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Radiative o’m QED contribution to the helium Lamb shift
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We present a derivation of the last unknown part of the o”m contribution to the Lamb shift of a two-electron
atom, induced by the radiative QED effects beyond the Bethe logarithm. This derivation is performed in the
framework of nonrelativistic quantum electrodynamics and is valid for the triplet (spin S = 1) atomic states. The
obtained formulas are free from any divergences and are suitable for a numerical evaluation. This opens a way for
a complete numerical calculation of the o’m QED effects in helium, which will allow an accurate determination
of the nuclear charge radius from measurements of helium transition frequencies.

DOI: 10.1103/PhysRevA.103.012803

I. INTRODUCTION

The helium atom has been extensively studied since
the very advent of quantum mechanics as the prototypical
three-body problem and an ideal testing ground for various
theoretical approaches describing many-electron atoms. Mod-
ern theoretical calculations of helium spectra [1] approach the
level of accuracy previously achievable only for the simplest
case of the hydrogen atom, with a potential for discovery of
new effects beyond the standard model. Among the major
topics of current interest in the helium atom are possibilities
to obtain an “atomic physics” value for the fine structure con-
stant o = e?/(4mwephic) [2,3] and to provide another method
for the determination of the nuclear charge radius [4,5].

Up to now, theoretical calculations of the helium Lamb
shift allowed accurate determinations only for the differences
of the nuclear charge radii of two isotopes [6]. In order to
determine the absolute value of the nuclear radius with a
precision comparable to what is expected from muonic helium
[7], one needs to perform a complete calculation of the o’m
QED effects, which is a very challenging task.

The o’m QED effects were first calculated for hydrogen
in Refs. [8-10] and recently generalized for the two-center
hydrogenic problem [11]. For helium, the a’m QED effects
were investigated in the context of the fine-structure splitting
[2,12,13], which offered extensive simplifications to the un-
derlying theory.

Several years ago, we started a project of calculating the
a’m QED effects in the Lamb shift of helium. The first
aim of the project is the triplet (spin S = 1) states, whose
theory is simplified by the absence of the so-called contact
operators « 8(7; — 7»). Intermediate results were published in
Refs. [14,15]. In the present work, we complete the derivation
of the o”m contribution, presenting formulas for the last miss-
ing part. More specifically, the «’m contribution to the Lamb
shift are represented as a sum of three parts,
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where E £7) is the relativistic correction to the so-called Bethe
logarithm, Ee(zc)h is the part induced by the electron-electron
and electron-nucleus photon exchange, and Er(Zd) is induced by
the radiative QED effects beyond the Bethe logarithm. The
relativistic correction to the Bethe logarithm was calculated
in Ref. [14], whereas the photon-exchange contribution was
derived by us in Ref. [15]. The goal of the present investi-
gation is to perform a derivation of the last missing part in
Eq. (1), thus obtaining the total set of formulas for the a’m
contribution for the triplet states of a two-electron atom. The
numerical evaluation of the obtained formulas is left for the
forthcoming investigation.

II. BASIC APPROACH

The radiative o’ m contribution to the Lamb shift is rep-

resented by a sum of the first-order and the second-order
perturbation corrections,

1
(@] ) 4 5)
Epg = (Hyg) +2 <H @ (Eo—Hoy Hrad> - 2)

Here, Hrg; and Hr(;) are the effective Hamiltonians induced by
the radiative effects of order a’m and a’m, respectively, H®
is the Breit Hamiltonian (of order a*m), and Hy and E, are the
nonrelativistic Hamiltonian and the corresponding eigenvalue,
respectively.

Er(zd) consists of contributions coming from the one-loop
self-energy (SE), the one-loop vacuum polarization (VP), and

the two-loop (rad2) and three-loop QED effects (rad3),
) (7) (7 (7) (7)
Ea = Esg + Eyp + Equgy + Ergas- 3)

The main part of the present investigation will be devoted to
the evaluation of the one-loop self-energy correction, which is
by far the most difficult part. The corresponding derivation is
presented in Secs. III-VII. The one-loop vacuum polarization
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is calculated in Sec. VIII, whereas the two- and three-loop
radiative effects are obtained in Sec. IX.

One of the major problems encountered in deriving formu-
las for higher order QED effects is connected with numerous
divergences appearing on intermediate stages of the calcula-
tion. In order to systematically handle these divergences, we
use dimensionally regularized nonrelativistic quantum elec-
trodynamics (NRQED), with the dimension of the space-time
D =4 —2¢ and the dimension of space d =3 —2¢. The
parameter € is considered as small, but only on the level of
matrix elements, where the analytic continuation to a nonin-
teger spatial dimension is allowed. The final results will be
expanded in small €, and singular contributions o 1/€ will be
canceled algebraically in momentum space. Subsequently, the
results will be transformed into the coordinate representation,
where they can be calculated numerically. The foundation of
the dimensionally regularized NRQED in the context of the
hydrogen Lamb shift was laid in Ref. [16], but our approach
differs in many details.

In our derivation of the radiative o’ m correction for he-
lium, we will rely on the fact that the corresponding correction
is known for hydrogen-like atoms (see, e.g., a review [17]).
With this in mind, in our derivation we will repeatedly drop
the first-order terms containing purely the electron-nucleus
Dirac § function. (We still have to keep terms in which the
electron-nucleus § function is combined with the potential,
energy, or momenta, however.) This procedure will simplify
the derivation enormously and the omitted §-like terms will be
later restored by matching the known hydrogenic results. Our
calculation will be performed in the Coulomb gauge, unless
explicitly specified otherwise.

