

eff = [H, ρN ] − i{�, ρN }. (7)
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Now, in going from time t to t + τ , the part which has been
removed from the density matrix is, again, to leading order

τ

h̄
{�, ρN } = τ

h̄
( �|�N 〉〈�N | + |�N 〉〈�N |�), (8)

which contributes
τ

h̄

〈
ϕN

ε

∣∣{�, ρN }∣∣ϕN
ε

〉 = 2τ

h̄
�e

〈
ϕN

ε

∣∣�|�N 〉〈�N

∣∣ϕN
ε

〉
(9)

to the ε-differential probability distribution of the absorbed
particle. In this formulation, the resulting differential proba-
bility indeed provides the total absorption probability when
integrated over time and ε.

This could be a viable path for processes in which only
one particle is liberated. However, if there is a significant
probability of several particles becoming unbound in the pro-
cess, it is likely to require a CAP which is very weak and/or
placed quite far away from the interaction region. The reason
for this is the fact that, for Eq. (9) to describe the multipar-
ticle process correctly, all particles must have reached their
respective continua before absorption sets in. Suppose we
have the extreme opposite situation in which one particle is
fully absorbed before the other particles have had a chance
to reach their respective continua. Then the wave function,
which is normalized to the probability of having N particles
on the grid, becomes identically zero. Thus, no information
at all remains about the other particles—regardless of wether
any of these would have been liberated at a later time or not.
Correspondingly, the multiparticle contributions to Eq. (9)
would be suppressed unless the absorption is delayed until all
interaction is over.

In this paper, we will base our approach on dynamical
equations which allow us to maintain the remainder of the
system as one particle undergoes absorption. This cannot be
done within any approach based on the Schrödinger equation
alone. As will be explained in Sec. II B, this comes about
via the Lindblad equation. Moreover, we will reformulate the
projections in terms of single-particle scattering states. This,
in turn, enables us to calculate the differential probability
distributions arising from subsequent absorption of multiple
particles.

Instead of projection onto N-particle scattering states, as
in Eq. (9), we integrate out all degrees of freedom for all but
one of the identical particles and then analyze the remaining
one. This may be done by means of field operators. The time
derivative of the singly differential probability distribution,
∂P/∂ε, can, accordingly, be expressed as

h̄
d

dt

∂P

∂ε

=
∫∫

· · ·
∫

N−1
〈ϕε|ψ̂ (x)ψ̂ (x′) · · · ψ̂ (x(N−1)){�, ρN } (10)

× ψ̂†(x(N−1)) · · · ψ̂†(x′)ψ̂†(x)|ϕε〉 dx dx′ · · · dx(N−1),

where |ϕε〉 now is a single-particle scattering state correspond-
ing to the single physical quantity ε. The choice of naming it
ε reflects the fact that energy is often the quantity in question;
it could, however, be any relevant quantity, vectorial or scalar.

We should also address one issue from which both Eqs. (9)
and (10) suffer. The fact that both � and ρN are Hermitian en-
sures that the anticommutator {�, ρN } is also Hermitian, and,

thus, any diagonal element of this anti-commutator is real.
However, although � and ρN are both positive semidefinite,
{�, ρN } is not necessarily so. Thus, diagonal elements such
as 〈ϕN

ε |{�, ρN }|ϕN
ε 〉 are not manifestly non-negative, which,

in turn, makes their interpretation in terms of probabilities
dubious. However, as mentioned, physical results are to be
obtained in the limit that the CAP vanishes. As we will see
in the numerical examples in Sec. III, the problem of negative
probabilities vanishes in this limit.

B. Differential probability distributions from
subsequent absorptions

When one out of N particles is absorbed in a simulation as
dictated by the Schrödinger equation with a non-Hermitian
effective Hamiltonian, Eq. (4), the wave function vanishes.
It is certainly not converted into any (N − 1)-particle wave
function. All information about the evolution of the remaining
particles is lost. As mentioned, this problem is remedied by
the Lindblad equation. Since absorption is in fact a Markovian
process and trace and complete positivity should be con-
served, the Lindblad equation is the proper starting point. By
comparing the Lindblad equation in generic form with Eq. (7),
where the CAP expressed in terms of second quantization,
Eq. (2), we may identify a source term which restores the
remainder of the system while one particle undergoes absorp-
tion. The details on how this comes about are provided in
Ref. [21], while an adaption to the multiconfigurational time-
dependent Hartree-Fock-method is provided in Ref. [22].

The resulting equations of motion constitute a hierarchy of
n-particle subsystems, with n = N, N − 1, · · · , 1, 0. The evo-
lution of the n-particle subsystem is governed by the master
equation

ih̄
d

dt
ρn = [H, ρn] − i{�, ρn} + iS[ρn+1], (11)

where the source term

S[ρ] = 2
∫

γ (x)ψ̂ (x)ρψ̂†(x) dx. (12)

For an initial N-particle state, there is no source term and
Eq. (11) reduces to Eq. (7), which, for a pure state, is equiv-
alent to the non-Hermitian Schrödinger equation, Eq. (4). As
the first particle undergoes absorption at a certain probabil-
ity, the source term in Eq. (12) restores the other particles
by populating an (N − 1)-particle subsystem in a manner
which ensures that the total population of the N and the
(N − 1)-particle remains unity in sum. As yet another par-
ticle is absorbed, also the (N − 2)-particle density matrix is
populated—and so on. This way, one may, e.g., distinguish
between single and double ionization probabilities of atoms
without resorting to many-body scattering states nor numeri-
cal domains extending far into the asymptotic region [55].

As a particle is removed from the n-particle subsystem, ρn,
by the absorber, it may be analyzed completely analogously
to Eq. (10) by simply replacing N by n in the equation. In
doing so, we must, however, take some care to avoid double
counting.

In the following, we will explain this in detail for the
case of N = 2. We will also develop explicit formulas for the
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differential probability distributions corresponding to one and
two absorptions from the original two-particle system.

C. The two-particle case

With an initial two-particle system, Eq. (10) may be written
in a rather compact form. In Appendix A, it is derived how
Eq. (10) with N = 2 for an initial pure state leads to the fol-
lowing expression for the differential probability distribution:

h̄
d

dt

dP

dε
=

∫
〈ϕε|ψ̂ (x){�, ρ2}ψ̂†(x)|ϕε〉 dx

= 2
∫∫

ϕε(x)∗ϕε(x′)(γ (x) + γ (x′))

×
∫

dy �2(x, y)�∗
2 (x′, y)dy dxdx′

+ 4
∫

γ (x)

∣∣∣∣
∫

ϕ∗
ε (y)�2(x, y) dy

∣∣∣∣
2

dx. (13)

Here �2(x1, x2) is the two-particle wave function in product
state representation, cf. Eq. (A1).

