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P,T -odd interactions in atomic 129Xe and phenomenological applications
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We calculate interaction constants for the contributions from P,T -odd scalar-pseudoscalar and tensor-
pseudotensor operators to the electric dipole moment of 129Xe using relativistic many-body theory including
the effects of dynamical electron correlations. These interaction constants are necessary ingredients to relating
the corresponding measurements to fundamental parameters in models of physics beyond the standard model. We
obtain αCS = (0.71 ± 0.18)(10−23 e cm) and αCT = (0.520 ± 0.049)(10−20 〈�〉Xe e cm), respectively. We apply
our results to test a phenomenological relation between the two quantities, commonly used in the literature, and
discuss their present and future phenomenological impact.
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I. INTRODUCTION

Electric dipole moments (EDMs) provide exceptionally
sensitive tests for CP-violating physics beyond the standard
model (BSM). A significant nonzero result in any of the
ongoing searches would constitute a major discovery. The
quantitative interpretation of these measurements in terms
of fundamental CP-violating parameters is, however, rather
complicated. The relations between these parameters and the
measurements, which often involve complex systems like
atoms or molecules, are established via a series of effective
field theories, see Refs. [1–9] for recent reviews. They require
the evaluation of matrix elements on various scales of the
problem, in particular on the atomic, nuclear, and hadronic
levels, which in many cases involve large uncertainties. Apart
from quantitative issues, there is also the problem that every
system only probes one combination of these fundamental
parameters. Constraining individual coefficients model in-
dependently therefore requires the combination of several
measurements, see for instance Refs. [8,10–13] for recent
discussions. This is particularly complicated in the case of
diamagnetic systems, for which there are many contribu-
tions. Disentangling them requires a corresponding number of
competitive experimental measurements in different systems,
which are not yet available. Apart from mercury, which has
provided the most stringent limit for a diamagnetic system
for a long time (see Ref. [14] for the most recent measure-
ment and Ref. [15]), there has been recent progress for xenon
[16–19], which will allow for significant improvements in
the midterm future. We therefore consider in this article two
contributions from semileptonic P, T -odd BSM operators in
this system: The tensor-pseudotensor interaction, which, if
present in a BSM model, is expected to give the dominant
semileptonic contribution in diamagnetic systems [20], and
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the scalar-pseudoscalar interaction, which is generally sup-
pressed in diamagnetic systems, but provides an interesting
relation to paramagnetic systems. We calculate both relevant
interaction constants explicitly, which in the latter case is pos-
sible due to an approach recently developed for this coefficient
in mercury [13]. The explicit calculation of both coefficients
in the same framework allows for testing phenomenological
relations often employed in the literature.

The article is structured as follows: In Sec. II we review the
formalism for the calculation of the two interaction constants.
In Sec. III we present our calculations for xenon and discuss
the results. Phenomenological consequences are discussed in
Sec. IV, before concluding in Sec. V. Some details of the
calculation are deferred to the Appendix.

II. THEORY

A. Scalar-pseudoscalar nucleon-electron (S-PS-ne) interaction

The theory and method of calculation for the S-PS-ne in-
teraction via the magnetic hyperfine interaction has been laid
out in full detail in Ref. [13]. We summarize the main points
in the following.

The zeroth-order wave functions are obtained by solving

Ĥ (0)
∣∣ψ (0)

K

〉 = ε
(0)
K

∣∣ψ (0)
K

〉
, (1)

where H (0) is the atomic Dirac-Coulomb (DC) Hamiltonian
including the dipole energy due to a homogeneous external
electric field Eext, with the nucleus placed at the origin:

Ĥ (0) := ĤDirac-Coulomb + Ĥ Int-Dipole

=
N∑
j

[
c α j · p j + β jc

2 − Z

r j
114

]

+
N∑

j,k> j

1

r jk
114 +

∑
j

r j · Eext 114, (2)
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where the indices j, k run over N electrons, Z is the proton
number (N = Z for neutral atoms), and α, β are standard
Dirac matrices. We use atomic units (a.u.) throughout (e =
m0 = h̄ = 1). The states |ψ (0)

K 〉 are represented by electronic
configuration interaction (CI) vectors.

The magnetic hyperfine (HF) interaction,

ĤHF = − 1

2c mp

μI
I

·
n∑

i=1

αi × ri

r3
i

, (3)

where μ = gI is the nuclear magnetic moment, g the nuclear
g factor, mp the proton mass and I the nuclear spin, perturbs
this wave function. To first order, the perturbed wave function
can be written as∣∣ψ (1)

J

〉 = ∣∣ψ (0)
J

〉 + ∑
K �=J

〈
ψ

(0)
K

∣∣ĤHF

∣∣ψ (0)
J

〉
ε

(0)
J − ε

(0)
K

∣∣ψ (0)
K

〉
. (4)

The required matrix elements of the hyperfine Hamiltonian
are obtained from

(Azk )MN = −μ[μN ]

2cImp

n∑
i=1

〈
ψ

(0)
M

∣∣(αi × ri

r3
i

)
k

∣∣ψ (0)
N

〉
, (5)

where k is a Cartesian component and the nuclear magnetic
moment enters in units of the nuclear magneton μN = 1

2cmp

(in a.u.).
The scalar-pseudoscalar atomic interaction constant can be

defined starting from an effective theory at the nucleon level.
The corresponding Lagrangian density for the interaction of
an electron with proton and neutron, N = p, n, can be formu-

lated as [21]

LS-PS-ne = − GF√
2

∑
N

CN
S ψNψN ψ iγ 5 ψ, (6)

where GF is the Fermi constant and ψ(N ) are field opera-
tors. The Wilson coefficients CN

S are determined by CP-odd
interactions at higher energies. Summing over electrons and
nucleons, this yields for the effective interaction in a many-
electron atom

Ĥ eff
S-PS-ne = i

GF√
2

ACS

∑
e

γ 0
e γ 5

e ρ(re), (7)

where A is the nucleon number, ρN the normalized nuclear
charge density, and γ μ are standard Dirac matrices. CS is the
dimensionless S-PS-ne coupling constant, given as

CS = Z

A
Cp

S + A − Z

A
Cn

S . (8)

Note that this combination is in principle isotope specific
but approximately universal for heavy atoms [10]. To leading
order the S-PS-ne energy shift is thus written as

(	ε)J = 1

〈ψ (1)
J |ψ (1)