When working in the dimensionally regularized NRQED,
we need generalizations of basic operators into the ex-
tended number of dimensions, shortly summarized below.
The momentum-space representation of the photon propaga-
tor preserves its form in d dimensions, namely, g, /k?. The
surface area of a d-dimensional unit sphere is

7

_ 2 /2 @
‘T TR
The electron-nucleus Coulomb interaction becomes
V( ) 2 5 ddk eil;?
ry=—Ze —_—
¢ Q) K2
Zé? I'(l—2¢) Zo
= |47 —~2 E—[—]. 5
47 iz [( %) F(l—e):| Pl ©®

Here and in what follows, [X ] will denote the d-dimensional
generalization of the d = 3 operator X. The d-dimensional
nonrelativistic Hamiltonian of a two-electron atom is given
by

=2
Z Pa
Hy = E‘f‘V, (6)

a=1,2

Z« Za o
L o
rn e e rle

where

and 7 =7 —7,. The d-dimensional generalization of the
Breit Hamiltonian for a two-electron atom is

HY =HY + 'Y (8)

3 Zo
g = % _LPa LY s,
m? (r)+a§2 8m3 + 2 m? (ra)

o i 8” rirj i T i if
— —2m2 P |:T + _r3 :| pjz — _dm2 0’1/ 0‘2/ (Sd(l")’
9)

H'O = 3 ol (Vi)
a=1,2

U i (wigi_ 87 o2\ [
+mal oy V’V’—;V [—]e

r

1 P . i oifo .
e <al/ v [7]5 Pi—olv [7]6 p{) . (10)

where 8%(r) is the Dirac § function in d dimensions, o/ =
1/(2)[o?, /], and o' are the Pauli matrices. In d = 3 spatial
dimensions, the matrices o/ reduce to o/ = €% o*. The d-
dimensional generalization of the algebra of the Pauli matrices
is summarized in Appendix B of Ref. [15].

III. NRQED Hamiltonian

We now turn to the derivation of the NRQED Hamiltonian
incorporating relativistic corrections and a class of radiative
corrections that comes from the high photon momentum, in d
dimensions. This Hamiltonian can be obtained from the Dirac
Hamiltonian by means of the Foldy-Wouthuysen transforma-
tion. In order to incorporate a high-energy part of the radiative
corrections, we start with the Dirac Hamiltonian modified by
the electromagnetic form factors F; and F3,

Hp=a-[p—eF(VHAl+ Bm+eF(V?)A
+F2(§2)i iy.E_EZifBij , (11)
2m 2

where B = VIA/ —V/A", VI=V,=03/dx", and TV =
% [y’, y/1. Formulas for the electromagnetic form factors F|
and F, are summarized in Appendix A. Introducing the Foldy-
Wouthuysen transformation defined by the operator S,

i L. 1 L .3
Sz—ﬁ{ﬁa'ﬂ—mﬂ(ol'ﬂ)

e(1+«) L, eK
=~ i -E - —
+ 2m 0 8 m?

Q

la -7, B E"fB"f]} . (12)

where k = F>(0) ~ o/(2 1) is the electron anomalous mag-
netic moment, the transformed Hamiltonian is obtained as
Hpw = €5 (Hp —id,)e 'S . (13)

We will split the transformed Hamiltonian into two parts,
8H; and 6H,, Hrw = 6H, + §H,, where §H; contains the
form factors only in the form of the anomalous magnetic
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moment k, and §H, is the remainder. The result is

72 0 e 47 i 74
SHi=— +4+eA”" — — (1 +«)o"”BY — —
2m 4dm

+L[<l+£) (p*, 6By + 4k proX B p) 4k o ~Bﬁ] +
16 m3 2

344«
64 m*

e{p> V-E +ol (E', pl)) +

128m*

e I i ; .
o3~ g, 1+ 20V E+ ol (L 2/)]

5o 2 1 _
V4 (k" +x+1) A E?
16 m° 8m?3

eK
16m

[P Ap. EN— — (x4 E* + VIB*} + ..., (14)

/ 1 4 2140 ! = g 1 / ’ ij ij
5Hy = e[ F{(0) & + SF{'(0) A |A" = = (F/()p - AA + L [F/(0) + F(0)] o AB)

e
m

~ s O +2K0O1AT E 4. 0

where A = %2, {X,Y}=XY+YX,and 7 :ﬁ—eﬁ. The
ellipsis denotes higher order terms and spin-dependent terms
that do not contribute to the centroid energies.

It should be noted that the neglect of 3/3x" within the
F, and F, form factors is not valid for the electron-electron
interactions. In this case, we will calculate effective operators
from the one-photon exchange scattering amplitude in the
Feynman gauge. Moreover, there is an additional radiative
correction to the NRQED Hamiltonian that is not accounted
for by the F; and F, form factors. It is represented by an
effective local operator quadratic in the field strengths. This
operator is derived separately by evaluating a low-energy limit
of the electron scattering amplitude off the Coulomb field. It
was calculated in Ref. [18] to be

62 =
8Hy = —E’yx, (16)
m

where E is an electric field, and the function y is given by

_ﬁ<l_i) (17)
X=7\6 3 )

where we included only the one-loop part. We follow through-
out this work the convention of Ref. [18], that a common
factor of [(47)¢ T'(1 + €)] for each loop integration is pulled
out from all matrix elements.

We thus obtain the effective NRQED Hamiltonian as

Hnrqed = (SHI + 5H2 + 5H3 . (18)

Individual operators from Hygeq induce numerous contribu-
tions to the one-loop electron self-energy, evaluated term by
term in Sec. VIC.

IV. EFFECTIVE om HAMILTONIAN

We now derive the self-energy part of the effective o m

operator Hrf(i), which is required for evaluation of the second-
order contribution in Eq. (2). Despite the fact that the > m
correction is well-known in principle [19,20], we here need
a d-dimensional generalization of the corresponding effective
operator. From now on, we will make the simplification of
setting the electron mass equal to one, m = 1.