Equations (9) and (10) were proposed from considering
the part of the N-particle wave function which was removed
in a time step, cf. Eq. (8). However, these expressions do
not take into account that as one particle is removed, the
other particle is, via the source term in Eq. (12), restored
within the one-particle subsystem. From within this subsys-
tem, which is described by the density matrix ρ1, also the
second particle may go on to be absorbed and, thus, contribute
to a ε-differential distribution obtained from this second ab-
sorption. Let us label the ε-differential distribution obtained
from the first absorption, i.e., the absorption from the original
two-particle system, by ∂P2/∂ε, while the possible second
absorption, from ρ1, will give rise to a distribution labeled
∂P1/∂ε. In the first absorption, both the particle undergoing
absorption and the one that is transferred to ρ1 will con-
tribute in Eq. (13). However, only the one actually undergoing
absorption should contribute to ∂P2/∂ε; the other one will
have a chance to contribute to ∂P1/∂ε. Thus, to avoid double
counting, we must remove the contribution stemming from the
particle which is restored within ρ1.

This is not altered by the fact that the particles are indistin-
guishable nor by the fact that they may undergo absorption at
the same time. Actually, as both particles may overlap with the
CAP simultaneously, this is not a mere technicality; numerical
investigations show that conservation of probability is indeed
violated unless the term

〈ϕε|S[ρN ]|ϕε〉 (14)

is removed from the right-hand side of Eq. (13). As explained
in Appendix A, this contribution coincides with the last term
in Eq. (13).

After having removed it, we integrate the remaining ex-
pression over time and arrive at the following formula for
the ε-differential probability distribution of the first particle
to undergo absorption from the two-particle system:

∂P2

∂ε
= 2

h̄

∫∫
ϕ∗

ε (x)ϕε(x′)

× {γ (x) + γ (x′)}�(x, x′) dxdx′, (15)

where

�(x, x′) =
∫ ∞

0

∫
�2(x, y; t )�∗

2 (x′, y; t ) dy dt . (16)

Here, � amounts to an effective time-integrated one-particle
density matrix. This density matrix is weighted by the CAP
function for each of the two variables. These terms are then
added and projected onto the scattering states of interest. In
the special case that the quantity in question, ε, is position–or
some quantity which is purely position-dependent, the scat-
tering states ϕε(x) and ϕε(x′) become delta functions, and the
contributions to Eq. (15) stemming from different times accu-
mulate in an incoherent manner. Otherwise, this aggregation
takes place in a manner which maintains coherence; outgoing
waves absorbed at different times are allowed to interfere.

While the wave function |�2〉 is attenuated as the first par-
ticle is absorbed, we may continue to simulate the dynamics
of the remaining one within the one-particle subsystem. The
one-particle density matrix ρ1 follows Eq. (11) with n = 1.
As we are dealing with a one-particle system in this case,
the diagonal matrix element in Eq. (10) coincides with that
of Eq. (9):

h̄
d

dt

∂P1

∂ε
= 〈ϕε|{�, ρ1}|ϕε〉. (17)

With only one remaining particle, nothing needs to be re-
moved to avoid double counting. The resulting differential
probability for the second absorption event reads

∂P1

∂ε
= 1

h̄

∫∫
ϕ∗

ε (x)ϕε(x′)

× {γ (x) + γ (x′)}
∫ ∞

0
ρ1(x, x′; t ) dt dxdx′, (18)

see Appendix A for details. Note that Eq. (18) coincides with
Eq. (15) if we substitute the time-integral of ρ1 with 2�.

In Eqs. (15) and (18), we have analyzed the absorbed wave
by projection onto time-independent scattering states. When
the quantity in question, ε, bears explicit time dependence,
obtaining converged results may require time-dependent scat-
tering states, in which case Eqs. (15) and (18) must be
modified to

∂P2

∂ε
= 2

h̄

∫ ∞

0

∫∫
ϕ∗

ε (x; t )ϕε(x′; t ){γ (x) + γ (x′)}

×
∫

�2(x, y; t )�∗
2 (x′, y; t ) dydxdx′ dt (19)

and

∂P1

∂ε
= 1

h̄

∫ ∞

0

∫∫
ϕ∗

ε (x; t )ϕε(x′; t )

× {γ (x) + γ (x′)}ρ1(x, x′; t ) dxdx′ dt, (20)

respectively. This is somewhat analogous to what is done
within the time-dependent surface flux method and in the mask
method, in which photoelectron spectra are calculated during
the interaction with an external electric field by projection
onto Volkov states, i.e., the eigen-states of the Hamiltonian
for a free particle exposed to electromagnetic radiation, see,
e.g., Refs. [5,23,29,30,32,56].
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III. NUMERICAL EXAMPLES

We will consider two examples here, both of which in-
volve two interacting particles in one dimension. The first
one, which is without explicit time dependence in the Hamil-
tonian, addresses a scattering event which could be realized
in a quantum dot with narrow confinement in two orthog-
onal directions. The second addresses a system trapped in
the ground state of a confining potential exposed to a pulse
of electromagnetic radiation. It may serve as a model for
photoionization of an atom with two active electrons. In both
cases, the two-particle Hamiltonian may be written

Heff = h(1)
eff + h(2)

eff + W, (21)

where the one-particle Hamiltonians h(i)
eff contain a time-

independent, Hermitian part, h0, the CAP, and, possibly, a
time-dependent perturbation. The particles interact via a reg-
ularized Coulomb interaction,

W (x12) = W0√
x12 + s2

, (22)

where x12 = |x1 − x2| and s is a smoothness parameter. We
have chosen to use a square CAP function,

γ (x) =
{
γ0(|x| − x0)2, |x| � x0

0, |x| < x0,
(23)

where x0 defines the onset of the CAP region.
Here and in the reminder of the paper, x refers exclusively

to the position variable and our dynamical variable of interest,
ε, will be energy. In both examples, we will deal with states
which are symmetric under exchange of the spatial variables,
which corresponds to a spin singlet state for fermions. Thus,
these particles are, formally, bosons in this context.

Before presenting numerical results, we briefly outline how
the calculations are implemented.