J 〉
〈
Ĥ eff

S-PS-ne

〉
ψ

(1)
J

. (9)

Finally, the atomic EDM due to S-PS-ne interaction is

da = αCSCS, (10)

where the atomic interaction constant is determined from

αCS (ψJ ) =
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2
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〈
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⎤⎥⎦. (11)

For convenience, we use in the following also the S-PS-ne
ratio S (not to be confused with the nuclear Schiff moment,
also denoted S in the literature), defined as

S := da

ACS
GF√

2

= αCS

A GF√
2

≈ −
〈
i
∑

e
γ 0

e γ 5
e ρ(re)

〉
ψ (1) (Eext )

Eext 〈ψ (1)|ψ (1)〉 . (12)

B. Tensor-pseudotensor nucleon-electron (T-PT-ne) interaction

Similarly to the scalar-pseudoscalar interaction, the T-PT-
ne atomic interaction constant can be defined starting from
an effective theory at the nucleon level. The corresponding
Lagrangian density for the interaction of an electron with
proton and neutron, N = p, n, can be formulated as

LT-PT-ne = 1

2

GF√
2

∑
N

εμνρσCN
T ψNσNμνψN ψσρσψ, (13)

where GF is the Fermi constant, σρσ = i
2 (γ ργ σ − γ σ γ ρ )

(σμν
N analogously), and ψ(N ) are field operators. CN

T are
Wilson coefficients determined by CP-odd interactions at
higher energies. We use the convention ε0123 = 1. Based on
this expression and using the identity 1

2εμνκλσκλ = −iγ 5σμν

with electronic γ 5 = iγ 0γ 1γ 2γ 3, an effective first-quantized
Hamiltonian can be written as

Ĥ eff
T-PT-ne = iGF√

2

∑
N

CN
T ρN (r)γ 0σN μνγ

5σμν, (14)

where ρN (r) denotes the probability density of the corre-
sponding nucleon at the position of the electron and the
electronic Dirac matrix γ 0 originates in the field creator
ψ . The term σN μνγ

5σμν is the signature of a rank-2 Dirac
nuclear-tensor electronic-pseudotensor operator and satisfies
the following identity:

σN μνγ
5σμν = 2γ 0

NγN · � + 2γ 0�N · γ, (15)

where �N denotes the nuclear and � the electronic spin
matrix. In Appendix A1 we demonstrate that the electronic
expectation value 〈ψ |�|ψ〉 of the first term on the right-hand
side of this equation is strictly zero if ψ is a closed-shell wave
function for a many-electron state with valence configuration
ns2

1/2, even including an external electric field. This condi-
tion is lifted only by internal magnetic couplings such as the
hyperfine or electronic spin-orbit interactions. The resulting
contributions appear therefore only at higher orders in the

012807-2



P,T -ODD INTERACTIONS IN ATOMIC … PHYSICAL REVIEW A 103, 012807 (2021)

perturbative series and can be neglected in the following. The
T-PT-ne Hamiltonian used here consequently stems from the
second term on the right-hand side of Eq. (15):

Ĥ eff
T-PT-ne = iGF√

2

∑
N

2CT
N �N · γρN (r). (16)

To this point the formulation is in terms of individual nu-
cleons. We now consider this interaction in the context of
a nucleus with many protons and neutrons. Then, using
Eq. (16), we can write

Ĥ eff
T-PT-ne = 2iGF√

2
ρ(r)

[
CT

p

∑
i

�i · γ + CT
n

∑
j

� j · γ

]
,

(17)
where ρ(r) now refers to the (normalized) nuclear density
which we assume to be equal for protons and neutrons, and
the indices i, j run over all protons and neutrons, respectively.
In a nuclear shell model, the spin sums over closed shells of
either protons or neutrons vanish, so the total sums will be
dominated by those nucleons that do not form closed shells.
Their precise values depend on the adopted nuclear model;
they determine the linear combination of Cp,n

T that is probed
by a given nuclear isotope. Observing

〈�〉A = 〈�A
p〉 + 〈�A

n 〉 and 〈�〉 = 〈�〉 I/I, (18)

we can write for the effective, isotope-specific interaction
constant CA

T ,

〈�〉ACA
T = 〈�〉A

pCp
T + 〈�〉A

nCn
T . (19)

Therefore, the Hamiltonian for electron-nucleus interaction
becomes

Ĥ eff
T-PT-ne = 2iGF√

2
ρ(r)CA

T 〈�〉A
I · γ

I
. (20)

In a setup with rotational symmetry around the z axis, the
1,2 components of 〈�〉 will vanish. Considering furthermore
a nuclear state |I, MI = I〉 and integrating over the nuclear
coordinates, the Hamiltonian can be written as

Ĥ eff
T-PT-ne = 2iGF√

2
CA

T 〈�〉Aγ3 ρ(r). (21)

The evaluation of this Hamiltonian in the multielectron en-
vironment of the given atom determines the T-PT-ne energy
expectation value RT : Defining the matrix element

MT -PT
e = 〈

ψ
(0)
K

∣∣i n∑
j=1

(γ3) j ρ(r j )
∣∣ψ (0)

K

〉
, (22)

RT is given as

RT =
√

2GF 〈�〉A MT -PT
e . (23)

The expectation value 〈ψ |γ3|ψ〉 for a closed-shell electronic
state is shown to be nonzero in Appendix A2.

The atomic electric dipole moment due to a tensor-
pseudotensor interaction can be written as

da = CA
T αCT (24)

and we define the T-PT interaction constant in the quasilinear
regime (see also Ref. [22]) with very small external electric

fields as

αCT := RT

Eext
. (25)

C. Electric dipole polarizability

The P, T -odd permanent EDM is measured via the atom’s
response to an electrical field. Hence, the reaction of an atom
to such a field is a quantity of interest. Specifically, the dy-
namic dipole moment of the atom, i.e., the induced dipole
moment that is itself proportional to the electric field (and
hence does not violate any fundamental symmetries), is char-
acterized to leading order by the atomic electric polarizability
α. This is a relatively easily measurable quantity; the com-
parison of its experimental value with the value calculated in
a given electronic-structure model provides a measure of the
quality of that model used also in the calculations of P, T -odd
effects.

A Taylor expansion of the field-dependent total electronic
energy ε around electric field E = Ez = 0 reads

ε(E ) = ε(0) + ∂ε(E )

∂E

∣∣∣∣
E=0

E + 1

2

∂2ε(E )

∂E2

∣∣∣∣
E=0

E2 + . . . , (26)

≡ ε(0) − dAE − 1

2
azzE

2 + . . . , (27)

with the atomic EDM dA and the 2nd order polarizability
tensor (αi j ).

