
PHYSICAL REVIEW A 103, 012811 (2021)

Stabilization method with the relativistic configuration-interaction calculation
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We applied a relativistic configuration-interaction (CI) framework to the stabilization method as an approach
for obtaining the autoionization resonance structure of heliumlike ions. In this method, the ion is confined within
an impenetrable spherical cavity, the size of which determines the radial space available for electron wave
functions and electron-electron interactions. By varying the size of the cavity, one can obtain the autoinization
resonance position and width. The applicability of this method is tested on the resonances of He atom while
comparing with benchmark data available in the literature. The present method is further applied on the
determination of the resonance structure of heliumlike uranium ion, where a relativistic framework is mandatory.
In the strong-confinement region, the present method can be useful to simulate the properties of an atom or ion
under extreme pressure. An exemplary application of the present method to determine the structure of ions
embedded in dense plasma environment is briefly discussed.
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I. INTRODUCTION

Resonance states are formed in different types of scattering
experiments and the nature of interaction with the continuum
of the target quantifies the width (or lifetime) of a resonance
state. Due to the advancement of experimental techniques and
with the advent of free electron lasers, recent interest has
been generated to study the resonances of multiply charged
ions [1–5]. Different theoretical approaches, e.g., complex
coordinate rotation method [6], Feshbach projection opera-
tor method, optical potential method, R-matrix method, etc.
(see, e.g., Ref. [7] and references therein) have been pro-
posed to understand the internal structure of resonances. All
these techniques need either the complete form of the wave
functions, the use of complex analytic continuation, or the
asymptotic form of the wave functions. Hazi and co-workers
[8,9] were the pioneers to introduce the stabilization method
for analyzing resonance states arising from elastic scattering
with a one-dimensional model barrier potential. After the
trial of several variants of this method over more than two
decades, finally Mandelshtam et al. [10] put forward an ele-
gant method of calculating the width of resonance states from
the spectral density of states (DOS) in the neighborhood of
resonance position. The idea of this method [10] is to diag-
onalize the Hamiltonian of a quantum system with suitable
square-integrable real wave functions within a box, and inves-
tigate the continuum, bound, and resonances (autoionizing)
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states under variations of the box size. The continuum states
of atomic systems are strongly modified by changes of the
box size, while in contrast, the resonance states are hardly
affected by the variation of box size, if the minimum size
of the box is greater than the effective extent of the wave
function, or the range of the Coulomb potential. For a bound
state, the eigenvalue converges to a particular value with the
increase of box size [11,12]. The idea of the box is, therefore,
to span the radial space in order to distinguish the variations
of these three different types of states. There are different
adaptations on the variations of this box. The early workers
[8,9,13] defined the box size as a constraint parameter, usually
termed as hard wall, in a finite basis set method. Later, Ho [14]
and Müller et al. [15] modified the idea of hard wall by the soft
wall, which can be considered as an arbitrary real continuous
scaling parameter in a finite basis set. This conjecture [15]
proved to be a very successful one to predict parameters for
a wide range of resonances of free, confined as well as field
induced few-body systems, where Hylleraas type basis sets
are used [4,16–27]. Accruing larger radial space through the
variation of the scaling parameter is also computationally
more convenient than expanding the basis by including high-
lying configurations as the latter may introduce the problem
of linear dependency for large basis. The stabilization method
has further been extended to determine the atomic resonances
near metal surfaces [28], resonances in molecules [29,30],
core-excited shape resonances in clusters [31,32], as well to
probe nuclear resonances [33].

In the present work, we propose a hybrid technique where
the stabilization method has been adopted within the frame-
work of relativistic configuration-interaction (CI) calculation.
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A correlated two-electron atomic system where the radial
space is truncated by an impenetrable spherical box is consid-
ered as a bench-test case. By confining a quantum mechanical
system within a model impenetrable spherical cavity and im-
posing appropriate boundary conditions, the basis sets and
the matrix elements can be made explicitly dependent on the
radius of the sphere. The electron orbitals are obtained from
a finite basis set of B-splines defined in this impenetrable
box, thus making this a hard wall method. This method has
a twofold advantage. First, when the size of the box is rea-
sonably small, the effect of confinement modifies the energy
levels of the “free” ion and various problems of spatial con-
finement, e.g., pressure ionization in plasma environment [34]
can be probed. With the advent of modern high-speed compu-
tational resources and experimental techniques for controlling
and confining atoms along with their applications in semicon-
ductors and nanotechnology, this topic of confined systems
continues to attract interest nowadays. Manifold applications
of such confined quantum mechanical systems are available in
literature, e.g., atoms encaged in endohedral fullerenes [35],
semiconductor quantum dots [26,36–39], ion storage [40],
warm dense plasmas [41], etc. Comprehensive reviews on
this topic may be found in Refs. [42–44]. Secondly, ensuring
the radius of the cavity large enough, one can employ the
stabilization method [45] for determining the parameters of
resonance states. To the best of our knowledge, none of the
existing variants of the stabilization method has been applied
under the relativistic framework for probing the resonances of
highly charged ions or in many-body systems. Both aspects
of this spatial confinement within the relativistic stabilization
framework are developed and discussed here. In this “hard
wall” approach the radius of the cavity in the relativistic CI
method is spanned in order to locate positions and widths
of resonances. To validate the method, the resulting positions
and widths of low-lying resonances of He atom are compared
with benchmark nonrelativistic calculations [46,47]. As an
example, we consider the case with null total angular momen-
tum. The relativistic stabilization method is further extended
for the heliumlike uranium ion to determine the resonance
parameters. This method can be exploited to determine the
structural properties of highly charged ions under spatial con-
finement and application in the dense plasma environment is
also briefly presented here. The details of the methodology
are given in Sec. II followed by the discussion on the results
in Sec. III. Final conclusions are given in Sec. IV.