A. The implementation

The time evolution of the two-particle system, i.e., the
solution of Eq. (4), is obtained by a second-order split
operator technique [57]. The implementation is facilitated
by expressing the two-particle wave function �2(x1, x2; t ) =
〈x1, x2|�2(t )〉, where |x1, x2〉 is a product state, in terms
of a matrix. This way, the action of the one-particle parts
of the Hamiltonian, h(1)

eff and h(2)
eff , corresponds to left and

right multiplication, respectively, while the action of the
particle-interaction, W �2(t ), corresponds to elementwise
multiplication (Hadamard product). The momentum operator
is represented by means of the fast Fourier transform.

The evolution of the one-particle subsystem follows
Eq. (11) with n = 1:

ih̄
d

dt
ρ1 = heffρ1 − ρ1h†

eff + 2iS[|�2〉〈�2|]. (24)

In our matrix formulation, the last term on the right hand side,
the source term, Eq. (12), may be calculated as

S = 4h�2(t )D�
†
2 (t ), (25)

where the diagonal matrix D = diag(γ (x)) is the CAP, and h
is the step size used in the spatial discretization.

Also for ρ1, the scheme used for the time evolution is of
second order in the numerical time step. The evolution dic-
tated by the first two terms on the right-hand side of Eq. (24)
may be implemented by means analogous to the one-particle
part of the propagator for the two-particle pure state. The ρ1

propagator also features terms originating directly from the
source term and cross-terms between the source term and the
effective Hamiltonian. See Appendix B for more details.

We have also calculated the time-dependent zero-particle
probability p0, which is obtained from Eq. (11) with n = 0.
This amounts to simply time-integrating the source term

S[ρ1(t )] = 2
∫

γ (x)ρ1(x, x) dx, (26)

which is a scalar. While this does not provide any differential
information about any absorbed particles, it serves as a useful
check for the numerics. The Lindblad equation ensures that
the trace of the total density matrix remains unity. In this
context, this means that

|�2(t )|2 + Trρ1(t ) + p0(t ) = 1 (27)

at all times. As our numerical scheme is not manifestly trace
conserving, the deviation from unity is a measure of the accu-
racy of simulations.

In our examples, we set out to calculate the energy dis-
tribution of the unbound particles emerging after interaction.
We do so by projection onto the eigenstates of the unper-
turbed, Hermitian one-particle Hamiltonian h0 as dictated by
Eqs. (15) and (18). With our matrix representation of the
two-particle wave function, the spatial integral in Eq. (16) may
be found by matrix multiplication. Numerically, the effective
one-particle density matrix of Eq. (16) may be calculated as a
sum of matrix products,

� = hτ
∑

tn

�2(tn)�†
2 (tn), (28)

where τ is the temporal step size. Eq. (15) may conveniently
be expressed as

h̄
∂P2

∂ε
≈ 2h2 ϕ†

ε (D� + �D)ϕε, (29)

where ϕε represents the scattering state according to the
eigenenergy ε as a column vector. The ε-differential dis-
tribution obtained from ρ1 is calculated analogously to
Eq. (29)–with 2� replaced by the time integral of ρ1. Apart
from certain increase in memory requirements, calculating
the effective one-particle density matrix � when solving
Eq. (4) and the time integral of ρ1 when solving Eq. (24)
impose little extra numerical effort. Nor does acquiring the
time-independent one-particle scattering states ϕε impose any
substantial workload.

When using numerical box-normalized eigenstates of h0

instead of true continuum states in interpolating the con-
tinuous distribution of Eq. (29), we must ensure correct
normalization. This means that the projections must be multi-
plied by the density of states before interpolation. Moreover,
we distinguish between the two channels consisting of sym-
metric and antisymmetric scattering states and add their
respective contributions to the total spectrum incoherently.
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FIG. 1. The outgoing waves which are accumulated in time and
analyzed according to Eqs. (15) and (18) constitute effective one-
particle matrices. The plot shows the diagonal of the matrix which
enters into Eq. (15), diag[{γ (x) + γ (x′)}�(x, x′)], for three different
choices of the CAP strength γ0, cf. Eqs. (16) and (23). The CAP
onset x0 = 20. With a strong CAP, the outgoing waves do not reach
very far into the CAP region before being attenuated which, in turn,
causes a narrow confinement in space. This particular two-particle
system correspond to that of Sec. III D, and quantities are given in
atomic units, a.u..

B. Convergence of the energy spectra

In a numerical simulation, it is desirable to maintain as hard
absorption as possible as this allows for a strongly truncated
numerical domain. On the other hand, the absorption must
also be sufficiently soft to ensure that the results do not depend
on the characteristics of the CAP itself. In our numerical
examples, we check for convergence in the absorber strength;
γ0 in Eq. (23) is extrapolated toward zero. We run a rather
large number of simulations with decreasing γ0 values to
investigate the transition from CAP-dependent spectra toward
CAP-independent ones in some detail. However, some re-
marks about the admissible magnitude of γ0 may also be made
a priori. For instance, the absorption cannot be so strong that
it induces reflections. Moreover, too hard absorption leads to
poorly resolved energy spectra due to the Heisenberg prin-
ciple. If the accumulated absorbed waves which enter into
Eqs. (15) and (18) have very narrow spatial confinements, the
corresponding calculated energy distributions may be unable
to resolve the true energy spectra. Suppose that the physical
nature of the process under study is such that energy spectra
require a resolution given by ε and that the accumulated
outgoing waves has the width x–in each direction. Then we
must require that the spatial extension fulfills

x 	 h̄

√
ε

2m

1

ε
. (30)

As illustrated in Fig. 1, the extension x is directly deter-
mined by the CAP strength. Correspondingly, the inequality
(30) effectively imposes an upper bound on γ0 in Eq. (23) for
the specific system we wish to describe. It should also be
noted that the physical nature of this system may add further
restrictions on the CAP strength.
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FIG. 2. The figure illustrates the situation prior to collision. A
projectile particle of rather sharply defined initial momentum is
incident upon a target particle initially trapped in the ground state
of a confining potential.

C. Example I: Scattering

In this example, a target particle is initially trapped in the
ground state of a short-ranged Gaussian potential,

V (x) = −V0 exp

(
− x2

2σ 2
V

)
, (31)

while an identical projectile particle with a Gaussian wave
packet is incident on the target, see Fig. 2. The situation could
correspond to a quantum dot embedded in a quantum wire
[52,58–61].