We obtain α ≡ αzz by calculating ε(E ) at a finite set of field
points and then determining the second derivative in Eq. (27)
from a fit to the perturbed energies.

III. 129Xe EDM CALCULATIONS

A. Technical details

Atomic basis sets of Gaussian functions are used, denoted
valence double-zeta (vDZ), valence triple-zeta (vTZ), and
valence quadruple-zeta (vQZ), including all available
polarizing and valence-correlating functions [23,24]. The
complete sets amount to (21s 15p 11d 2 f ), (29s 22p
18d 7 f 2g), and (34s 28p 19d 12 f 7g 2h) functions for
vDZ, vTZ, and vQZ, respectively. Wave functions for the
1S0 electronic ground state of Xe are obtained through
a closed-shell HF calculation using the Dirac-Coulomb
Hamiltonian including the external electric field, see Eq. (2).
The Dirac-Coulomb Hartree-Fock (DCHF) calculation
is followed by a linear expansion in the basis of Slater
determinants formed by the occupied and virtual sets
of 4-spinors and diagonalization of the DC Hamiltonian
including the external electric field in that basis (CI approach)
[25]. The resulting “correlated” wave functions ψ

(0)
I —where

the CI expansion coefficients are fully relaxed with respect to
the external electric field—are then introduced into Eqs. (4)
and (22). Coupled-cluster (CC) calculations are performed by
exponentially expanding the wave function into the n-electron
sector of Fock space using the same set of DCHF spinors
as for the CI calculations. The nomenclature for both CI
and CC models is that S, D, T, etc., denote singles, doubles,
triples, etc. replacements with respect to the closed-shell
DCHF determinant. The following number is the number of

012807-3



TIMO FLEIG AND MARTIN JUNG PHYSICAL REVIEW A 103, 012807 (2021)

TABLE I. Static electric dipole polarizability and T-PT-ne interaction constant for the Xe atom using different wave-function models.

Model/virtual cutoff (vDZ,vTZ,vQZ) (a.u.) α (a.u.) αCT (10−20 〈�〉Xe e cm)

Basis set Basis set

vTZ vQZ vDZ vTZ vQZ

RPA/- 27.08 26.76 0.460 0.552 0.566
SD8/80,100,60 27.42 28.58 0.438 0.517 0.534
SDT8/80,100,60 27.32 28.77 0.438 0.514 0.531
SDTQ8/80,12,60 0.435 0.510
CCSD8/80,100,60 27.59
CCSD(T)8/80,100,60 27.81
SD16/80,100,60 27.07 26.80 0.439 0.518 0.534
SD8_SDT16/80,100,60 28.58 0.438 0.514
SD18/80,100,60 26.36 26.29 0.532
CCSD18/80,100,60 27.81 27.26
CCSD(T)18/80,100,60 27.19
SD24/80,100,60 26.44 26.54 0.441 0.520 0.538
SD26/80,100,60 26.32 0.530
CCSD26/80,100,60 27.05
CCSD(T)26/80,100,60 26.86
S16_SD32/80,100,60 0.520
SD32/80,100,60 26.33 0.442 0.521 0.538
SD36/80,100,60 25.58 0.453 0.536
vQZ/SD32/60 +� 0.549
Flambaum et al.a 0.41
Dzuba et al.bRPA 0.57
Mårtensson-Pendrillc RPA 0.52
Nakajima et al.d RCCSDT 27.06
Y. Singh et al.e CCSDpT 27.78 0.50
Sakurai et al.f RNCCSD 27.51 0.49
Sakurai et al.g RCCSD(SC) 28.12 0.48
Experimenth 27.815(27)

aRef. [21]; bRef. [32]; cRef. [33]; dRef. [34]; eRef. [35]; fRefs. [36,37]; gRef. [37]; hRef. [38].

correlated electrons and encodes which occupied shells are
included in the CI or CC expansions. For the calculation of
α and αCT we have 8 =̂ (5s, 5p), 16 =̂ (4s, 4p, 5s, 5p),
18 =̂ (4d, 5s, 5p), 24 =̂ (3s, 3p, 4s, 4p, 5s, 5p), 26 =̂
(4s, 4p, 4d, 5s, 5p), 32 =̂ (2s, 2p, 3s, 3p, 4s, 4p, 5s, 5p),
and 36 =̂ (3d, 4s, 4p, 4d, 5s, 5p). The notation type
S16_SD32, as an example, means that the model SD32
has been approximated by omitting double excitations
from the (2s, 2p, 3s, 3p) shells. The nuclear spin quantum
number is I = 1/2 for 129Xe [26]. The atomic nucleus
is described by a Gaussian charge distribution [27] with
exponent ζXe = 1.8030529331 × 108. Atomic static electric
dipole polarizabilites are obtained from fitting the total
electronic energies using seven points of field strengths
Eext ∈ {−1.2,−0.6,−0.3, 0.0, 0.3, 0.6, 1.2} × 10−4 a.u. For
the calculation of the T-PT interaction constant we use
Eext = 0.3 × 10−4 a.u., for the S-PS-ne interaction constant
Eext = 0.5 × 10−3 a.u.

A locally modified version of the DIRAC program package
[28] has been used for all electronic-structure calcula-
tions. Interelectron correlation effects are taken into account
through CI theory by the KRCI module [25] and CC the-
ory by the RELCCSD module [29,30] both as implemented in
DIRAC [31].

B. Results and discussion

Results for electric dipole polarizability and the atomic T-
PT interaction constant are compiled in Table I. We discuss
the quantities separately.

1. Electric dipole polarizability

The most striking observation from CC calculations is the
apparent correspondence of the CCSD(T)8 model using the
largest atomic basis set with the experimental result and the
ensuing decrease of the polarizability when outer- and inner-
core shell electrons are included in the CC expansion. This
same trend is observed for the CI models as well, although
here it tends to overshoot somewhat. However, the difference
between α(CISD18) and α[CCSD(T)18] is only about 3.5% in
the vQZ basis. Since the basis-set effect on the polarizability is
of the order of 1–2%, a similar conclusion can be made when
comparing α(CISD26) and α[CCSD(T)26]. The latter model
yields a polarizability that differs from the experimental result
by about 4%. Given that accounting for both perturbative
triple excitations and inner-core correlations tends to decrease
α and the basis-set effect is so small, it is unclear how to
explain this deviation. The CC models used by Y. Singh et al.
and Sakurai et al. (quoted in Table I) yield polarizabilities
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that appear to agree better with experiment. However, it is not
evident that these latter models give the right answer for the
right reason, since the relativistic CC calculation of Nakajima
et al. that includes full iterative triple excitations yields a
smaller result, very close to the present best value from the
model vQZ/CCSD(T)26.