II. THEORY

A. Configuration interaction

We followed the configuration-interaction method of
Ref. [48], to solve the two-electron Dirac Hamiltonian,

Ĥ (r1, r2) = ĥ0(r1) + ĥ0(r2) + V (r1, r2), (1)

where ĥ0(r) is a single-electron Dirac Hamiltonian solved in
a B-spline basis set (see Sec. II B) with the nuclear potential
being corrected for a nuclear finite size. The two-electron
wave function with total angular momentum J , and respective
projection over z of M and parity �, is defined as a linear
combination of configuration-state functions (CSF) of these

single-electron solutions, given by

�J
� =

∑
x�y

Cn
xy�

CSF
xy (JM )

= 1√
2

∑
x�y

μxyCxy〈 jx mx jy my | JM〉
∣∣∣∣ψx(1) ψy(1)

ψx(2) ψy(2)

∣∣∣∣.
(2)

Here, �CSF
xy (JM ) represents the CSF of two spherically con-

fined hydrogenic orbitals identified by x and y that involves the
ground orbitals and excitations from the occupied to virtual
orbitals. The term μxy is given by

μxy =
{

1/
√

2 if x = y
1 if x �= y

. (3)

By inserting this two-electron wave function in the Dirac
equation, the problem of obtaining the respective eigenvalues
is equivalent to diagonalizing the following eigenvalue equa-
tion: ∑

x�y

[(εv + εw )δxvδyw + Vvw,xy]Cxy = ECvw, (4)

where εν and E represent the hydrogenic energy of an orbital ν
and the total energy, respectively. The matrix element Vvw,xy =
〈�vw(JM )|V |�xy(JM )〉 of the electron-electron Coulomb in-
teraction is given by

Vvw,xy = μvwμxy

∑
k

(−1)J+k+ jw+ jx

{
jv
jy

jw
jx

J

k

}
Tk (vwxy)

+(−1)k+ jw+ jx

{
jv
jx

jw
jy

J

k

}
Tk (vwyx). (5)

The quantity Tk (vwyx) contains the Coulomb interaction and
is given by

Tk (vwyx) = (−1)k〈κv‖Ck‖κx〉〈κw‖Ck‖κy〉Rk (vwyx), (6)

where the reduced matrix element 〈κv‖Ck‖κx〉 evaluates to

〈κv‖Ck‖κx〉 = (−1) jv+1/2
√

[ jv, jx]

×
(

jv
− 1

2

jx
1
2

k

0

)
�(lv + k + lx ), (7)

with �(l ) being the parity term. The Slater integrals
Rk (vwxy), defined by

Rk (vwxy)

=
∫ R

0
dr1[Pv (r1)Px(r1) + Qv (r1)Qx(r1)]vk (w, y, r1), (8)

contains the overlaps of the large P(r) and small Q(r) compo-
nents of the hydrogenic orbitals,

vk (w, y, r1)

=
∫ R

0
dr2

rk
<

rk+1
>

[Pw(r2)Py(r2) + Qw(r2)Qy(r2)]. (9)

Here, R is the radius of the cavity. Although we did not
include Breit interaction in this calculation, as one shall see
in Sec. II D, differences in energies with state-of-the-art cal-
culations are of 0.2%–0.3% in heliumlike uranium. Therefore,
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although Breit interaction is important for precise determina-
tion of the resonances and critical radius (see Sec. III) beyond
this uncertainty, the inclusion of only Coulomb potential is
(nevertheless) sufficient as proof of principle of the CI to the
stabilization method.

We now describe the method of the finite basis set with
B-splines for which we obtain the hydrogenic wave functions
confined in a cavity.