The leading-order self-energy correction ES(IS_:) can be writ-
ten as a sum of low-energy and high-energy contributions,

E$) = Ero + Eno. (19)

(

The low-energy part comes from the radiative photon mo-
menta of the order k o a m. It is represented by the one-loop
self-energy contribution in the leading nonrelativistic-dipole
approximation,

Ep =& f _dk_ 87 (k)
Qm)d2k +

kp{|¢>>+<1 <2), (0)

. 1
X —
(®1p) Eo — Hoy —

where 63{ (k) = 8" — k'k/ /k*. The integration over |k is split
into two parts, fooo = fOA +f :o , leading to the separation
Ero=EY + E}y, (1)

where the first term E £5) is the electron self-energy part of the
Bethe logarithm in three dimensions,

Ty K SRV S ——p
LT3 ), @ryek PR —H, —k D
+(1 < 2), (22)

while the second term is the remainder to be calculated in d
dimensions. It is assumed that

A =a’h, (23)

with arbitrary large A. Namely, it is assumed that the limit
€ — 0is performed as the first and A — oo as the second one.
So, we obtain

20 ; (H() - EO) i
EY = —3,; (1P (Ho — Eo)In [T} Pilé)
alni_,
+_37t ViV +(1 < 2). (24)

Here, the second term depends on A, but it will cancel out in
the sum in Eq. (21). The remainder E i"o is evaluated as

0 gdr ..
Efy = 2/ ——— 8k
=< | Gy 0t ®

x kp{|¢>+<1<»2)

1P} —Eo—Ho—
_ezd—l/"o d’k
4 d Jy @Qn)kd

x (I[P, [Ho — Eo, P ]]16) + (1 < 2). (25)

012803-3



PATKOS, YEROKHIN, AND PACHUCKI

PHYSICAL REVIEW A 103, 012803 (2021)

Performing the integration with respect to k we obtain
o
Ef = —Z (ViV +V3V), (26)

where

d—1 >~ dk

I, =n?

=Ty /A Yk

27%d — D> 5[5

= — . - LA, +0G0)
(d-3)r($+1) 876

27
|

and
1
InA, = — +2In(a™?) = 2In(21) . (28)
€

The high-energy contribution, Ey in Eq. (19), is induced
by the region where the momentum of the radiative photon is
of the order of the electron mass k o< m. Ey is conveniently
split into two parts,

Epo = Ejj + Efy. (29)

The first part comes from the exchange of a transverse photon

with one vertex —%K o - B. It is calculated in the nonretarda-

tion approximation, with the result

1 1.
Epy = — 87yl P+ ofivE)e ik ~0,/V Je *2|p) 4 Hee. + (1 < 2)
Qr )d2k2 2 2

r

1 /k( o &Y 2>|:1:| T d I i1 i
=ak{-0c/"| V'V — =V ||~ | —=01-08 )+ =a’Vi|-| pl)+ U < 2). (30)
<4 tm2 d . d 272 M)

The remaining high-energy contribution comes from the exchange of a Coulomb photon with the vertices eA® and — fil/c% E —

Sk o {E', p’} + F{(0) V2eA°. The result is

E,§O=<[F 0) + K]v2v+ 1“; Hviv, p1}>+(1 2). G1)

Here F/(0) contains the singular part o 1/¢€; see Appendix A. This singularity will cancel exactly with that in In A, so that the

final result for E) is finite. We thus obtain

EQ =E +(HS). (32)

where the self-energy Hamiltonian Hél? =

HY + HI® is given by

1 2
HY = <I — §>(V12V +V3iV) — a%al 02 84(r)
al 5 1 _ 1 2K
~ ;[E + 3 Ine ) — 3 1n(2)\)] (VIV +V3V) — «—=01 -0 84(ry, (33)
s k[T (o] o - _ 8\ 1
Hgy =a§ o | Vi— )| x p14+6 - ViVxp +(1<2) —acr vivi — 3V -1, (34)
r r

Here we used d = 3 for Hé/és) because the corresponding o’ m
second-order contribution will not contain any singularities.
Note that the second line in Eq. (33) holds only for the a®m
correction. For the a’m contribution coming from the second-
order perturbation correction with HS(ISE)’ we will have to keep
Z. in the closed form because of a contribution from the linear
in € terms. We also note that both £ £5) and HS(]SE) are free of any
divergencies but they depend on the cutoff parameter A, which
cancels out in their sum.

V. SECOND-ORDER o’m SELF-ENERGY CORRECTION

We now turn to the derivation of the second-order a’m self-
energy contribution represented by the second term in Eq. (2),

@ _ 4
EsecSE - 2<H( )

1 ®)
E—Hoy )Y

(

where H® is the Breit Hamiltonian and Hs(%) was derived in

the previous section. It is convenient to split ESec g into the
spin-dependent and spin-independent parts,
ED _olg® H'S)
sec,SE (EO _ HO)/ SE
1
n(4) 7(5)
A G 1) o

where H'™® and H"® are given by Egs. (9) and (10), respec-
tively, and H.>) and H{ by Egs. (33) and (34), respectively.
The spin- dependent second—order contribution with Hs"és ) is
finite and can be calculated numerically as it stands. The
contribution induced by HS’(Ej), however, is divergent and needs
to be regularized and transformed in order to move all 1/€
singularities into the first-order terms where they can be
canceled.
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Omitting terms o< 8¢(r) vanishing for triplet states, we
rewrite the first part of the o« Hamiltonian as

where the operators Hg and Hj, are chosen in such a way that
the second-order corrections with these operators are finite.