Nonetheless, the final deviations from experiment of both
CI and CC models employed in the present work are suffi-
ciently small for the present purpose of determining atomic
P, T -odd interaction constants. A deeper investigation into
the above issue will therefore not be attempted here. A further
reason for this will be given in the next subsection.

2. T-PT interaction

The general strategy for obtaining an accurate final result
for αCT is to identify the leading physical effects on αCT using
the small basis set (vDZ). In a second step these dominant
effects are determined more accurately using the larger basis
sets, and finally a correction to the final value is applied by
adding differences from effects neglected with the larger basis
sets.

All of the present results contain the core contribution to
αCT from frozen shells. The predominant effect on αCT comes
from electron correlations [double (D) excitations] among
the valence (5s, 5p) electrons which diminish αCT , and the
core electrons, which increase αCT . Interestingly, these two
contributions cancel each other to some degree. When com-
paring the correlation trends for α and αCT , for the most part
increasing polarizability is correlated with decreasing T-PT
interaction, and vice versa. Physically speaking, the “softer”
the atom (i.e., the more polarizable) the smaller its EDM
due the electron-nucleon time-reversal-violating interaction.
However, this correlation is not always satisfied, for example
when comparing the models SD24 and SD26 or SD32 and
SD36. On the other hand, the trend only seems to be broken
when electron shells of certain angular momenta are replaced
by shells of different angular momentum, not when shells
of the same angular momentum are added to the correlation
expansion.

The total effect of adding excitations from shells n = 2
through n = 5 is about −5% on αCT . The effect of electron
correlations from excitations out of the 3d and 4d shells will
be added as a correction to the final value.

Since inner-shell holes are relevant in assessing αCT and
valence basis sets are used in the present study, the question
arises whether these basis sets are adequate for the present
purpose. Table II shows that indeed the correlation energy per
correlated electron diminishes with the number of correlated
electrons. This is to a significant part due to the truncation
of the virtual spinor space or, in other words, the lack of
core-correlating functions in the employed part of the basis
set, which becomes evident when increasing the cutoff to 550
a.u., increasing the correlation energy in a range of 10–50%.
However, the property αCT varies by less than 1% with in-
creasing cutoff, thus justifying the truncation of the virtual
spinor space (and the use of a valence basis set).

From the results using the vDZ basis set valence triple
excitations seem to be unimportant and valence quadruple
excitations seem to affect αCT by less than 1%. Since small

TABLE II. Correlation energy per correlated electron with vTZ
basis.

Model/virtual cutoff (a.u.) Ecorr
N (mEH ) αCT (10−20 〈�〉Xe e cm)

SD8/100 20.0 0.517
SD8/550 20.0 0.517
SD16/100 16.1 0.518
SD24/100 13.7 0.520
SD24/550 15.5 0.521
SD32/100 11.2 0.521
SD32/550 17.0 0.525

basis sets do not catch the full effects of dynamic corre-
lations we test these observations. Indeed, larger basis sets
augment the effects from higher excitations, but the change
is not dramatic. Full triple and quadruple excitations from
the (5s, 5p) shells lead to a decrease of αCT by only −1.6%.
The use of a smaller virtual space for the SDTQ8 model has
been justified by comparing SDT8 models at 12 a.u. and 100
a.u. which produce the same shift on αCT . So the effect of
higher excitations is already correctly described at the lower
cutoff. Finally, combined higher excitations from inner shells
and valence shells do not affect αCT notably, as the model
SD8_SDT16 demonstrates.

The final value for the tensor-pseudotensor interaction con-
stant is obtained from the base value calculated with the model
vQZ/SD32/60 to which a shift is applied, determined as
follows:

	αCT = αCT (vTZ/SD36/100) − αCT (vTZ/SD16/100)

+αCT (vTZ/SDTQ8/100) − αCT (vTZ/SD8/100).

The uncertainty of the final value for the atomic T-PT-ne in-
teraction constant is estimated by linearly adding uncertainties
for relevant individual degrees of freedom in the calculations.
These are 3% for the atomic basis set, 4% for remaining
inner-shell correlations, and 2% for the higher excitation ranks
not considered by the present models, adding up to a total
estimated uncertainty of about 9%. We thus write the T-PT
interaction constant including the estimated uncertainty as

αCT = (0.549 ± 0.049)(10−20 〈�〉Xe e cm). (28)

Recent work [39] has made possible the use of the more
accurate Fermi distribution for the nuclear density ρ(r) in our
atomic calculations. Replacing the Gaussian distribution by
this Fermi distribution in the P, T -violating operator eval-
uated in Eq. (22) results in a drop of αCT by about 5.5%
(vQZ/SD32/60). We include this as a correction and give the
final value for the T-PT interaction constant as

αCT = (0.520 ± 0.049)(10−20 〈�〉Xe e cm). (29)

The S-PS operator in Eq. (7) also depends explicitly on the
nuclear density. A change to using a Fermi distribution in
this case is ongoing work. However, the ratio

αCT
αCS

will be less
affected by changing the nuclear density due to cancellations.
The discussion in Sec. IV will thus be based on the value from
Eq. (28).
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TABLE IIII. S-PS-ne interaction ratio S and interaction constant αCS in 1S0 ground state of the 129Xe isotope, I = 1/2, g(129Xe) =
−0.777977, EExt = 0.0005 a.u., for sets of perturbation CI states (all CI model X-SDT8_SD8, except for ∗CI model S8-X-SDT8_SD16,
∗∗CI model S10-X-SDT8_SD18, and Q CI model X-SDTQ8_SD8).