B. Finite basis set with B-splines

In the finite basis set approach, the atomic or molecular
system is enclosed in a finite cavity with a radius R. This leads
to a discretization of the continua and, hence, to a representa-
tion of the entire Dirac spectrum in terms of the pseudostate
basis functions. A (quasicomplete) finite set of these states
are determined subsequently by making use of the variational
Galerkin method [49]. In this method, the action Sκ is defined
as

Sκ = 1

2

∫ R

0
{cPnκ (r)Oκ

−Qnκ (r) − cQnκ (r)Oκ
+Pnκ (r)

+ V (r)[Pnκ (r)2 + Qnκ (r)2] − 2mec2Qnκ (r)2}dr

− 1

2
ε

∫ R

0
[Pnκ (r)2 + Qnκ (r)2]dr + Sbond

κ , (10)

from which the Dirac equation states can be derived from the
least action principle, δSκ = 0. To shorten the expressions, we
introduced here the operator Oκ

± = d
dr ± κ

r .
The parameter ε is a Lagrange multiplier introduced to

ensure the normalization constraint [Eq. (10)]. Here, the large,
Pnκ (r), and small, Qnκ (r), radial components of the electron
wave functions can be written as a finite expansion,

P(r) =
N∑

i=1

piBi(r), Q(r) =
N∑

i=1

qiBi(r), (11)

over the B-spline basis set Bi(r) that are given in detail in
Sec. II C. Moreover, in Eq. (11), the subscripts n and κ have
been omitted from the functions Pnκ (r) and Qnκ (r) for the sake
of notation simplicity. The function SBond

κ in Eq. (10), given by

SBond
κ =

⎧⎪⎪⎨
⎪⎪⎩

c
4 [P2(R) − Q2(R)] + c

2 P(0)[P(0) − Q(0)]
for κ < 0

c
4 [P2(R) − Q2(R)] + c

2 P(0)[2cP(0) − Q(0)]
for κ > 0

,

(12)

assures the boundary conditions P(0) = 0 and P(R) = Q(R)
known as the MIT-bag-model condition [50], was included to
avoid the Klein’s paradox, which arises when one attempts to
confine a particle to a cavity, essentially by forcing the radial
current crossing the boundary to vanish [51].

Inserting the radial components (11) into the least action
principle (10) and evaluating the variation Sκ with respect to
change of the expansion coefficients pi and qi, we obtain the
matrix equation,

Av = εBv, (13)

where v = (p1, p2, . . . , pN , q1, q2, . . . , qN ). A and B are sym-
metric 2N×2N matrices given, respectively, by

A =
[

(V ) c
[
(D) − (

κ
r

)]
−c

[
(D) + (

κ
r

)] −2c2(C) + (V )

]
+ Abond, (14)

and

B =
[

(C) 0
0 (C)

]
. (15)

The matrix Abond reflects the boundary conditions, and is
defined by

Abond
i j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

cδi,1δ j,1 − c
2δi,1δ j,n+1 − c

2δi,n+1δ j,1

+ c
2δi,nδ j,n − c

2δi,2nδ j,2n if κ � 0,

2c2δi,1δ j,1 − c
2δi,1δ j,n+1 − c

2δi,n+1δ j,1

+ c
2δi,nδ j,n − c

2δi,2nδ j,2n if κ > 0.

(16)
The N×N matrices (C), (D), (V ), and (κ/r) are given by

(C)i j =
∫

Bi(r)Bj (r)dr, (17)

(D)i j =
∫

Bi(r)
d

dr
Bj (r)dr, (18)

(
κ

r

)
i j

=
∫

Bi(r)
κ

r
B j (r)dr, (19)

(V )i j =
∫

Bi(r)V (r)Bj (r)dr. (20)

Equation (13) is known as a generalized eigenvalue prob-
lem that can be solved by employing the standard techniques
from the linear algebra. In the present work, we have used the
well-established Linear Algebra Package 3.3.1 (LAPACK) [52].

C. B-splines

Following the de Boor textbook [53], we divide the interval
of interest [0, R] into segments whose endpoints define a knot
sequence {ti} = 1, 2, . . . , N + k, where R is the cavity radius.
The B-splines of the order k, Bi,k (r), are defined on this knot
sequence by the recurrence relation,

Bi,k (r) = r − ti
ti+k−1 − ti

Bi,k−1(r) + ti+k − r

ti+k − ti+1
Bi+1,k−1(r),

(21)
where the B-splines of the first order read as

Bi,1(r) =
{

1, ti � r � ti+1

0, otherwise . (22)

The first 1, 2 . . . k and the last N + 1, N + 2 . . . N + k knots
must be equal and are defined as t1 = t2 = · · · = tk = 0 and
tN+1 = tN+2 = · · · = tN+k = R. Otherwise, the ti knots with
k < i < n follow an exponential grind.

Eigenstates of Eq. (13) labeled by i = 1, . . . , N address
the negative continuum εi < −2mc2 while solutions with i =
N + 1, . . . , 2N describe bound states (the first few ones) and
the continuum εi > 0.
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TABLE I. Eigenvalues (a.u.) with � = 0 and J = 0 for the
ground state (1s2) and first two excited states (1s2s, 1s3s) in heli-
umlike U (Z = 92). Values are compared with respective ones listed
in Ref. [59].