We take our units to be defined by setting h̄ and the par-
ticle mass m to unity. With length unit a0, the corresponding
energy unit reads E0 = h̄2/(ma2

0). The confining potential has
the strength V0 = 4 and the width σV = 3/(2

√
2) in these

units, cf. Eq. (31). This leads to a one-particle ground-state
energy of −3.141. The interaction strength W0 = 1, and for
the softening parameter s, the value 0.1925 has been used,
cf. Eq. (22). The square CAP function is nonzero for |x|
beyond x0 = 35, cf. Eq. (23). The initial Gaussian projectile
wave function is centered at x = −20 in position space and
p = 2 in momentum space. Its momentum width is 0.1, which
corresponds to a position width of 5 length units.

Since the initial energy of the projectile is such that it
hardly allows for both particles to be liberated, it suffices
to solve Eq. (4); we do not need to consider any second
absorption.

The upper panel of Fig. 3 shows the energy distribution
of the particle emerging from the collision event as predicted
by Eq. (15). In addition to energy, it is also shown as a func-
tion of the CAP strength γ0, cf. Eq. (23). The values of this
parameter are, in units of E0/a2

0, chosen such that γ0 = 2−n

where n is a non-negative integer. We see that not only does
the distribution converge as γ0 decreases; it is in fact virtually
independent of γ0. Only for very strong absorption can we see
deviations from the converged one.

In the middle panel of Fig. 3, the same energy spectra are
shown for three values of γ0. We see that the wave emerging
from the collision event comes ut in two energy lobes. This is
due to the fact that the target has, with a certain probability,

012812-6



ABSORPTION AND ANALYSIS OF UNBOUND QUANTUM … PHYSICAL REVIEW A 103, 012812 (2021)

0 1 2 3 4
Energy (E

0
)

0

0.5

1

1.5

dP
2/d

E
 (

E
0-1

)

0
=1

0
=2-5

0
=2-10

1 1.5
-0.02

0
0.02
0.04

2.5 3 3.5 4
-5
0
5

10
10-3

0 5 10
-log

2
 

0

0

1

2

3

N
eg

at
iv

e 
pa

rt
 o

f d
P

2/d
E 10-3

FIG. 3. Upper panel: The energy spectrum of the unbound par-
ticle emerging from the collision event. In this case, the projectile
particle has an initial mean momentum of 2 units and the target
particle is trapped in the ground state with energy −3.14 units. The
spectrum is predicted by Eq. (15) and calculated for various values
of the strength of the CAP function, i.e., γ0 in Eq. (23). Middle panel:
The same distribution as in the upper panel for three values of γ0. The
inserts display close-ups on regions in which unconverged spectra
feature negative values. Lower panel: In this plot, the total negative
contribution to the (unconverged) energy distributions is plotted as a
function of absorber strength.

been excited. In other words, the peak centered around 2
energy units corresponds to elastic scattering while the peak
near 0.5 energy units corresponds to inelastic scattering.

The inserts in the panel reveal that the spectra obtained
with comparatively hard absorption are not strictly non-
negative; in certain regions they are negative. This is related
to the fact that, as discussed in Sec. II A, the operator {�, ρN }
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FIG. 4. These panels show the maximum range of the wave func-
tion (left) and the duration of the simulation (right) for the collision
example pertaining to Fig. 3. For the sake of illustration, we have
included calculations both featuring much weaker absorption than
necessary and unreasonably hard absorption. The horizontal dashed
line in the left panel indicates the onset of the CAP function, and
the dashed part of the curve in the right panel indicates the region in
which artificial reflection effectively prolongs the simulations.

in Eqs. (9) and (10) is not necessarily positive semidefinite.
Thus, there is no obvious mathematical reason why differen-
tial quantities obtained from Eq. (15) must be non-negative.
However, in the limit γ0 → 0+, when the predictions become
physical, no negative parts are seen. This is demonstrated
more explicitly in the lower panel of Fig. 3, which depicts
the unphysical negative contribution to the energy distribution
∂P2/∂ε,

−
∫

∂P2/∂ε<0

∂P2

∂ε
dε, (32)

as a function of γ0. We clearly see that this undesirable feature
in fact vanishes for finite values of γ0.

As mentioned, it is desirable to use as hard absorp-
tion as possible—while still obtaining converged spectra and
avoiding artificial reflections. In Fig. 4, we display how the
extension of the wave function, which is subject to absorption,
and the duration of the simulation depends on the strength of
the absorber. We have here defined the former as the smallest
a which is such that whatever resides beyond |x| = a has a
squared norm less than 1% throughout the simulation. The
duration we have defined as the time it takes for |�2(t )|2 to fall
below 1%. The left panel shows, as expected, that a larger grid
is necessary as the CAP strength is reduced. When it comes
to the duration of the simulation, however, the behavior is not
monotonous; initially, the time it takes to simulate the entire
event actually decreases with decreasing γ0. This is due to
artificial reflections induced by too hard absorption. Reflected
waves will have to travel back across the grid at least one more
time before being absorbed, and, thus, complete absorption
takes longer in this case.

In Fig. 5, we display the results of a collision event for
which the liberation of both particles is energetically ad-
missible. In this case, the projectile particle has an initial
momentum with a mean value of 3.5 units and a width of
0.2 units. The left panel of Fig. 5 reveals that elastic scattering
is the dominant process. However, as the right panel shows,
there is a certain probability for the second particle to be
liberated as well. The corresponding energy distribution is
obtained from Eq. (18), which, in turn, requires the solution
of Eq. (24) in addition to Eq. (4). It is seen that this second
particle predominantly comes out with low energy. It is also
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FIG. 5. The left panel, which is analogous to the middle panel
of Fig. 3, shows the energy distribution of the first particle to be
absorbed after collision. Here the mean momentum of the projectile
particle is 3.5 units, and its width is 0.2. The right panel displays the
energy distribution of the second particle to be absorbed. It is not
likely that two liberated particles will emerge from the collision; this
distribution integrates to a total probability of 5.4 × 10−5. The distri-
bution in the right panel features a certain dependence of the strength
of the CAP function, γ0 in Eq. (23), near threshold. Otherwise, it is
virtually CAP independent.

seen that also this energy distribution is very weakly depen-
dent on γ0. We do see some dependence, however, close to
threshold. This is related to the fact that particles with near-
zero energy require a very long time to reach the absorber;
complete absorption is hard to achieve in a simulation of
finite duration in this case. It may seem counterintuitive that
this issue is more prominent at harder absorption than softer
absorption. It can be understood from what we saw in the
right panel of Fig. 4. Low-energy waves are more prone be
reflected by the CAP than faster ones—and increasingly so
with harder absorption. Consequently, with a finite duration
of simulations, 1000 time units in this case, the slow, reflected
waves do not have enough time hit the absorber many enough
times to reach full absorption.