Basis # of CI states/X S (10−3 a.u.) αCS (10−23 e cm)

cvTZ/40 a.u. 8/S8 0.590 0.633
cvTZ/7 a.u. 8/6s6p 0.552 0.592
cvTZ/14 a.u. 8/6s6p 0.554 0.594
cvTZ/7 a.u. 8/6s6p5d 0.604 0.648
cvTZ/7 a.u. 8/6s6p5dQ 0.603 0.647
cvTZ/7 a.u. 8/6s6p5d7p 0.667 0.716
cvTZ/7 a.u. 8/6s6p5d7p7s 0.693 0.744
cvTZ/14 a.u. 8/6s6p5d7p7s 0.694 0.745
cvTZ/14 a.u. 8/6s6p5d7p7s∗ 0.731 0.784
cvTZ/14 a.u. 8/6s6p5d7p7s∗∗ 0.717 0.769
cvTZ/7 a.u. 8/6s6p5d7p7s6d 0.699 0.750
cvTZ/7 a.u. 8/6s6p5d7p7s6d4 f 0.702 0.753
cvTZ/7 a.u. 8/6s6p5d7p7s6d4 f 7d5 f 8p8s 0.671 0.720
cvTZ/7 a.u. 8/all 0.583 0.625
cvQZ/100 a.u. 8/S8 0.592 0.635
cvQZ/50 a.u. 1000/S8 0.499 0.535
cvQZ/100 a.u. 1281/S8 0.611 0.655
cvQZ/50 a.u. 8/6s6p 0.482 0.517
cvQZ/50 a.u. 8/6s6p5d7p7s 0.710 0.762
vQZ/1281/S8/100 + �Scorr 0.680 0.730

3. S-PS interaction

S-PS nucleon-electron interaction constants—calculated
according to Eqs. (11) and (12)—are shown in Table III. The
general pattern in all of the different models is the appear-

ance of two major contributions in the sum over states, see
Eq. (11). These two contributions CK are more explicitly writ-
ten in terms of the matrix elements over atomic j- j-coupled
states9|hole spinor → particle spinor J, MJ〉

C1 =
〈5p → 6s 0, 0|ĤHF|0, 0〉〈0, 0|i ∑

e
γ 0

e γ 5
e ρ(re)|5p → 6s 0, 0〉

ε
(0)
0,0 − ε

(0)
5p→6s 0,0

, (30)

C2 =
〈5p → 6p 1, 0|ĤHF|0, 0〉〈0, 0|i ∑

e
γ 0

e γ 5
e ρ(re)|5p → 6p 1, 0〉

ε
(0)
0,0 − ε

(0)
5p→6p 1,0

, (31)

where J and MJ are n-body total angular momentum quantum
numbers and the Xe electronic ground state is denoted as
|0, 0〉. The off-diagonal hyperfine matrix element is larger in
the term C2 than in the term C1. This is reasonable, because
the hyperfine Hamiltonian does not break parity symmetry
(the matrix element in C1 is nonzero, however, due to 6s-6p1/2

mixing caused by the external electric field). Conversely, the
off-diagonal S-PS-ne matrix element is larger in the term C1

than in the term C2. Again, this is expected, since the S-PS-ne

9This notation is approximate since in an external electric field J
is no longer strictly a good quantum number, due to the breaking of
full rotational symmetry. However, the chosen electric field is very
small, hence the symmetry breaking is not so drastic as to lead to
a breakdown of the notation. MJ , on the other hand, is an exact
quantum number for our zeroth-order states |ψ (0)

K 〉 which are not
perturbed by the hyperfine interaction.

Hamiltonian is parity odd. Note also that the couplings only
occur between states where 	MJ = MJ − M ′

J = 0, since both
the hyperfine and the S-PS-ne Hamiltonians are rotationally
invariant. So the above analysis provides a detailed under-
standing of the mechanism that leads to a nonzero S-PS-ne
interaction constant for ground-state Xe in the presence of
both an external electric field and magnetic hyperfine inter-
action.

In analogy to similar matrix elements in the Hg atom stud-
ied in Ref. [13] we have sgn(C1) = −sgn(C2). In Xe, however,
O(|C1| − |C2|) is only one unit larger than the order of a large
number of additional small contributions (with alternating
signs) which makes Xe a difficult case. The strategy based
on this finding for obtaining a reliable value of the S-PS-ne
interaction is explained in the following.

We determine a base value for an (uncorrelated) random-
phase-approximation (RPA) model to which a correlation shift
is added, determined from the comparison of a root-restricted
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TABLE IV. Ratios of electron EDM [41] and S-PS-Ne matrix
elements for leading transitions in Xe and Hg.

Xe ( de
CS 10−18e cm

)

Ratio
〈0,0|2ic

∑
j γ 0

j γ 5
j p2

j |5p→6s 0,0〉
〈0,0| AGF√

2
i
∑

e γ 0
e γ 5

e ρ(re )|5p→6s 0,0〉 −158.0

Ratio
〈0,0|2ic

∑
j γ 0

j γ 5
j p2

j |5p→6p 1,0〉
〈0,0| AGF√

2
i
∑

e γ 0
e γ 5

e ρ(re )|5p→6p 1,0〉 −159.2

Hg ( de
CS 10−18e cm

)

Ratio
〈1S0,MJ =0 |2ic

∑
j γ 0

j γ 5
j p2

j |3P0,MJ =0〉
〈1S0,MJ =0 | AGF√

2
i
∑

e γ 0
e γ 5

e ρ(re )|3P0,MJ =0〉 −85.9

Ratio
〈1S0,MJ =0 |2ic

∑
j γ 0

j γ 5
j p2

j |3S1,MJ =0〉
〈1S0,MJ =0 | AGF√

2
i
∑

e γ 0
e γ 5

e ρ(re )|3S1,MJ =0〉 −85.2

RPA model and the corresponding correlated model. This
base value is shown in Table III for the model S8 using
the cvQZ basis set. We have verified that the electron EDM
enhancement R with this model corresponds well10 to the
value obtained by Mårtensson-Pendrill [40], since S-PS-ne
and electron EDM matrix elements behave very similarly. In
order to corroborate this statement we display in Table IV
the ratios of leading off-diagonal matrix elements in Xe (this
work) and Hg (taken from the work for Ref. [13]). These ratios
are very stable across different transitions in a respective atom
with a given nucleon number. Moreover, their absolute values
line up extremely well with the ratios for matrix elements in
paramagnetic atoms given by Dzuba et al. in Refs. [42].

We first notice that the basis set effect onto the two
main contributors is negligibly small (compare the two 8/S8
models). It is an intriguing observation that the correlation
correction from the minimal correlation model in TZ basis
(8/6s6p) is negative (i.e., it makes the S ratio smaller than the
reference RPA value), then becomes positive when the spinor
set into which triple excitations are allowed is increased, and
finally converges to a value that is very close to the RPA value
when the full set of spinors below 7 a.u. is opened for triple
excitations.