E1s2 E1s2s E1s3s

This work –9636 –6081 –5380
Ref. [59] –9605 –6067 –5369

D. Numerical stability of the CI method

Before providing results for the application of the CI
method to the stabilization method it is worthwhile to attest
the quality of the obtained states. Following previous works
with single-electron spectrum constructed from B-splines
(e.g., [54–57]), the spectrum was attested with variations of
the B-spline parameters, namely the order (k) and number
of splines (N). Optimal values of these parameters are k = 9
and N > 60, matching with analytical solutions at 13 digits
for the first five bound states. This optimization was made
for a large enough radius of R = 40, in which cavity effects
are not present. Through all calculations, these parameters
were set constant with the exception of the radius. The effect
of finite-nuclear size was found negligible within the quoted
precision for all values obtained from the stabilization method
presented in Sec. III.

These single-state orbitals were included in the CI matrix
(4) for diagonalization. Since the finite-basis method dis-
cretizes the continua, spurious autoionizing states can result
from this discretization of the negative and positive continua.
In detail, this could lead to a sum of discrete negative eigen-
states and positive ones in the CI diagonal terms, which could
have energies close to two-electron bound states, and thus dis-
tort the spectrum. To avoid these spurious autoionizing states,
discrete negative states were not included in the CI matrix.
Excluding these states is similar to the projection method in
the multiconfiguration Dirac-Fock method [58]. For the case
of � = 0 and J = 0 spectra, orbitals of type nsn′s, npn′ p,
nsn′d , and ndn′d , with n � 3 and n′ � 10, were included to
form the two-electron wave function (2). Hereafter, we refer
to each eigenvalue by the configuration of the dominant CSF,
e.g., the ground state with � = 0 and J = 0 is referred to as
1s2. Further increase of these maximum number of orbitals
and orbital momentum converge to changes in the six digits.
Table I contains the ground state 1s2 and first two excited
states, i.e., 1s2s and 1s3s calculated for Z = 92, as well
as state-of-the-art calculations in Ref. [59] that contain full
inclusion of Breit interaction and QED effects. The energy
values are in agreement with this reference within 0.2%–0.3%
relative difference, which is attributed to these extra QED
effects.

All obtained eigenvalues for the application of the stabi-
lization method have � = 0 and J = 0.

III. RESULTS AND DISCUSSIONS

The stabilization diagram constructed with the first 20 en-
ergy eigenvalues of the He atom lying between −3.0 a.u. and
−0.5 a.u. is given in the upper panel of Fig. 1. The cavity
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FIG. 1. Stabilization diagram constructed with the energy eigen-
values obtained after solving Eq. (4) with � = 0 and J = 0 in the
function of the cavity radius and for helium atom (Z = 2). Configu-
rations of state functions up to l = 2 are included in the calculation.
Each line (with specific color and style) represents an eigenvalue
sorted by energy, e.g., the solid black line represents the first eigen-
root, the dashed red line represents the second eigenroot, the solid
green line represents the third eigenroot, and so on. Note that the
lower panel uses the same color code for the energy eigenroots as
that of the upper panel.

radius R is varied in the range 1.0 a.u. to 25.0 a.u. in the
mesh size of 0.01 a.u. It is evident from Fig. 1 that the first
energy eigenvalue, i.e., the ground state (1s2) is almost insen-
sitive with respect to R ∈ [2, 25] a.u. Before going into the
resonance structure of the system for high R, we analyze the
features observed in the strong confinement region. Decrease
of R below 2 a.u. causes a drastic effect on the ground-state
energy of He. In fact, the curve exhibits a sharp bend, i.e., a
“knee” and becomes nearly parallel to the vertical (energy)
axis leading to the fragmentation threshold for R ∼ 1.1 a.u.
For the second and the third energy eigenvalues, i.e., the
first 1s2s and the second 1s3s singly excited states of He,
such “knee” occurs at larger values of cavity radius (R). The
energy eigenvalues of 1sns (n =1–3) of the He atom, for
different values of cavity radius (R) are given in Table II.
The present energy values are compared with the benchmark
nonrelativistic results of Bhattacharyya et al. [60] calcu-
lated with the Hylleraas-type basis set. In order to estimate
the relativistic contribution, we evaluate these energies with
Eqs. (9) and (10) having the full relativistic wave function
(large and small components), and without the small compo-
nent, respectively. We note that the present CI method gives
lower values of total energy compared with Ref. [60], as cavity
radius decreases. As observed in Table II, this is not due to
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TABLE II. First three eigenvalues [1sns (n = 1–3)] of the helium
atom for several confinement radii R (a.u.) calculated in the present
work. EL+S (a.u.) and EL (a.u.) are the energies calculated with
the CI method having the large and small components of the wave
functions, and only the large component, respectively. Nonrelativistic
results of Bhattacharyya et al. [60] are shown for comparison.