D. Example II: Photo ionization

The next example addresses a model for photo ionization of
a two-electron atom. The electrons are initially confined in the
two-particle ground state of a regularized Coulomb potential
with a form identical to the interaction Eq. (22):

V (x) = − V0√
x2 + u2

. (33)

Numerically, this initial state is constructed by evolving the
system without the CAP in imaginary time, i.e., by substitut-
ing t with −it in Eq. (4) with � = 0 [62]. This, along with
renormalization at each time step, causes virtually any initial
state to converge towards the ground state exponentially.

Next, the system is exposed to a laser pulse. The interaction
with the laser is formulated in the velocity gauge, i.e., the
Hermitian part of the one-particle Hamiltonian reads

h(i) = p2
i

2m
+ V (xi ) + e

m
A(t )pi, (34)

where i = 1, 2 refers to the particle number, m is the electron’s
mass and −e is its charge. The homogeneous vector potential
A reads

A(t ) =
{

E0
ω

sin2
(

π
T ωt

)
sin (ωt ), 0 � t � T

0, otherwise.
(35)

FIG. 6. These plots show the photoelectron spectra for a model
two-electron atom exposed to a laser pulse. The energy required
for single ionization is 0.054 a.u., double ionization requires
0.554 a.u. and the laser pulse corresponds to a photon energy of
0.3 a.u., see text for more details on the system. The spectra are
calculated with various absorber strengths, i.e., γ0 in Eq. (23). The
left panel is obtained from absorption from the original two-particle
system, while the rights panel is obtained from the one-particle
subsystem which remains after the first absorption event.

In this particular example, we apply atomic units, a.u.,
which may be defined by, in addition to setting h̄ and m to
unity as in Sec. III C, choosing the Bohr radius as the length
unit a0 and the elementary charge e as the unit of charge. Here,
the peak electric field strength is E0 = 0.1 a.u., the central an-
gular frequency ω is 0.3 a.u., and the duration T corresponds
to seven optical cycles. The confining potential, Eq. (33), is
chosen such that both V0 and u are 0.5 a.u.. This yields a
one-particle ground-state energy of −1/2 a.u. Also for the
interaction, Eq. (22), we have set the parameters W0 and s
to 0.5 a.u.. The resulting two-particle ground-state energy is
−0.554 a.u.. Thus, one particle is rather weakly bound. The
CAP is turned on at |x| = x0 = 50 atomic length units.

Figure 6 demonstrates, analogously to the upper panel of
Fig. 3, how the predicted singly differential photoelectron
spectra depend on the strength of the CAP function. The
left panel is the spectrum obtained from the first absorption,
calculated using Eq. (15), and the right one corresponds to the
second absorption, calculated using Eq. (18). The spectrum
obtained from the first absorption is not as close to being γ0

independent as the one in Fig. 3. We can, e.g., detect a slight
shift toward higher energies as γ0 approaches zero. However,
the dependence on the CAP strength is still quite weak and
the spectrum does converge rather rapidly as the CAP strength
diminishes.

Interestingly, this happens despite the fact that much of
the absorption takes place during interaction with the laser
pulse. This is illustrated in Fig. 7, which depicts the deple-
tion in norm from �2 as a function of time, i.e., it shows
1 − |�2(t )|2 as a function of t and γ0. The thick purple curve
corresponds to the time at which the pulse is switched off. By
comparing Fig. 7 with the left panel of Fig. 6, it is seen that
a converged spectrum is obtained before the laser interaction
is over. This may seem odd for various reasons. Due to the
explicit time dependence in the Hamiltonian, it would, e.g.,
seem more reasonable to apply Eq. (19), which involves time-
dependent scattering states, rather than Eq. (15). And even
doing so, by absorbing an electron you would still deprive
it of the possibility to exchange energy with the laser field.
The latter suggests that such an exchange predominantly takes
place within the CAP free region—close to the center of the
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FIG. 7. The total absorption from the two-particle system for the
system of Fig. 6 as a function of time and absorber strength γ0. The
thick, purple curve indicates the time at which the laser pulse is over.

Coulomb-like potential. The fact that Eq. (15), in which the
absorbed wave is projected onto time-independent scattering
states, indeed produces a converged spectrum despite absorp-
tion during explicitly time-dependent interaction is related to
the fact that the interaction is described in the velocity gauge.
In this formulation, a free, classical electron is at rest in mo-
mentum space; the momentum is a constant of motion. This is
reflected in the fact that the free-electron Volkov solutions are
time independent—apart from a phase factor which does not
contribute in this density-matrix formalism [29]. In fact, if we
substitute our scattering states ϕε with solutions in which the
confining potential is removed, i.e., plane waves, we would
obtain a similar spectrum—except for a shift toward higher
energies for the multiphoton peaks and some irregularities at
the low-energy part of the spectrum. Both of these deficiencies
are due to the neglect of the Coulomb-like potential, and
both diminish as γ0 decreases since this causes absorption to
take place further away from the center of the Coulomb-like
potential.

While the energy distribution of the first electron to be ab-
sorbed, ∂P2/∂ε, converges rather quickly as the CAP strength
is reduced, this convergence is somewhat slower for the sec-
ond particle to be absorbed. The right panel of Fig. 6 shows
∂P1/∂ε obtained from Eq. (18). Although the first peak near

threshold is rather well resolved with comparatively strong
absorption, the peak centered near ε = 0.25 a.u. requires a
weaker CAP strength for convergence.

Figure 8, which shows the same spectra as in Fig. 6 with a
logarithmic y axis for certain values of γ0, shows more details
in this regard. The spectrum of the first absorbed particle,
∂P2/∂ε, features several well converged multi-photon peaks.
Most of these peaks correspond to a single-ionization process
in which the remaining ion is left in its ground state. spectrum
obtained from the second absorbtion, ∂P1/∂ε, does not feature
equally pronounced multiphoton peaks. The maximum just
above threshold is consistent with a direct two-photon double-
ionization process. Moreover, it is also interesting to note that
the γ0 dependence in ∂P1/∂ε seems to be more prominent at
higher energies.