Based on these findings we determine the final correla-
tion correction from corresponding calculations, determined
as follows:

	Scorr := S(vTZ/8/all/7) − S(vTZ/8/S8/40)

+ S(vQZ/8/6s6p5d7p7s/50)

− S(vTZ/8/6s6p5d7p7s/14)

+ S(vTZ/8/6s6p5d7p7s/14∗)

− S(vTZ/8/6s6p5d7p7s/14)

+ S(vTZ/8/6s6p5d7p7s/14∗∗)

− S(vTZ/8/6s6p5d7p7s/14)

≈ 0.069 × 10−3 a.u.

Note that for models of type S8 the virtual truncation is ar-
bitrary since here there is no correlating spinor space as in

10The deviation is on the order of 10%. Electron EDM enhance-
ments for closed-shell atoms will be published separately [41].

all other models. The final value for the S-PS-ne interaction
ratio is obtained by adding the correlation correction to the
best present RPA result, as shown in Table III. The models
denoted with asterisks correct for core-valence correlations
among the 4s4p and the valence electrons (∗) and among
the 4d and the valence electrons (∗∗). These latter corrections
comply with what is expected in physical terms: Valence cor-
relations give the largest correction, followed by correlations
with outer-core s and p electrons, followed by correlations
with outer-core d electrons.

The uncertainties of the final value for the atomic S-PS-ne
interaction constant are 2% for the atomic basis set, 5% for
remaining inner-shell correlations, 1% for the higher excita-
tion ranks not considered by the present models, and 16% for
the lack of correlation corrections to other contributing states,
adding up (linearly) to a total estimated uncertainty of about
25%. Thus, our interaction constant is given as

αCS = (0.71 ± 0.18)(10−23 e cm). (32)

The principal physical effects neglected in the above calcu-
lations are electron correlation effects on the ensemble of
individually minor contributions to αCS . These minor contri-
butions are accounted for, however, at the RPA level of theory.

IV. PHENOMENOLOGY

Recently there has been significant progress in the experi-
mental techniques for determining the EDM of 129Xe [16–19],
with the strongest upper limit now reading [19]

|dXe| � 8.3 × 10−28e cm (95% CL, preliminary). (33)

While the resulting limits on phenomenological parameters
are still relatively weak, there is the potential to improve the
sensitivity by several orders of magnitude in the mid-term
future. Even with these improvements, xenon will likely not
provide the strongest limits on CP-violating parameters in
single-source analyses, given its lower sensitivity to these pa-
rameters by approximately a factor of 10 compared to 199Hg.
However, limits obtained from single-source analyses cannot
be considered reliable, since they require neglecting poten-
tial cancellations. Given that in virtually every BSM model
several CP-violating sources at low energy exist, such an
assumption can usually not be justified and results in a mere
estimate of the order of magnitude for a given limit. General-
izing the analysis to include several sources of CP violation
comes, however, at the cost that a given measurement does
not constrain any individual parameter at all, only a system-
specific linear combination. The phenomenological impact
especially of additional diamagnetic systems like 129Xe is then
to provide independent linear combinations in such a general
approach, which is necessary to eventually provide limits
on individual coefficients and achieve some level of model
discrimination. Diamagnetic systems can also play a role in
determining the electron EDM in this broader context [10,13].
Finally, from a more theoretical point of view the calculated
quantities are of interest in order to test approximate relations
that are commonly used to estimate specifically αCS from a
calculation of αCT [21,43,44] for a variety of systems. This
provides unique insight into the precision of these approx-
imations, since this is the first explicit calculation of both
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quantities within the same framework. In the following we
discuss these points in more detail.

A. Xenon-EDM in generalized fits

In Refs. [10,13] it was shown how EDMs of diamagnetic
systems can be used to model-independently constrain the
electron EDM and the S-PS nucleon-electron interaction be-
yond what is presently possible with paramagnetic systems
alone, since all of the latter constrain similar linear combi-
nations of these two quantities. In principle, xenon could be
helpful: our calculation shows that the coefficients of de and
CS exhibit opposite signs (assuming the sign of the calculation
in Ref. [40] is correct), in contrast to all paramagnetic systems,
but similarly to mercury. However, given that the limit in
Eq. (33) is still much weaker than the one on the mercury
EDM [14], and an overall reduced sensitivity, this option is
rendered less interesting; in fact, repeating the analysis from
Ref. [13] including the result for ThO from the ACME collab-
oration [45], we conclude that the corresponding contribution
to xenon is limited as

|dXe(de,CS )| � 10−30e cm

(95% CL, from paramagnetic systems plus Hg). (34)

This result uses our calculation for αCS , together with the esti-
mate for αde from Ref. [40], with 100% uncertainty assigned
to the latter.

This observation can be turned into a virtue: We consider
a scenario in which the main contributions to low-energy
EDMs stem from semileptonic operators (the electron EDM
can be added without changing the argument). Such a scenario
is broadly motivated by present indications for lepton-
nonuniversal BSM physics in both charged-current (b → cτν)
and neutral-current (b → s��) decays [46]. While a connec-
tion to EDMs is not implied at all by these anomalies, specific
explanations are constrained by EDMs, in particular some
leptoquark models [47–49]. Given the constraint in Eq. (34),
together with the observation that a pseudoscalar-scalar con-
tribution to diamagnetic EDMs might be sizable, but not larger
than the contribution from CS [11,50], the limit on dXe would
imply in such a scenario a limit on the combination of Cp

T ,Cn
T

relevant for xenon. This combination is not precisely known,
however; while in semiempirical models [51–53] the ratio
〈σp〉/〈σn〉 can reach values larger than 1/3, it has been argued
in Ref. [54] that the assumptions on which these estimates are
based do not hold for xenon. Large-scale shell-model calcu-
lations [55–58] indicate much smaller values, still with large
uncertainties. For mercury both semiempirical estimates and
simulations [59] indicate a small value of 〈σp〉/〈σn〉 � 10%.
Should these coefficients turn out to be sufficiently different,
the two together could determine both contributions to CT and
thereby CT for any other system. Using the above argument
for mercury to isolate the CT contribution would require suf-
ficient control on CS from paramagnetic systems alone, which
should be attainable in the future.