R EL+S EL Ref. [60]

1.11 –0.0988 –0.0991 –0.0739
1.15 –0.4004 –0.4007 –0.3792
1.3 –1.2426 –1.2429 –1.2310
1.5 –1.9116 –1.9118 –1.9070
2 –2.6027 –2.6028 –2.6040
3 –2.8694 –2.8695 –2.8724
4 –2.8973 –2.8974 –2.9005
5 –2.9001 –2.9001 –2.9034
∞ –2.9001 –2.9001 –2.9037

2.31 –0.0339 –0.0341 –0.0283
2.35 –0.1282 –0.1284 –0.1230
2.4 –0.2386 –0.2387 –0.2339
2.5 –0.4369 –0.4371 –0.4332
2.7 –0.7607 –0.7609 –0.7583
3.0 –1.1152 –1.1153 –1.1141
5.0 –1.9494 –1.9494 –1.9497
∞ –2.1402 –2.1401 –2.1459

3.21 –0.0921 –0.0921 –0.0062
3.3 –0.1471 –0.1472 –0.0724
3.5 –0.2507 –0.2507 –0.2016
4 –0.4562 –0.4563 –0.4582
5 –1.0796 –1.0797 –1.0792
∞ –2.0595 –2.0595 –2.0613

the inclusion of relativity since an estimation of these effects
based on the small component returns a negligible influence.
These differences between relativistic and nonrelativistic val-
ues are slightly amplified on lower values of R where the total
energies are more sensitive to this parameter. A closer look to
the CI matrix (4) at R = 1.11 a.u. and to the first two diagonal
terms (1s2 and 1s2s) shows that the orbital energies 2ε1s are
set apart from ε1s + ε2s by ∼10 a.u., while Coulomb repulsion
between these states equals V1s2,1s2s = 0.6 a.u.. This makes the
1s2 state less influenced by mixing of the 1s2s state, as well
as by the rest of the spectrum. As consequence, the value of
the 1s2 state at R = 1.11 is mainly given by 2ε1s + V1s2,1s2 .
Further verification from the Hylleraas method can thus be
traced back to these terms. The atomic electrons cease to be
in a bound state if the cavity radius decreases below a critical
value, denoted as Rc. In case of the 1s2 state this occurs when
the orbital energies (ε1s) match the Coulomb repulsion energy
(V1s2,1s2 ). The critical cavity radii (Rc) corrected up to two
decimal place for 1s2, 1s2s, and 1s3s states are estimated as
1.10 a.u., 2.30 a.u., and 3.08 a.u., respectively. The bound
electron(s) will detach from the atom if R < Rc and the cavity-
bound free electron continuum becomes discrete. But still the
electrons in the continuum remain bound by the cavity and
entangled to the parent ion [61]. We have also calculated
these quantized positive energy states of the electrons in the
presence of the ion in the center of the confining sphere. For
R = 1.0 a.u., energy of the ground state of the cavity bound

atom is 0.9769 a.u., the first excited state is 13.8676 a.u., and
the second excited state is 14.3220 a.u. Further reduction of R
to 0.5 a.u. yields these values at 22.2728 a.u., 67.3502 a.u.,
and 68.4632 a.u., respectively. The present results are in
reasonable agreement with the nonrelativistic results [61,62]
estimated in the correlated Hylleraas basis.

Under an adiabatic approximation, the amount of pressure
(P) “felt” by the system inside the impenetrable cavity can be
expressed as

P = − 1

4πR2

dEg

dR
� − 1

4πR2

�Eg

�R
, (23)

where Eg is the ground-state energy of the system inside the
sphere of radius R. For higher excited states, this relation may
not be applicable as the equilibrium criteria is not satisfied
because of finite lifetimes of such states. However, we can
assume that the amount of pressure experienced by the ion
would be the same for all the states at a particular value of
R. Therefore, the pressure (P) at a particular value of R felt
by an ion in an excited state can be estimated from Eq. (23)
by calculating the energy gradient of the ground state 1s2 with
respect to R around the same value of R. In the present calcula-
tion, we have taken �R = 10−4 a.u. The critical pressure (Pc)
or the ionization pressure, i.e., the pressure experienced by
the He atom at the critical cavity radius (Rc) values 1.10 a.u.,
2.30 a.u., and 3.08 a.u. are estimated as 1611 GPa, 150.4 GPa,
and 14.4 GPa, respectively. These Pc values are in excellent
agreement with that of Saha et al. [63] and establishes the
applicability of the present method in strong confinement
region.