Figure 9 is analogous to Fig. 8. It shows photoelectron
spectra for the same system, however, this time it is exposed
to a laser pulse with the central frequency ω = 1 a.u., the peak
electric field strength E0 = 0.25 a.u. and a duration corre-
sponding to ten optical cycles, T = 10 × 2π/ω, cf. Eq. (35).
The corresponding photon energy, h̄ω, allows for one-photon
double ionization, as opposed to the previous case. Here, we
have set the onset of the CAP region at x0 = 20 a.u. From the
first absorption, we again see pronounced single-ionization
peaks. And, again, most of these correspond to single ion-
ization with the remaining ion in the ground state. From
energy considerations, the peak at about 0.5 a.u., however,
seems to predominantly be due to single ionization combined
with excitation of the remaining electron to its first excited
state. This is consistent with calculated population of the first
excited state within the one-particle subsystem,

〈ϕ1st|ρ1(t → ∞)|ϕ1st〉 = 0.060, (36)

where ϕ1st is the wave function of the first excited one-particle
state. It is also consistent with the fact that the peak at
ε ≈ 0.5 a.u. is dominated by symmetric scattering states—as
opposed to antisymmetric ones in the case of single ioniza-
tion with relaxation to the (symmetric) ground state. This is
displayed in the insert in the left panel of Fig. 9.
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FIG. 8. Here the same photoelectron spectra as in Fig. 6 are shown for certain values of the CAP strength γ0, however, using a logarithmic
y axis. As in Fig. 6, the left panel stems from the first absorption while the right one is calculated from the second absorption. The green curve,
which corresponds to rather strong absorption, is seen to vanish in certain regions. This is because too strong absorption may induce negative
values for the spectrum, cf. the middle and lower panels of Fig. 3.
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FIG. 9. The same kind of photo electron spectra as in Fig. 8, however, with a maximum electric field strength of E0 = 0.25 a.u., a central
frequency of ω = 1 a.u., and a duration corresponding to ten optical cycles in this case, cf. Eq. (35). Here, the CAP function sets on at x0 = 20
a.u.. The left panel corresponds to the predictions of Eq. (15), while the right panel is obtained using Eq. (18). The insert in the left panel shows
partial contributions from symmetric (full curve) and antisymmetric (dashed curve) scattering states. In the inset, linear axes are used.

Although not equally pronounced as for the single-
ionization case, multiphoton peaks may also be seen in the
spectrum obtained from the second absorption, ∂P1/∂ε. The
peaks seen at n × h̄ω − 0.5 a.u. correspond to n-photon ion-
ization from the ground state of the ion remaining after the
first ionization, i.e., these are sequential double ionization
processes. The peak at ε ≈ 0.90 a.u. is consistent with a
sequential double ionization process via the first excited state
of the ion. As in the case with ω = 0.3 a.u., we see significant
contributions at very low energies.

When it comes to γ0 dependence, Fig. 9 shows the same
tendency as Fig. 8 in that the spectrum ∂P1/∂ε requires a
weaker CAP to become γ0-independent than does ∂P2/∂ε.
This observation is consistent with the bias introduced in
the sequential double absorption process: The fastest elec-
tron reaches the absorber first. In situations such as these,
where both electrons of �2 may have reached their respective
continua simultaneously, the most energetic of the two will
predominantly contribute to the ∂P2/∂ε spectrum, which, in
turn, causes slower electrons to be overrepresented in ∂P1/∂ε.
As the CAP strength decreases, so does this bias. And for a
γ0-independent spectrum, the singly differential ∂P1/∂ε spec-
trum may be interpreted as the integrated doubly differential
double ionization spectrum:

∂P1

∂ε

γ0→0+
−−−→

∫ ∞

0

∂2Pdouble

∂ε∂ε′ dε′. (37)

From this point of view, it is not surprising that the multi-
photon peaks seen in ∂P1/∂ε, i.e., the right panels of Figs. 8
and 9 are less pronounced than the ones seen in ∂P2/∂ε, i.e.,
the left panels. This is particularly so for the case in which
ω = 0.3 a.u. as direct processes are more prominent here than
in the case with ω = 1 a.u., for which sequential ionization
dominates.

While the bias inherent in the sequential nature of the
absorption scheme presented here may be undesirable in most
situations, it may be of interest in others. For instance, the
situation does resemble an experimental situation in the sense
that liberated particles are detected one-by-one–and the most
energetic ones first. The similarity between CAPs and detec-

tors, see, e.g., Refs. [9,22], could facilitate comparison with
experiment.

It is worthwhile to also address total ionization probabil-
ities in this context. The converged spectrum obtained from
absorbing an electron from the two-particle wave function,
∂P2/∂ε, integrates to the total norm loss from �2. In the case
shown in Fig. 6, Fig. 7 shows that this probability is close to
one. Actually, the integral of ∂P2/∂ε is slightly less than the
total absorption because in Eq. (15) we have only projected
onto scattering states corresponding to positive (one-particle)
energies. This enables us to avoid artificial contributions to the
ionization probability from possible populations of Rydberg
states which overlap with the CAP. The ionization probability

P2 =
∫ ∞

0

∂P2

∂ε
dε (38)

is indeed total in the sense that it includes both single and
double ionization; the spectrum ∂P2/∂ε is the energy dif-
ferential probability distribution of the photo electron which
is absorbed first—irrespective of whether also the second
electron goes on to be ionized or not. Thus, ∂P2/∂ε cannot
be interpreted as the spectrum of the photo electron emerg-
ing from single ionization alone—unless the probability of
double ionization is negligible compared to single ionization.
The converged difference between this spectrum and ∂P1/∂ε,
however, would correspond to the single ionization event ex-
clusively.

The spectrum ∂P1/∂ε in Eq. (18) is calculated from the sec-
ond absorption and, correspondingly, integrates to the double
ionization probability. Note that this quantity,

P1 =
∫ ∞

0

∂P1

∂ε
dε, (39)

is not subject to the same γ0 dependence as is the spectrum
∂P1/∂ε; P1 is the probability of double absorption irrespective
of the bias addressed above. Again, P1 tends to be somewhat
lower than the final population of the vacuum state, p0(t →
∞), due to the possible population of Rydberg states which
overlap with the CAP. In this respect, it should be mentioned
that Rydberg populations in the two-particle system could
lead to an undesired population of the one-particle subsystem.
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Our numerical studies have, however, not shown any indica-
tion of this affecting the ∂P1/∂ε distribution.