We have
, 1
O =2 < ——)[P v, P, (37) PP RN @1
6 4 r L P 2r
- Za Za
where P = p; + p» is the total momentum. The correspond- 0'=2 s r | (42)
€

ing second-order contribution is thus of the form
and the regularized operators Hg and Hy, are defined by their

action on ket states as

20 (z ! ) <H’<4> L _pw ﬁ]]> (38)
T ‘< 6e (Ey — HyY ' Hglg) = ——(EO—V) _Z_ozrl_Vl_Z_otrz Vz
4 rl3 4 r;’
In order to identify divergencies in this second-order matrix 1 o [ Fri\ .
element, we introduce the following identities + ZVfVZZ - o (5” + 7) p§j| ), (43)
) _ , -V BV
H™ = {Hy — Eo, Q} + Hg, (39) Hilp) = —2Za| —5— + —— |19} . (44)
r )
[P', [V, Pl = {Hy — Eo, Q'} + Hy,, (40)  We now rewrite the second-order correction as
J
. . 1 . .
[P, [V, P’]]—H““’> <[P' [V, Pll————H >+ (((Q) — QP [V, PTN) (45)
< (Eo — Ho) (Eo— Hp)
/ 1 / / i i
= <HR—,HR> + (Hr (@) — O)) +((Q) — O [P, [V, P]]) . (46)
(Eo — Hp)
The first term in the last equation is finite. The third term is evaluated as
; ; Ey o Z —-2) 3
() =P IV.PI)=(| =+ =)+ ——— |4nZa 8’ (r) + (1 & 2)). 47)
2 4r 4ry

Here we used the identity 8¢(r)[1/r]e = 0, which is valid in dimensional regularization. The evaluation of the second term in
Eq. (46) is more complicated. We rewrite it as

(Hr ((Q') — Q")) = E®(Q) — (H'® — {Hy — Eo, 0}) Q)

20 < S / < < ’ 1 /
= <E<“><7 - 4E0> + §[<VIQ> (V10 + (V20) - (0] - H'Y Q> =Xi+X+X;,  @49)
where E® = (H®) = (Hg) since (H"™®) = 0. Term X, needs no further simplification,
2
X, = <E<4><TO‘ - 4EO>>. (49)
Term X5 reduces to
I Za)? (Za)? 1/ZaVy Za¥\ «aF
=—[(V1Q) ViQ) + (V20) - (V20 )]—— —t— | t:sl—= ) = (50)
r rnole 2 r rs r
where [(Z a)z/rj‘]e =[V(Za/r )]z. Term X3 for triplet states is
) 1 Zra a (87 N\
X3 = ( —H'® Q) = <|:§(P1 +P§) - 7[53(1’1) + 83 (r)] + 5[71(7 + r_3) P£:| Q>
1 83 83(r (Za | Zo\a Fri\
— (25t 4+ ) 0 — oy | D TUR (2 2N s T ), (51)
8 r r r rn)r q?

The first term in the last equation contains singularities. We transform it as

1 | 1 | , ,
g(p?er‘z‘)Q g[(p1+p2) —2p 3]0 —g[(p?er%)Q’(p?er%)Jr5[p?+p§,[p?+p§,Q]]—2p?Q p%]
1 2| Za Za (Za)? Zarv, oF o Za  Za\ ,
32—V T T || S raen[ A (T )R @
2 r r T . T r r r
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It is convenient to convert [Z3/r2]. into [Z?/r#]., which is achieved by the following identity,

(Za)? Za?
15 ]) =L )
2
- A
Yl_<EO+ r r 2>

where

o «

(53)

(Za) 1 _ (Za)?
——p =L 5. 54
r% 2p1 7'12 P1 ( )

The final result for the second-order contribution is a sum X; + X, + X3 and takes the form

E(7)

sec,S

5= =2 <H//(4) /
— Hy)

Za
2
~Yi — =p; =

1 r

Note that the above expression is written completely in the
coordinate representation. In the following derivation of other
contributions, we will often find it convenient to keep the
two-body electron-electron terms in the momentum repre-
sentation. This is advantageous because in the momentum
representation the evaluation of the electron-electron terms is
simpler.

VI. EFFECTIVE o’m HAMILTONIAN

We now turn to the derivation of the first-order self-energy
o’m contribution represented by the first term in Eq. (2). This
correction can be conveniently split into three parts, according
to the region of the contributing photon momenta,

(7
(Hse)

=EM+Ey +Ey. (56)

Here, the three contributions ELA, Ey, and Ey are induced
by momenta k of the radiative photon of the order ma?,
ma, and m, respectively. These three terms will be referred
to as the low-energy, middle-energy, and high-energy parts,

correspondingly.

A. Low-energy part

We now turn to the evaluation of relativistic corrections of
order o’m to the leading-order one-loop nonrelativistic dipole
self-energy contribution, E; g, given by Eq. (20). Contributions
arising from the small-k region, k < A, give rise to the rela-
tivistic corrections to the Bethe logarithm, already computed
in Ref. [14]. So, in the present work we are only concerned
with the large-k region, k > A.

The o”m corrections to E Lf}) arise as (i) perturbations of the
reference-state wave function ¢, the zeroth-order energy Ey,
and the zeroth-order Hamiltonian Hj by the Breit Hamiltonian
H®, (ii) a perturbation of the current p — 8, and (iii) a
retardation (quadrupole) correction. The corresponding o’m
corrections will be denoted as E;, Er», and E} 3, respectively,

EP} =EN+ES +ES. (57)

”5) Zﬁ 2.5 2 R
HSE>+:T[9 (@) “‘@“M R (Eq — Ho) R>

4 o 3 Zo Zo Zo (Za)?
<E< >(< > 4E0> + {<2E0 + <—>) nZa 8 (ry) + (Eo +— - —) — +2(E0 +— - —) 3
r r rt r r I‘l
1
2

1 (Za) 83
p%—z[ﬂ} S LAUD
€

(55)

Zaao rird

P — 8/+— p2+(1<—>2)
ry r

[

Our calculation of these terms will be similar to that of
the low-energy photon-exchange contributions, described in
Sec. III of Ref. [15].