The upper panel of Fig. 1 reveals that all the higher energy
eigenvalues vary significantly with respect to cavity radius (R)
and produces a flat, short plateau in the vicinity of the avoided
crossing. Enlarged view of such avoided crossings within the
energy range from −1.0 to −0.5 a.u. is given in the lower
panel of Fig. 1. It clearly appears that such plateaus occur
at some particular energy values that are the positions of the
resonances. For instance, it can be observed that the first reso-
nance position is close to −0.77 a.u. Precise determination of
the resonance parameters, i.e., positions and widths of these
states are done in a two-step process. The first step is to
take an eigenvalue (single color line in Fig. 1) and estimate
the spectral density of states (DOS) from the stabilization
diagram by taking the inverse of tangent at different points
near the stabilization plateau for each energy eigenvalue using
the formula:

ρn(E ) =
∣∣∣∣ Ri+1 − Ri−1

En(Ri+1) − En(Ri−1)

∣∣∣∣. (24)

For a clear visualization, the eighth energy eigenvalue show-
ing the plateau near −0.77 a.u. and corresponding spectral
DOS are plotted within the energy range −0.81 � E �
−0.74 a.u. in Fig. 2. The DOS plot shows a peak in the middle
of the plateau [follow the dashed red line showing the position
of the lowest lying (2s2) resonance below He+(2s)].

As one eigenvalue may produce plateaus at different ener-
gies (see Fig. 1), corresponding peaks of DOS will occur at
those values. The DOS profiles of eigenvalues 5–10 within
the range −0.85 � E � −0.50 a.u. are given explicitly in
Fig. 3. It is clear that three peaks at three different energies
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FIG. 2. Combined plot of numerically estimated DOS [Eq. (24)]
vs energy (in a.u.) for eigenvalue No. 8 from the stabilization diagram
of Fig. 1.

are converging for first three resonances. Among these three
DOS peaks, the middle one near −0.7 a.u. represents a very
narrow width, evident from the plots eigenvalues 8–10. Thus
the lifetime of this state is considerably high compared to the
other two states lying on either sides. This state corresponds
to 2p2. The next peak around −0.59 a.u. is the 2s3s state
while the first peak around –0.77 a.u. corresponds to the 2s2
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FIG. 3. The DOS peaks of eigenvalue Nos. 5–10 in the energy
range –0.85 a.u. to –0.50 a.u.
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FIG. 4. Numerically estimated DOS vs energy (in a.u.) (black
hollow circles) and the fitted Lorentzian (solid red line) for eigen-
value No. 8 showing the first resonance (∼−0.77 a.u.) of He below
the He+(2s) threshold.

state. It is also evident that these resonances are isolated as
the separation of peaks are greater than the widths of the
consecutive resonances.

In the next step, we consider DOS of each isolated reso-
nance and fit it with a Lorentzian profile,

ρn(E ) = y0 + A

π


/2

(E − Er )2 + (
/2)2
, (25)

where 
 is the full width at half maximum of the peak, y0

is the offset, A represents the area under the curve from the
base line, and Er is the energy corresponding to maximum of
ρn, i.e., the resonance position. As an example, the estimated
DOS and the fitted Lorentzian corresponding to eigenvalue
No. 8 is given in Fig. 4. The fitting to this curve [Eq. (25)]
yields the resonance parameters Er = −0.77726 a.u. and 
 =
0.00502 a.u. (χ2 = 0.09964, R2 = 0.99999). This is the low-
est lying 1S0 resonance below He+(2s). Repeated calculations
of DOS near the plateau of each of the eigenvalues for the res-
onance states are performed, which result in fitted Lorentzian
similar to Fig. 4. For a particular resonance, the position and
width is chosen with respect to the best fitting parameters.
For instance, among the fitting parameters (χ2, R2) of the
first DOS peak of eigenvalues 8–10, we find eigenvalue No.
8 yields the least χ2 value and also R2 value closer to unity.
Similar fitting for the second resonance yields Er = −0.70466
a.u., 
 = 0.0000368 a.u. while for the third resonance, we
find Er = −0.59731 a.u., 
 = 0.0031956 a.u. The resonance
parameters (Er, 
) for other states can be obtained in a sim-
ilar manner. The estimated resonance parameters of the first
and third resonances of He atom are in good agreement
with the benchmark nonrelativistic numerical records [46,47]
for resonances below the second ionization threshold of the
He atom. For instance, Abrashkevich et al. [46] reported
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FIG. 5. Stabilization diagram constructed with the energy eigen-
values obtained after solving Eq. (4) with � = 0 and J = 0 in
the function of the cavity radius and for the heliumlike uranium
atom (Z = 92). Configurations of state functions up to l = 2 are
included in the calculation. Each line represents an eigenvalue sorted
by energy. Each line (with specific color and style) represents an
eigenvalue sorted by energy, e.g., solid black line represents the
first eigenroot, dashed red line represents the second eigenroot, solid
green line represents the third eigenroot, and so on. Note that the
lower panel uses the same color code for the energy eigenroots as
that of the upper panel.

the resonance positions of the first and third resonances as
–0.778824 a.u. and –0.590158 a.u., respectively, by adopting
coupled-channel hyperspherical adiabatic approach. Explic-
itly the correlated Hylleraas-type basis set in the framework
of complex-coordinate-rotation calculation of Burgers et al.
[47] yields the highly precise estimate of widths of first and
third resonances as 0.004541126 a.u. and 0.001362478 a.u.,
respectively.