E. Concluding remarks

The original motivation of this paper was to enable the
description of unbound many-particle systems on truncated
numerical grids in a manner which allow us to retain as much
information about the system as possible. This is particularly
desirable when the outgoing waves span a wide energy region.
In such situations, by the time the low-energetic part has left
the interaction region, the high-energy part may have traveled
quite far—thus necessitating a very large numerical domain in
order to enable a full description. This is the case in, e.g., the
inelastic scattering shown in Fig. 3. Moreover, when doubly
excited states are involved, the situation is aggravated further
by the fact that parts of the wave packet tends to linger in
the interaction region while high-energy components travel
off [61].

The same feature is seen in the present photoionization
examples; both examples involve both high-energy photo-
electrons and photoelectrons with near-zero energy. In the
last example, the one with ω = 1 a.u. and ten optical cy-
cles, the full, unabsorbed wave function was more or less
contained within a box extending from −75 a.u. to 75 a.u.
at the end of the laser pulse, at t = T . With γ0 = 2−15 a.u.,
the numerical domain had to extend to ±100 a.u. while γ0 =
2−18 a.u. required x values up to about ±200 a.u. Thus, with
the ability to analyze the full wave function right after interac-
tion, this CAP method would not offer much relief in these
cases. However, such an ability requires the calculation of
projections onto fully correlated scattering states—either by
direct calculations or other indirect means [27]. To avoid this
complication, many studies resort to projection onto uncorre-
lated two-particle scattering states. This is an admissible ap-
proach if the wave packet is allowed to propagate further after
the laser interaction—until all of the unbound part of the wave
packet reaches the asymptotic region in which the interac-
tion between electrons, bound or unbound, may be neglected.
Suppose now that a low-energy photoelectron of energy 0.05
a.u. is to travel into this asymptotic region beyond, say, x =
±100 a.u. By this time, a three-photon singly ionized photo
electron will have traveled beyond 750 a.u. Thus, in com-
parison, even the weakest absorber constitutes a significant
reduction in the numerical complexity—despite the fact that
CAP independence must be checked. With an equidistant nu-
merical grid, this particular case corresponds to a reduction to
about (200/750)2 ≈ 7% of a full-sized two-particle domain.
The reduction is even more significant if a wider energy win-
dow is to be considered.

As mentioned, a drawback of the method is the fact that
only singly differential spectra are produced. It should also
be mentioned that, in the case of photoionization, the low-
est admissible absorber strength is correlated with the pulse
duration via the inequality (30); a pulse of long duration T
has a narrow bandwidth and, thus, a low ε is required.
Consequently, also with absorbing boundaries, a larger box is
required to get correct energy distributions with longer pulses.
Nonetheless, these issues do not preclude the present method

from facilitating or even enabling the numerical description of
several dynamical, unbound many-particle systems.

As absorbing boundary conditions are frequently imposed
in simulating the dynamics of unbound two-particle quantum
systems, Eq. (15) represents a convenient way of extracting
relevant information—information which would have been
lost otherwise. There are several situations, such as the
one pertaining to Fig. 3, in which the spectrum from the
first absorption alone provides relevant and interesting
information and extracting it requires very little additional
effort. In addition to solving the time-dependent Schrödinger
equation, Eq. (4), one simply has to update �(x, x′) in
Eq. (16) at each time step and, finally, apply the formula (15).
The latter involves diagonalization of a simple one-particle
operator. Our numerical examples suggest that the resulting
spectrum has a rather weak dependence on the characteristics
of the CAP function.

If the remainder of the system is to be preserved and
spectra corresponding to multiple unbound particles are to
be calculated, this also requires the solution of Eq. (11). We
have seen that weaker CAPs may be necessary to obtain well-
resolved energy spectra from the second absorption. We have,
however, not given any attention to how the shape of the CAP
function affects the convergence in terms of CAP strength. It
would be quite interesting to study whether other choices of
CAP functions than Eq. (23), or other CAPs than local ones,
could provide faster convergence. This is a topic which merits
further investigation. Such an investigation should also aim at
formulating precise and general convergence criteria.

To accumulate all outgoing waves, the wave must be
propagated until even the slowest electrons have reached the
CAP region. In the case of photoionization, this means that
the duration of the simulation usually extends considerably
beyond the duration of the laser interaction. An interesting
question in this regard is wether absorption after explicitly
time-dependent interactions could be treated or at least
facilitated by analytical means, thus evading comparatively
time-consuming simulations. In this regard, the works of
Refs. [27,35] are inspirational. While these issues are beyond
the scope of the present paper, they will be subject to further
investigation.

IV. CONCLUSIONS

We have presented an approach to the numerical descrip-
tion of unbound multiparticle quantum systems which allows
us to impose absorbing boundary conditions and yet calculate
the probability distributions of interest for all of the absorbed
particles. In this way, we may retain the information of interest
about each of the unbound particles while using a numer-
ical domain which is considerably smaller than the actual
extension of the wave function. This comes about by using
a complex absorbing potential which, in addition to removing
the outgoing, unbound parts of the wave function, also probe
them. The fact that the absorber is a one-particle operator
allows us to analyze the unbound part by projecting onto
single-particle scattering states, as opposed to many-particle
scattering states. Consequently, only singly differential spec-
tra are obtained.
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The method lends itself to rather straight forward imple-
mentation. It also provides a conceptually appealing approach
which, via the Lindblad equation, generalizes naturally to any
number of particles.

The applicability of the scheme was demonstrated by
calculating energy spectra for two examples featuring two-
particle models—one example involving scattering and
another involving photoionization. These calculations demon-
strated a rather weak dependence on the strength of the
absorbing potential and the spectra where seen to converge
as this strength decreased. In the case of photoionization,
the spectra obtained from the first absorption were seen to
converge somewhat faster in absorber strength than the spectra
obtained from the second absorption.
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APPENDIX A: DERIVATION OF THE FORMULAS FOR
DIFFERENTIAL PROBABILITIES

Here we derive the differential probability distribution for
absorption from a two and one particle system, Eqs. (15) and
(18), respectively, from the more general form of Eq. (10).
In doing so, we express both operators, density matrices, and
state vectors by means of second quantization. The fermionic
two-particle wave function is written

|�2〉 =
∫∫

dx1dx2 �2(x1, x2)|x1, x2〉

= 1√
2

∫∫
dx1dx2 �2(x1, x2)|{x1, x2}〉 (A1)