1. EA

The first term EJ\ is due to a perturbation by the Breit
Hamiltonian and is written as

[eS) ddk » ) .
EA — 2/ §Y(k) S i J
L1 =€ . Qn)i2k 7 (k) <¢|P1EO —Hy — kP1|¢)
+(1 < 2). (58)

Here the symbol §(- - - ) denotes the first-order perturbation of
the matrix element (- - - ) by the Breit Hamiltonian H®, which
implies perturbations of the reference-state wave function ¢,
the energy Ey, and the zeroth-order Hamiltonian Hy. Since k
is much bigger than Hy — Ey, we can expand the integrand
of Eq. (58) in large k, keeping only the 1/k* term, while 1/k
contributes at the lower order of a® m. The result is

i 1 j
BP9 + (1 > 2)
= 55 3101[ph. [Ho — Eo. pi]]I) + (1 > 2)
1 . .
=3 @I[P}. [V. P{]]mH(4)I¢>

@I[P [HD, pi]lld) + (1 < 2).  (59)

1

2 2k
The first term in the last equation is the second-order contri-
bution already accounted for in the previous section, and thus
it will be omitted here. Note that the above expansion is valid
up to the electron-nucleus Dirac §-function terms, which we
are omitting for the present. They will be restored later by
matching our calculation against the hydrogenic result. The
same will apply also for Ef, and E}.

012803-6



RADIATIVE «’m QED CONTRIBUTION TO ... PHYSICAL REVIEW A 103, 012803 (2021)

After expanding in € = (3 — d)/2 and then in «, we obtain the result for the corresponding effective Hamiltonian Hj,,
Ef\ = (Hp1),
Hp = o? S + i1nA Z[Visd(r) + V384 (r)] —a*Jor - oo — T l1nA 7
36 120 ¢ : 2 27 9 ¢
(P - (P, - 3)“

5 1 Lo
—Z — ZInA, 244P, . P, —4 60
+< 9 3111\)[6]4‘ 1P 7 (60)

where P, = %(ﬁl + py’) and P = %(ﬁz + p,’) are sums of the in and our momenta of the corresponding electron, and § =
P — Pi. Using the identity valid for the expectation values of the operators,

Vsl (r1) = =2 pt 8% (r1) + 2 p1 8(r1) pr = —4 (Eo — V — p5/2) 84(r1) + 2 p1 8 (r1) p1 (61)
we simplify the expression further, obtaining the final result
5 1 D3 5 1
Hp = «?}758? —  — —InA Ey-V -2 — 4+ -InA. ) pZ280) p 12
L1 Oé{ (ﬁ)( g _3im ><o 2>+<18+6n )Pl (r)p1+ 0 < 2)

7 1 5 1 . . (BB g
+a2{01 ~O‘2<ﬁ + §1111\6) @+ (5 + glnAG) |:q2 + 4P, - P, —4%“ . (62)

Note that in the above expression we keep the electron-nucleus terms in the coordinate representation but the electron-electron
terms in the momentum representation.

2. EA,

The second term in Eq. (57), E/%, comes from a correction to the current. Specifically, j; gets a correction 871, which is

. ; 1 a8V rir i
o =il ) = 5t = 5|+ | ok °
and the same for p,. The contribution E} is then
Ei> =2 2/00 o 8 (k) (18 i . 116) + (1 2) (64)
= 2e —_— - <~ 2).
= s T e A L
Expanding this expression in large k& and performing the angular average, we arrive at
A 2d—1 ©  d'% i i A B c

Ep=e— . Q)23 (@1 [8)1. [V. PY]]1¢) + (1 < 2) = Ef, + Efy + Ef5 . (65)

This expression consists of three-body and two-body terms. The three-body contribution E7, is due to the first term in 871; it is
transformed as

d—1 [~ dk ; Za|
Ef, = —€— /A (2N>d2k3<¢|[p1p%,[—[r—ll,plﬂ|¢>+<1ez>

1 Z
%( — 138 —c In A€)<¢| — [V, [p%, [r—ﬂ H + 81 Za 8%(r)) (Ey — V) — pr4nZa 8%(r1) palo) + (1 <> 2).  (66)

There are two two-body contributions, the first one coming from the term [— % pi1 p%, [a/r, p’i]]. We evaluate it by switching into
the momentum representation,

_ 00 d
Efz=e2d ]/ ak <¢|[—1p"1p%,[H ,p’iﬂ|¢>>+(1ez)
d A (2 )42k3 2 r .
(P, —Izz)ﬁ]z N 2(151 -c7>§ﬁz-c7>
q q

(20 4 (I
=a°| —+ -InA, (¢|§(P1—P2) +P1'P2+ZCI + o) . (67)

9 3

The two-body contribution induced by the second term in 8J; is evaluated with help of integration formulas from Appendix C

of Ref. [15] as
c ,d—1 % dk a8 ripl ; o ;
ELZ — e 7 /A (27‘[)de3 (o1 — E _I" +_r3 . Py, 7 E’ P [d) + (1 < 2)

3] 4 21 A 41 2+41 |§) (68)
=na —=——=In — —In —In .
9 3 10T 3 3 4)4
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Adding together the individual contributions to £/, and using the expectation value identity

B _ By, a2 - = 2
B TP al L Zend vl g o)l T L a2 — 2 gy, (69)
7 4rl o Lo Lr L 2

n

we write the result in terms of the effective Hamiltonian Hy,, Ef = (H;»), which is

o 5 1 (Za ZaF aF 3
HL2=;<(—§—§IHA€){|:T:|E—2|: r?11|6|:r—3:|6+4nZa5d(r1)<E0— —ﬁ)}‘l—(l(—)z))

20 4 1 - . o o 1 PP -d 2
(D A )| LB - BR BB s DD D 2T s (70)
9 3 2 4 q> 3
3. E}
The third term in Eq. (57), E LA3, is a retardation correction. It can be expressed as
Ef = ¢ /OO _d_ 51 (k) S 11, FF Ll By 4 (1 < 2) (71)
L3 L Qmyl2k Lk Y Ey—Hy— k! ’

where the symbol 6,2 (. .. ) means that the exponential factors ¢® and e~ 71 in the matrix element (...) are expanded in small
k up to order k%. Because A is arbitrarily large, we perform the large-k expansion of the resolvent,
1 1  Hy—E, (Hy—Ep)’ + (Hy — Eo)’