After standardizing the stabilization method within the
relativistic CI framework for the He atom, we extend it to de-
termine the resonance structure of highly charged heliumlike
uranium (Z = 92) where relativistic effects play a major role.
The stabilization diagram of � = 0 and J = 0 states of U90+
is given in Fig. 5. In the upper panel, the diagram displays the
first 20 energy eigenvalues within the range from –10000.0
a.u. to –1000 a.u. The ground (1s2) and first two excited states,
i.e., 1s2s and 1s3s, respectively (energies listed in Table I),
lying below the U91+(1s) threshold, are evident from Fig. 5.
In the strong confinement regime, these states show the same
pattern as of He (Fig. 1) except the positions of the respective
“knees,” which occur at lower values of R as compared to
He, due to the contraction of the wave functions in the much
stronger Coulomb field.
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FIG. 6. Enlarged view of the stabilization diagram given in
Fig. 5. For both upper and lower panels, the line colors and styles
carry similar meaning as Fig. 5.

An enlarged view of the stabilization diagram of U90+ in
the energy range −3000 a.u. to −1000 a.u. is given in the
lower panel of Fig. 5. The energy range is properly chosen
to locate the resonances between 1s and 2s thresholds of
U91+. A series of resonances of heliumlike uranium near the
energies –2495 a.u., –2159 a.u., –1783 a.u., –1556 a.u. are
seen. A closer look at the avoided crossings of the eigenvalues
near the energies –2495 a.u. and –1783 a.u. are shown in
the upper and lower panels of Fig. 6, respectively. A pair of
close resonances at (–2497.12 a.u., –2490.87 a.u.) in the upper
panel and (–1785.57 a.u., –1783.04 a.u.) in the lower panel
are visible in Fig. 6. As the pair of resonances are very closely
spaced, we have taken a much lesser mesh size (0.0001 a.u.) of
R compared to that taken for He for the precise determination
of the DOS profiles. Figures 7 and 8 display plot of the numer-
ically estimated DOS vs energy (in a.u.) for eigenvalue No. 11
showing close lying first and second resonances, respectively,
of heliumlike uranium below the U91+(2s) threshold. The
fitting to the curve given in Fig. 7 yields Er = −2497.1405
a.u. and 
 = 0.01682 a.u. (χ2 = 0.000003, R2 = 0.99999)
while the same in Fig. 8 yields Er = −2490.87841 a.u. and

 = 0.00126 a.u. (χ2 = 0.01625, R2 = 0.99998). The fit-
ting further confirms that the pair of resonances are isolated
despite being closely spaced. In a similar fashion using eigen-
value No. 12, we have determined Er = −2159.9825 a.u. and

 = 0.00096 a.u. for the third resonance and the correspond-
ing plot is given in Fig. 9. The parameters of the first six
resonance states of heliumlike uranium are depicted in Ta-
ble III. Sharp gradual decrement of the width of the resonance
states are noticed which may be due to respective increase in
the interelectronic separation. It is to be noted that only the
tentative positions are reported for the fourth, fifth, and sixth
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FIG. 7. Numerically estimated DOS vs. Energy (in a.u.) (black
hollow circles) and the fitted Lorentzian (solid red line) for eigen-
value no. 11 showing 1st resonance (∼–2497 a.u.) of heliumlike
uranium below U91+(2s) threshold.

resonances. Accurate determination of width of these states
are in the pipeline with more configurations in the basis set.
To the best of our knowledge, this is the first prediction of the
parameters of low-lying resonances of heliumlike uranium ion
and therefore warrants precise experimental verification.
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FIG. 8. Numerically estimated DOS vs energy (in a.u.) (black
hollow circles) and the fitted Lorentzian (solid red line) for eigen-
value No. 11 showing second resonance (∼−2490 a.u.) of heliumlike
uranium below U91+(2s) threshold.
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FIG. 9. Numerically estimated DOS vs energy (in a.u.) (black
hollow circles) and the fitted Lorentzian (solid red line) for eigen-
value No. 12 showing third resonance (∼−2159 a.u.) of heliumlike
uranium below U91+(2s) threshold.

The present results with Z = 2 and 92 establishes the
applicability of the relativistic configuration-interaction (CI)
framework to the stabilization method for any two-electron
system. More CSFs (l > 2) in the present framework will
certainly increase the possibility of locating more number of
resonances below the threshold. It would also be interesting to
see the effect of QED on the parameters of these resonances in
future. In order to construct the resonance wave function, we
can choose the R value for an appropriate eigenvalue at which
the DOS reaches its maximum. However, in case of very nar-
row resonances, the R value at the midpoint of the plateau of
a particular eigenvalue can fairly be chosen. Having the idea
of the resonance wave function more structural information
about the state may be extracted.