Explicitly, we obtain in this scenario from combining the
experimental result in Eq. (33) with our calculation for αCT

[Eq. (28)] and the estimate [55–57] 〈�〉Xe ∼ 0.6,

|CXe
T | � 2.9 × 10−7 (95% CL). (35)

B. Testing semianalytical relations

The S-PS nucleon-electron interaction constant is com-
monly estimated using a phenomenological relation to the
coefficient of the P, T -odd tensor interaction αCT [21,43,44].
Using

αCT = 10−20CCT

〈�〉 · I
I

e cm, (36)

this can be cast into the following form:

αCS = 5.3 × 10−24(1 + 0.3 Z2α2)A2/3μACCT e cm ≡ rS/T CCT ,

(37)

where μA denotes the magnetic moment of the atom’s nucleus
(in units of the nuclear magneton). This relation implies a ratio
rXe

S/T = −6.6 × 10−23e cm, to be compared to rXe
S/T = (1.29 ±

0.35) × 10−23e cm obtained in our explicit calculation. Nei-
ther modulus nor sign are hence reproduced by the relation
(37). Performing the same test with Mercury, using our recent
calculations [13,60], yields rHg

S/T = 1.01 × 10−22e cm from

relation (37), to be contrasted with rHg
S/T = (0.63 ± 0.15) ×

10−22e cm from explicit calculation. In this case the sign
agrees and also the modulus is better reproduced, although
it is still ∼40% apart. This leads us to conclude that Eq. (37)
should not be used for anything else than a rough order-of-
magnitude estimate, while for quantitative results a dedicated
calculation is necessary. Note that our present calculations
are consistent with those of Ref. [40] concerning the signs
of the relevant atomic interaction constants. Furthermore, we
improve upon the methods used there by including leading
electron correlation corrections.

There is another relation between the coefficients for CT

and the electron dipole moment [21,43,44]. It shows a similar
failure as the relation above. Since the matrix elements enter-
ing the coefficients of CS and de behave similarly, one could
consider eliminating CT from these equations to obtain a more
reliable relation. However, even in this case the sign issue
remains: The coefficients of de and CS are predicted to have
strictly the same sign, while the opposite is true in explicit
calculations.

V. CONCLUSIONS

We calculate the interaction constants for the P, T -odd
operators with tensor-pseudotensor and scalar-pseudoscalar
structures, obtaining

αCT = (0.520 ± 0.049)(10−20 〈�〉Xe e cm) and

αCS = (0.71 ± 0.18)(10−23 e cm). (38)

The former value is in good agreement with existing
calculations, see Table I. These calculations help relat-
ing fundamental CP-violating parameters to present and
future measurements of the EDM of 129Xe, which will
help to disentangle different BSM effects contributing
to EDMs.

We applied our calculations in the extraction of a limit for
the BSM coefficient CXe

T from present data, obtaining |CXe
T | �

2.9 × 10−7 at 95% CL, holding not only in a single-source
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analysis, but also when allowing for the presence of P, T -
odd semileptonic operators and the electron EDM. While this
limit seems much weaker than the one obtained for the cor-
responding quantity in Mercury, it is presently not possible to
model-independently infer a stronger bound from the latter,
since in general a different linear combination of Cp

T and Cn
T

enters. We furthermore used our calculation to test explicitly
relation (37): While the relation is reasonably well fulfilled
for mercury, we find that it reproduces neither the correct sign
nor order of magnitude of our result. We conclude that for
quantitative analyses this phenomenological relation is insuf-
ficient and explicit calculations are necessary. We are looking
forward to improved measurements of the xenon EDM in the

coming years which will become an important ingredient in
global analyses of EDMs.
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APPENDIX A: CLOSED-SHELL STATE EXPECTATION VALUES

We consider an electronically closed-shell Slater determinant for an atomic configuration ns2
1/2 and a corresponding determi-

nant for a configuration np2
1/2. The four one-particle spinors constituting these determinants can be written [61] as

us(mj=1/2) =

⎡⎢⎢⎢⎣
gs(r)Y0,0

0
− i√

3
fs(r)Y1,0

−i
√

2
3 fs(r)Y1,1

⎤⎥⎥⎥⎦, us(mj=−1/2) =

⎡⎢⎢⎢⎣
0

−gs(r)Y0,0

−i
√

2
3 fs(r)Y1,−1

− i√
3

fs(r)Y1,0

⎤⎥⎥⎥⎦, (A1)

for orbital angular momentum � = 0 and

up(mj=1/2) =

⎡⎢⎢⎣
1√
3
gp(r)Y1,0

2
3 gp(r)Y1,1

−i fp(r)Y0,0

0

⎤⎥⎥⎦, up(mj=−1/2) =

⎡⎢⎢⎣
2
3 gp(r)Y1,−1
1√
3
gp(r)Y1,0

0
i fp(r)Y0,0

⎤⎥⎥⎦, (A2)

for orbital angular momentum � = 1, where Y�,m�
are the spherical harmonics and f , g are radial functions.

In the presence of a constant and uniform external electric field in z direction a perturbative Hamiltonian is written as

Ĥz = ẑEz,ext, (A3)

and the multiplicative operator is expressed in spherical polar coordinates as z = r cos ϑ . For reasons of rotational symmetry the
only spinor from the set in Eqs. (A1) and (A2) that will be mixed into the ground-state spinor us(mj=1/2) by Ĥz is up(mj=1/2). The
mixing coefficient is a function of the coupling matrix element

〈us(1/2)|r cos ϑ |up(1/2)〉 = 1√
3

〈
gs(r)|r3|gp(r)

〉〈Y0,0| sin ϑ cos ϑ |Y1,0〉 + 0 + 1√
3

〈
fs(r)|r3| fp(r)

〉〈Y1,0| sin ϑ cos ϑ |Y0,0〉 + 0

= 1

3
[〈gs(r)|r3|gp(r)〉 + 〈 fs(r)|r3| fp(r)〉], (A4)

where the two integrations <,> are purely radial/spherical, respectively, and the spherical volume element dV =
r2 sin ϑdrdϑdϕ has been assumed. The mixing coefficient can thus be written as

c1/2(E ) =
1
3 [〈gs(r)|r3|gp(r)〉 + 〈 fs(r)|r3| fp(r)〉] Ez,ext

	ε
, (A5)

where 	ε is the energy splitting between the s1/2 and p1/2 levels. Likewise, there is only one mixing matrix element for the other
ground-state spinor us(mj=−1/2)