4. (72)

Ey—Hy—k k k2 K3 k4

The k expansion needs to be extended up to order k~* because of the additional k> from the expansion of the exponential factors.
The resulting correction of order a’ m is

Ej=¢ / YAk 87 (k) 82 (@1 P, €7 (Ho — Eo)? pl e ) + (1 < 2). (73)
A Qm)d2ks Tt 1

The radial integration k can be performed in the same way as in the previous low-energy contributions. For the angular
integration, we will use the formulas from Appendix C of Ref. [15]. The matrix element in Eq. (73) can be simplified by
using identity exp(ik - 7) f(p) exp(—ik - ¥) = f(p — k). We, therefore, have

A Lz . I =2
SkZ[Pll elk-rl(HO _ EO)3 pjl e lk-rl] e 8/(2 I:pl1 (HO — EO — D1 k + ?> pjl]
I3 - .- - ,
= p’l[i(ﬂo — Eo)? K> + 1 -k (Hy — Eo) pr - k + 2 (py - k)* (Hp —E@} p. (%

We will refer to the contributions induced by the three terms in the brackets of the above expression as Ef3, ELB3, and ELC3,
respectively,

EN=E}5+E}+Ef;. (75)
Starting with the three-photon contribution Ej%, we obtain
s =g A A0 15 (o — E? pl16) + (1 <> 2) 76)
_ 2 — < 2).
L3 2 A (27T)d2k3 s P 0 0) P

Averaging this expression over the angular variables, commuting Hy — Ej to the left and to the right, and performing the
integration, we obtain

EA _ a{ 5+11A |:(Za)2]_ 5+1A I:Za71:| I:a?]+l 5
bG5S - G [5) [5 ] v ee2]

5
+na3<—§—lnAE—2ln2+21nq>q|¢). (77)
The contribution of the second term is evaluated as

g — e [T =LK o g1, (o — Eo) plp? 12
3 =¢€ A W 1 (k) (@lpi Py (Hy — Eo) pipy|#) + (1 < 2)

2 o) dd . L.
— 25 | s @ = B il = 5} o~ E i) + (1> 2). 79
A
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We transform this expression further with the help of the following identities,

7 (to = Byt = 5 (2. [Ho — Bo, 3] = 5 [ [V. 21]. )
P (o [V 1)) = 5 18 V- 21T = 5 2 L [V 1)+ 5k o [V ] (50)

and
pip, (Hy — Eo) pip] = %p% [P [V. P ]] + % [p1. [V. pi]] + %p’i [pl. [V. p{]] P} - 81)

The result for the second term is

5 5 3 1
EL3= <¢| ﬁjumlnzx [P1. [ vpl 25 lnA

(o} [p]. [V. P{]] P\ + P [ P [V pl]])|¢>+(1«>2)

(o) (2] (5] () (o)

2
x[pq A Zo 8% () P + (EO V- &> 87 Za Sd(rl):| +(1 o 2)}
32 (P —P)-GP* 24 - 8. - 64 (P -9 -G
oL UP=P) G 24 s g 88 5 64 (PDP )
225 P 25 25 225 P
2UP—P)-GP 45 o A B-HP-G
In A, ——P py-—— "% _p.p-—_— 1T . 82
+1n { (P =)’ — " AP I$) (82)
Finally, the term E 73 1s calculated as
c , [ d% ,
— lj miyn i m._n ]
Efy =2e /A Gy SR (1P PP} (Ho = Eo) pilg) + (1 > 2)
© gk d-1)
2
= v, 12
¢ | o W [ Vo) + (1 o 2)
@252 L 2 A (anzeston(Eo —v nY, [@r Zan ] [eF1) L oo
= — | == n wZoo" (r -V -= — | = <~
7 |\225 " 15 P 2 A
124 4 S, ] s 5 JP—=P)-g7 (PP
InA || — (P, —P)? — —¢* — 2P, - P, -2 —4 83
o (225 tho e)( (Pr—F)" =24 1+ Py e 7 |p) . (83)

Adding together Ef, EZ,, and Ef, and transforming the sum with help of Eq. (69), we obtain the retardation correction E/, as

" <¢| 164 st P3), 103[(ZaP] 1037Zar] [aF
= A — a7 r -V - == _ — - — ] —
h 225 1 ’ 2 90 rél‘ € 45 r% € r3 €
3 . . 14 2
557 4nZa s’ (r) p + In A (ErrZoz Sd(r1)<EQ V- %)

21 (Za)? 41 Za 7 a? 1
AL (L dorwnrion) o)

68 62 136 . - 112(P - )P -§)
2 2 2
— — (P - P)? — — —p .- 2T
e { 50 P2) 257 T a5 T s Pz
2 4. - 4P -PbP -
nA | — 2P — - i Cp.p L A
+1In e( (P — P,y 1561 Fhh—3 7
trald 105 4pa-8 2+81 p) (84)
Ta’| — — —In ——=In —In .
45 3 <3 3 4)4
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4. Total low-energy result

Adding together Ef}, Ef%, and E/,, we arrive at the final result for the low-energy contribution, which is

161 2\ 11 2 S3[(Za®l 53[ZaF 7
it = azastop| - 2 gy —v -2y L a (v = 2| 2B | _8 zen] jar
P 225 2) 15 2 o A | a4l S LA
341 y 1[Za?]  2[Za? aF 1, L
+ RpanouS (r) pj +1nAE<§|:—r? E—g _rf E. = E_|_%p] nZad(r)p| )+ 1 < 2)
+ ma? Bt 812+81 + o? aﬁ ﬁf+w82+mﬁ J2
T’ ———=-InA—=1In —1In a’y — =P — — —P -
453 3 3 9 ST T a5 T st
4 (P-g)(Py- 9 45 5 8 5 71 >
o VAR A (2B P+ — o=+ -InA . 85
15 7 TInA 3P -t 597 ) For-oof 55 T 5InAd)q (85)

B. Middle-energy part

We now turn to the second term in Eq. (56), the middle-energy contribution Ej,. This part originated from the region where
both the radiative and the exchanged photons are of the order k o< mo. We separate Ej, into two parts, Eyy = Ey + Eyp, which
are examined as follows.