This method is applicable to any total angular momen-
tum state (2s+1LJ ) of heliumlike ions and in principle to the
complex resonance structures of many-electron systems. It
can also be used to study the behavior of bound states of
few-electron ions inside a finite domain to realize the pres-
sure confinement. As an example, we choose a two-electron

TABLE III. Parameters of first six resonance states of heliumlike
U (Z = 92) below U91+(2s) threshold.

Resonance energy Resonance width
State Er (a.u.) 
 (a.u.)

1 –2497.1405 0.01682
2 –2490.8784 0.00126
3 –2159.9825 0.00096
4 ∼–1785.81 −
5 ∼–1783.11 −
6 ∼–1567.75 −
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ion embedded in dense plasma environment belonging to
strong coupling regime considering the ion-sphere (IS) model
potential [64] where the two-body interaction between the
nucleus and a bound electron is given by

VIS(ri ) = −Z

ri
+ Z − Ne

2R

[
3 −

(
ri

R

)2]
. (26)

Here Z is the nuclear charge of the positive ion and Ne is
the number of bound electrons. R is the IS radius which is
determined from the charge neutrality condition,

Z − Ne = 4
3πR3ne. (27)

The density of plasma electrons (ne) thus governs the size
of the sphere (Wigner-Seitz sphere) [64]. Due to the spatial
finiteness of the IS potential, the wave function of the bound
electrons is truncated at the boundary of the Wigner-Seitz
sphere. Considering the experimental interest in the dense
aluminum plasma [65], we have made an attempt to estimate
the ground-state energy of the heliumlike aluminum ion as
a test case. It has been found that the present method yields
ground-state energy eigenvalues –156.653 a.u., –151.299 a.u.,
and –148.682 a.u. for ne = 5×1022 per cm3, 5×1023 per cm3,
and 1×1024 per cm3, respectively. The present values are in
reasonable agreement with those estimated by Chen et al. [66]
using multiconfiguration Dirac-Fock (MCDF) wave functions
with the inclusion of a finite nuclear size and QED corrections.

IV. CONCLUSION

The stabilization method in the relativistic configuration-
interaction framework has been adopted to investigate the
isolated resonances of He and heliumlike uranium ion with
� = 0 and J = 0. The ions are considered to be enclosed
within an impenetrable spherical cavity, the radius of which
is varied continuously. The stabilization diagram is therefore
realized with respect to the radius of the cavity (R). The
advantage of this diagram is that one can obtain the tentative
positions of all the resonances admissible for a given basis
size. It has been noted that a single eigenroot of the diago-
nalized Hamiltonian may form a flat plateau in the vicinity
of avoided crossings at several resonance energies. Therefore,
different roots show flat plateau in the vicinity of avoided
crossings for particular resonance energy. The DOS profiles
are used to determine the parameters of the resonance states.
In case of isolated resonances, the DOS is numerically es-
timated by taking the inverse of tangent at different points
near the flat plateaus which are expected to fit with perfect
Lorentzian functions. But the shape of the numerically esti-
mated DOS profile depends on two major factors: First the

quality and size of the basis set which actually determines
whether a resonance is properly localized by a particular
eigenroot of the diagonalized Hamiltonian or not. Therefore, a
distorted DOS profile for a particular root implies that the root
does not adequately represent the given resonance. We have
shown the dependence of the DOS profiles corresponding to
different resonances on the diagonalized eigenroots. Never-
theless, we can choose the best fitted DOS profile (looking
at the statistical fitting parameters χ2 and R2) from different
roots to estimate the position and width of a particular isolated
resonance. The second important factor is the mesh size of the
basis set and stabilizing parameters (here in the present work,
it is the radial extent of the wave function R). Due to obvious
reasons, the accuracy of the numerical value of DOS at dif-
ferent energy positions in the neighbourhood of the plateau is
quite sensitive on the mesh size. The lesser the mesh size, the
variation of tangent at different points in the plateau region
will be more accurate. For narrow resonance or in the case
of two closely spaced isolated resonances (not necessarily
narrow), the numerical errors can essentially be avoided by
considering lesser mesh size of R. We have determined the
parameters of two closely spaced resonances of heliumlike
uranium accurately just by increasing the mesh size. In sum-
mary, there is always a scope of improving the accuracy of
the DOS profiles and therefore the precision of the estimated
resonance parameters by increasing the number of terms in
the basis set (or the radial extension of the basis set) as well
as by decreasing the mesh size of the stabilizing parameter.
In the strong confinement regions, we have also determined
the variation of the bound state energies with respect to the
cavity radius (R) and made an estimate about the pressure felt
by the atom inside the cavity. Moreover, we have shown how
the present method can be useful to determine the bound state
energies of highly charged ions in the strongly coupled plasma
environment. This hybrid technique has the potential to enable
investigating the resonance structures of highly charged ions
of high-Z elements.
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