〈us(−1/2)|r cos ϑ |up(−1/2)〉 = − 1
3 [〈gs(r)|r3|gp(r)〉 + 〈 fs(r)|r3| fp(r)〉],

and the corresponding mixing coefficient is

c−1/2(E ) = −
1
3 [〈gs(r)|r3|gp(r)〉 + 〈 fs(r)|r3| fp(r)〉] Ez,ext

	ε
= −c1/2(E ). (A6)

Based on these results we can write E -field-perturbed, unnormalized ground-state spinors as

u+ = us(1/2) + c1/2(E ) up(1/2), (A7)

u− = us(−1/2) − c1/2(E ) up(−1/2). (A8)
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Closed-shell determinants from spinors with even orbital angular momentum quantum number � cannot contribute due to parity
symmetry. Those from spinors with odd orbital angular momentum quantum number � � 3 cannot contribute, either, because
the electric dipole operator r̂ is only a rank-1 tensor operator.

In this two-state two-body model the antisymmetrized closed-shell wave function is then

ψ1,2(E ) = 1√
2

[u+(1)u−(2) − u−(1)u+(2)] (A9)

for particles “1” and “2.”

1. � expectation values

The electronic Dirac spin matrix for two electrons is � = �(1) + �(2). The z component of the spin expectation value in the
state ψ1,2(E ) is then written out as

〈ψ1,2(E )|(�z(1) + �z(2))|ψ1,2(E )〉 = 1

2
[〈u+(1)|�z(1)|u+(1)〉〈u−(2)|u−(2)〉 − 〈u+(1)|�z(1)|u−(1)〉〈u−(2)|u+(2)〉

−〈u−(1)|�z(1)|u+(1)〉〈u+(2)|u−(2)〉 + 〈u−(1)|�z(1)|u−(1)〉〈u+(2)|u+(2)〉
+〈u+(2)|�z(2)|u+(2)〉〈u−(1)|u−(1)〉 − 〈u+(2)|�z(2)|u−(2)〉〈u−(1)|u+(1)〉
−〈u−(2)|�z(2)|u+(2)〉〈u+(1)|u−(1)〉 + 〈u−(2)|�z(2)|u−(2)〉〈u+(1)|u+(1)〉].(A10)

For the overlap integrals we calculate straightforwardly

〈u+|u+〉 = 〈us(1/2)|us(1/2)〉 + c1/2(E )〈us(1/2)|up(1/2)〉 + c∗
1/2(E )〈up(1/2)|us(1/2)〉 + |c1/2(E )|2〈up(1/2)|up(1/2)〉

= 〈gs(r)|r2|gs(r)〉 + 〈 fs(r)|r2| fs(r)〉 + |c1/2(E )|2(
〈
gp(r)|r2|gp(r)

〉 + 〈
fp(r)|r2| fp(r)

〉
), (A11)

= 〈u−|u−〉, (A12)

〈u+|u−〉 = 〈u−|u+〉 = 0. (A13)

For the spin integrals we obtain

〈u+|�z|u+〉 = 〈us(1/2)|�z|us(1/2)〉 + c1/2(E )〈us(1/2)|�z|up(1/2)〉 + c∗
1/2(E )〈up(1/2)|�z|us(1/2)〉 + |c1/2(E )|2〈up(1/2)|�z|up(1/2)〉

= 〈gs(r)|r2|gs(r)〉 − 1

3
〈 fs(r)|r2| fs(r)〉 + |c1/2(E )|2

[
− 1

3
〈gp(r)|r2|gp(r)〉 + 〈 fp(r)|r2| fp(r)〉

]
, (A14)

〈u−|�z|u−〉 = −〈
gs(r)|r2|gs(r)

〉 + 1

3

〈
fs(r)|r2| fs(r)

〉 + |c1/2(E )|2
[

1

3
〈gp(r)|r2|gp(r)〉 − 〈 fp(r)|r2| fp(r)〉

]
. (A15)

Using the results from Eqs. (A12), (A13), (A14), and (A15), Eq. (A10) becomes

〈ψ1,2(E )|[�z(1) + �z(2)]|ψ1,2(E )〉 = 2
1

2
(〈u+|�z|u+〉 + 〈u−|�z|u−〉)〈u+|u+〉 = 0. (A16)

Since in the matrices �x and �y the Pauli matrices σx and σy are purely off-diagonal, it is easily demonstrated that

〈ψ1,2(E )|[�x(1) + �x(2)]|ψ1,2(E )〉 = 0,

〈ψ1,2(E )|[�y(1) + �y(2)]|ψ1,2(E )〉 = 0,

essentially due to vanishing large- and small-component overlaps 〈uL1 |uL2〉 = 〈uS1 |uS2〉 = 0, irrespective of the spinor type u.

2. γ3 expectation values

To Eq. (A13) the expressions remain identical. Then we calculate

〈u+|γ3|u+〉 = c1/2(E )

[
− i〈gs(r)|r2| fp(r)〉 − i

3
〈 fs(r)|r2|gp(r)〉 + i

2

3
〈 fs(r)|r2|gp(r)〉

]
+c∗

1/2(E )

[
− i

3
〈gp(r)|r2| fs(r)〉 + i

2

3
〈gp(r)|r2| fs(r)〉 − i〈 fp(r)|r2|gs(r)〉

]
= c1/2(E )

[
i
2

3
〈gp(r)|r2| fs(r)〉 − 2i〈 fp(r)|r2|gs(r)〉

]
, (A17)

〈u−|γ3|u−〉 = c1/2(E )

[
i
2

3
〈gp(r)|r2| fs(r)〉 − 2i〈 fp(r)|r2|gs(r)〉

]
= 〈u+|γ3|u+〉,

012807-10
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and so the total expectation value becomes

〈ψ1,2(E )|[γ3(1) + γ3(2)]|ψ1,2(E )〉 = 2
1

2

(〈u+|γ3|u+〉 + 〈u−|γ3|u−〉)〈u+|u+〉

= 2c1/2(E )

[
i
2

3
〈gp(r)|r2| fs(r)〉 − 2i〈 fp(r)|r2|gs(r)〉

]
×{〈gs(r)|r2|gs(r)〉 + 〈 fs(r)|r2| fs(r)〉
+ |c1/2(E )|2[〈gp(r)|r2|gp(r)〉 + 〈 fp(r)|r2| fp(r)〉]}, (A18)

which is nonzero.
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