1. Triple seagull contribution

The first middle-energy part is the triple seagull contribution, which is expressed (with k3 being the radiative photon) as

ddkl dde ddkg . ik ..
E — 6 = 81/( k 8} k 81] k
i ¢ (Zn)del (271)”’2k2 / (2”)d2k3 J_( 1) L( 2) L( 3)
x <¢|ei(%l+%2)ﬂ ! ei(&ilzl)% ! e*i(§2+123)‘72
Eo—Ho—ki — ks Ey—Hy—ky — ks
+eii(1€]+l€3)'72 ! 67[(7527,%)'?2 ! ei(lz] +E2)'?1
Eo—Ho =k — ks Ey—Hy— ki — ko
-+ 7 1 )7 1 o
—ithi+ks)7 i(ki+ka)-71 —i(ka+ks) -7 1 2). 86
e Eo— Ho — ki — k3 Eo—Ho—ko— ks 6) + 1 < 2) (86)

We now have to expand the resolvents for large k. To get the contribution of the order o’m, it is sufficient to take the
nonretardation approximation, thus omitting Hy — Ey. We arrive at

dk d?k, dks 4 , d—1)
E = 0 811{ k Slk k w—=1
= Gk | Goiak | Gtk St
1 1 1

x<¢|e"<’?'+’?z)'?[ ]|¢> +(1o2). (87)

(ki + ko) (ky + k3) * (ki + k3) (ki + k) * (ki + k3)(ka + k3)

Similarly to the case of the low-energy contribution, we will express Ej;; as an expectation value of some effective operator
Hyy,. Because it contains purely two-body electron-electron terms, we express it in momentum representation. We obtain

d%k d%ks ST(kl)(Sj’_‘(kz)
2 )d (27‘[ )d k[ k2 k3

d—1
HM1=(4m>3( < )/(

1 1 1
12 88
X|:(k'+k2)(k2+k3)+(kl+k3)(kl+k2)+(k1+k3)(k2+k3)]+( <2 (88)

with k; = |k — G/2| and k, = Ik + G/2|. The integration over radiative photon ks is trivial. The remaining integration is
performed in spheroidal coordinates as explained in Appendix B. The result for the triple seagull contribution is

3 1 4
Hy=a’n —§+§ln2 q. (89)

2. Single seagull with retardation

The second middle-energy contribution comes from the diagram with a single seagull and retardation. The diagram contains
two photons, one of which is a transverse photon exchanged between the electrons and another one is a radiative photon. The
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corresponding contribution is expressed as

By = ¢’ (2:;15 l2k1 (2:;{5 22k2 oL (B )
X (Bl k) e e T e )
+jg(kl)ei1?1-72 T e—i(l?,+122)-72 o T— j,ln(kz)eﬂ?ﬁ]
L o vy A
+J"21(k1)€”€1'?2 Eo—Ho— ko J'in(kz)eilzz'?l Eo — Ho 1_ ki — ko Sk
+e—i(/¥.+122).;2 T — jil(kl)eilzlﬂ m jgn(k2)ei/;2~?2

_’_e_i(]zl‘HEZ)';Z

Ey—Hy—ki —k

where ji’ (k) is defined as

i) = p+ 30"k o1
The first two terms in the matrix element vanish after perform-
ing the retardation expansion and carrying out the integration
over the momentum of the radiative photon as f d%k* =0,
which is true by definition in the dimensional regularization.
The remainder of the expression can be cast in the form

d”kl ddkz 1
EM2 = —264
Q) 2k J 2m)d 2k K2 (ky + ko)
x 8" (k1)8"" (k2)

(@[ k) €M7, Hy — Eo], jalka) 7]

xe BRI gy 1 (1 5 2) . 92)

The above expression was rearranged so that only photon
ky is radiative (thus the additional factor of 2 in the front).
Taking into account that only spin-independent terms survive
the double commutator and performing the angular average
for the radiative photon, we arrive at

 (4ma)? (d—l)/ dk,
2 d Q)

dky 1
(27T)d k?kz(lq + k2)

Eyo =

x 87 (ky )bl €7 B BRV ) + (1 <> 2). 93)

This can be again expressed as an expectation value of an
effective operator Hy,, which is in momentum space

(d—l)/ dék, / dk,
Hyp = — (4na)?
hy = — (dma)y = any | @)
(kg™ q"
i ki — G2 ka(ky + ko)

(94)
Performing the remaining integrations, we obtain the result

Hyp = &’ i+3—§1n (95)
M2 = 9 3¢ 3 q1)4-

Jilky) et ™

k) BT ) + (15 2), (90)

Ey—Hy—k

3. Total result for the middle-energy contribution

Adding together Hy; and Hyy,, we obtain the total result
for the effective operator responsible for the middle-energy
contribution,

Hy=no® (L4 2+ 2m2 8y 96
m=me gty tyhn2=glngfq. 6

It is not obvious that Ej = (Hy) is the complete middle-
energy contribution, so we have verified this by calculating the
corresponding scattering amplitude and obtaining agreement
with the above result.