= 1√
2

∫∫
dx1dx2 �2(x1, x2)ψ̂†(x1)ψ̂†(x2)|−〉,

where |x1, x2〉 is a product basis state, |{x1, x2}〉 is a properly
antisymmetrized one, and |−〉 is the vacuum state, i.e., the
state in which there are no particles. The two-particle wave
function is antisymmetric with respect to exchange:

�2(x1, x2) = −�2(x2, x1). (A2)

We also express the one-particle density matrix and the scat-
tering states by means of second quantization:

ρ1 =
∫∫

dxdx′ ρ1(x, x′)|x〉〈x′|

=
∫∫

dxdx′ ρ1(x, x′)ψ̂†(x)|−〉〈−|ψ̂ (x′) (A3)

and

|ϕε〉 =
∫

dx ϕε(x)ψ̂†(x)|−〉. (A4)

We start by writing out Eq. (10) for N = 2 explicitly. With
Eqs. (2), (A1), (A3), and (A4), it reads

h̄
d

dt

∂P

∂ε
=

∫
dx 〈ϕε|ψ̂ (x){�, |�2〉〈�2|}ψ̂†(x)|ϕε〉

= 2�e
∫

dx
∫

dy
∫

dx′

×
∫∫

dx1dx2 ϕ∗
ε (y)γ (x′)�2(x1, x2)

× 〈−|ψ̂ (y)ψ̂ (x)ψ̂†(x′)ψ̂ (x′)ψ̂†(x1)ψ̂†(x2)|−〉

×
∫∫

dx′
1dx′

2

∫
dy′ �∗

2 (x′
1, x′

2)ϕε(y′)

× 〈−|ψ̂ (x′
2)ψ̂ (x′

1)ψ̂†(x)ψ̂†(y′)|−〉.
The vacuum matrix elements may be found, e.g., by using

Wick’s theorem [63]:

〈−|ψ̂ (y)ψ̂ (x)ψ̂†(x′)ψ̂ (x′)ψ̂†(x1)ψ̂†(x2)|−〉
= δ(y − x′)[δ(x − x1)δ(x′ − x2) − δ(x − x2)δ(x′ − x1)]

− δ(x − x′)[δ(y − x1)δ(x′ − x2) − δ(y − x2)δ(x′ − x1)]

and

〈−|ψ̂ (x′
2)ψ̂ (x′

1)ψ̂†(x)ψ̂†(y′)|−〉
= δ(x′

2 − y′)δ(x′
1 − x) − δ(x′

2 − x)δ(x′
1 − y′).

With this and the exchange antisymmetry of the two-particle
wave function, Eq. (A2), we arrive at Eq. (13).

As explained in Sec. II, when we analyze the part which
has been removed from |�2〉, we must make sure to remove
the part which is reconstructed within ρ1 to avoid double
counting. This contribution is provided by the source term
Eq. (12). The part to be removed from Eq. (13) is

〈ϕε|S[ρ2]|ϕε〉,
with ρ2 = |�2〉〈�2|. Using Eqs. (12), (A1), and (A4), it may
be expressed as

2〈ϕε|
∫

dx γ (x)ψ̂ (x)|�2〉〈�2|ψ̂†(x)|ϕε〉

=
∫

dy ϕε(y)
∫

dx γ (x)
∫∫

dx1dx2�2(x1, x2)

× 〈−|ψ̂ (y)ψ̂ (x)ψ̂†(x1)ψ̂†(x2)|−〉

×
∫

dy′
∫∫

dx′
1dx′

2 ϕε(y′)�∗
2 (x′

1, x′
2)

× 〈−|ψ̂ (x′
2)ψ̂ (x′

1)ψ̂†(x)ψ̂†(y′)|−〉.
The repeated vacuum matrix element is

〈−|ψ̂ (y)ψ̂ (x)ψ̂†(x1)ψ̂†(x2)|−〉
= δ(y − x2)δ(x − x1) − δ(y − x1)δ(x′ − x2).

With this and Eq. (A2), we arrive at

〈ϕε|S[ρ2]|ϕε〉 =
∫

dx γ (x)
∫

dy ϕ∗
ε (y)2�2(x, y)

×
∫

dy′ ϕε(y)2�∗
2 (x, y′)

= 4
∫

dx γ (x)

∣∣∣∣
∫

dy ϕ∗
ε (y)�2(x, y)

∣∣∣∣
2

.

This coincides the last term in Eq. (13), which, accordingly, is
to be removed.
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APPENDIX B: A PROPAGATOR FOR THE
ONE-PARTICLE DENSITY MATRIX

A second-order Taylor expansion of ρ1 in time says that

ρ1(t + τ ) = ρ1 + τ ρ̇1 + 1
2τ 2ρ̈1 + O(τ 3). (B1)

Here, the dots indicate time derivatives and, for convenience,
the absence of an argument is to be interpreted as (t ). ρ̇1 and
ρ̈1 are provided by Eq. (24) and its time derivative, respec-
tively. If we write them out explicitly, Eq. (B1) reads

ρ1(t + τ ) = ρ1 − i
τ

h̄
(heffρ1 − ρ1h†

eff + iS[�2])

+ τ 2

2h̄2

((−ih̄ ḣeff − h2
eff

)
ρ1

− ρ1(−ih̄ ḣ†
eff + (h†

eff )2)

+ 2heffρ1h†
eff − i[heffS[�2] − S[�2]h†

eff ]

+ h̄
d

dt
S[�2]

)
+ O(τ 3), (B2)

where heff is here the effective one-particle Hamiltonian. In an
autonomous system, ḣeff vanishes and the scheme is somewhat
simplified.

Now, the sum of the terms which do not contain source
term contributions may, to third order in τ , be written as

exp
(
−i

τ

h̄
heff (t + τ/2)

)
ρ1 exp

(
i
τ

h̄
h†

eff (t + τ/2)
)
. (B3)

Moreover,

τ

h̄
S[�2] + τ 2

2h̄

d

dt
S[�2]

= τ

2h̄
(S[�2] + S[�2(t + τ )]) + O(τ 3), (B4)

which allows for a convenient implementation simply by
keeping the previous source term in memory.

All in all, we arrive at the following scheme:

ρ1(t + τ ) = e−iτ/h̄ heff (t+τ/2)ρ1(t )eiτ/h̄ h†
eff (t+τ/2) + τ

2h̄
(S[�2(t )] + S[�2(t + τ )])

− i
τ 2

2h̄2 [heff (t )S[�2(t )] − S[�2(t )]h†
eff (t )]] + O(τ 3). (B5)
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