C. High-energy part

We now turn to the third term in Eq. (56), the high-energy
part Ey. It consists of 16 terms originating from the anoma-
lous magnetic moment « and the slopes of form factors F/(0)
and F;(0),

o7

16
Ey = ZE
i=1

The contributions E; are derived as corrections to the one-
photon and two-photon exchange amplitudes induced by
individual terms in the NRQED Hamiltonian Hpgeq, se€
Eq. (18), as illustrated by Table I. The computational method
is very similar to the one used in the derivation of the a®m
correction to the helium Lamb shift [21]. Each contribution E;
will be expressed as an expectation value of the corresponding
effective operator, E; = (H;), and we now examine the contri-
butions E; one by one.

1. E;

E, is the retardation correction to the one-photon exchange

between the electrons, where one vertex is —ﬁa - B and the
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TABLE 1. Contributions originating from 8H,, H,, and 6 H3, given by Eqs. (14), (15), and (16).

Vertex Vertex Vertex Retardation order Diagram
—¢5-B —~¢ko B (H—E)? E
%Az —fko-B —-50-B (H—-E)° 13
={p* o -B) —fko-B (H—-E) E;
- Li (Mp o - BY +4pFa B pl + po - B p) (H—-E) E4
S oUEAI —¢xo-B eA° (H—E)° Es
—¢5.B Sk oVE[A) e A0 (H—E)° Es
—¢5-B — 12k {EL, p} (H—-E) E;
—£oU{EL, p') —¢ko-B (H—E) Es
eA” —£[F(0) + 2F5(0) + 4F (0)]V?V - E (H—-E) Eyg
A" LoV E) (H ~ Y Ei
A0 CxE? eA? (H—-E) En
oA’ 2 Ef x eA” (H ~ E) B
—¢(V-E+ o {E], p'}) —£1(V-E+ 0 {Ef, p'}) (H—E) Eis
—ep-A — £ {p*, &,EX + V' B} (H-—E) Eis
A0 —E Pk, EL) (H—E) Ejg

second vertex is — 7k o - B. We have
% 1N s
_ 2 ij kix7k ik-F
E] =— e K'/ mal(kﬂ(b'(EO‘l V1>e 1

_ 2 l Ligl \ —ik
x (Hy — Ep) 202 V; |e |¢p) +H.c. + (1 < 2).
(98)
Commuting Hy — Ej to the left and to the right and perform-
ing the spin averaging, we obtain
& o-0n dk
4 d (2w )4 k2

2 L 2
x <¢|[%[e"’”, %Hm +(1<2). (99
|

2T ) emak | emytag T

x <¢| larnvr eiE] -7 1 e
27t Ey—Hy — ki

—i(ky+k2)- 2

We now use the result for k = F,(0) from Appendix A,

all
k=—|=+2]|,
and transform the momenta into 131 and 132. ‘We obtain in the
momentum representation

o? P - 9P §)
H =——o0 Oy .
3 q

(100)

(101)

2. E,

E, is induced by the single-seagull diagram with the double
vertex %E 2 and the single vertices — 30 -Band —fko - B.

The corresponding contribution is written as

1 lo,smvs ei/;y?] |¢>
Eg—Hy—hky \2" !

1N\ s 1 U mos) s 1 o
oMy iky -7 p AV ik —i(k1+ky)-F>
+(¢|(201 ‘)e Eo— Ho— ki <2”1 1>e Eo—Ho—h—k * 2

7i(E1+E2)~72 1 1 rnyyr ik -7 1 1 Smy7s iky 7y
+(¢|€ EO—HO—k1 —k2 501 Vl e m EO'I Vl e - |¢> +(1 (—)2) (102)
Expanding denominators in large k, we get the o’m contribution of the form
64 ddkl dde . . i ST TV i
Ey =« i | G 8 (ky )5T(k2)(¢|(§a{"k{> etk T <§af’”k§)|¢) +(1 < 2)
64 ddkl ddkz rn__smiyris gin im i(ky k)7
=g 20y 2 (27r)dk§Ul o1 kiky 8 (k1)8" (k2 ) (@] € ) + (1 < 2). (103)

012803-12



RADIATIVE «’m QED CONTRIBUTION TO ... PHYSICAL REVIEW A 103, 012803 (2021)

Averaging the spin matrices and performing the integrations by using formulas from Appendix C of Ref. [15], we obtain the
result for £, in the momentum representation,

H=—-ma®2 . (104)
3. E;

Ej is induced by the exchange of a single transverse photon, with one vertex —f« o - B and the other ${p 2 15 . B). We thus
get

. 1
Ey = /(2 e L(k)(¢|< lv{‘) et {pz,zaz A —””’} l¢) +He. + (1 < 2)

e 02 dk 2 kT
:32 d /(2n)d(¢|{p2,e }1¢) + He. + (1 < 2). (105)

This expression is proportional to { p%, 84(r)}, which vanishes for triplet states. Therefore, E3 = 0.

4. E,

Ey comes from the exchange of a single transverse photon, with one vertex being —Zo - B and the other {Z« ( {p,{pP,o
B}} + 4p*a*iB pJ). The corresponding contribution is written as

e? dk i | T
Es = — 8’] k - ktvk ik-7
4 16K/ Gy 2k 0L )(¢>|<201 1>e
X[{Plz, {Pz’ o) migm e lk.72}} +4p12(0,21mvg1 ik T2 pjz' _ az’fvg’ o ik Py)]1¢) + He. + (1 < 2). (106)
After differentiating and spin averaging, we arrive at

e oo dk 1. 81 (k)
L= (¢ P2, (P2, K> T}y — —L

16 d ] ane'?'s @-nhr 57 ph— pEKAKT T Pl ) + Hee. + (1 2). (107)

Ey =

Transforming the momenta in this expression into P, and P,, we obtain the result in the momentum space,

1 1 . 1 [P =P)-* 1 1 (P -§)B -G
H4=(¥201'02{ﬁ(1’1 BeLp.p_ LIP=P)qt 1, 1@ q)uq)}_

108
12 24 7 247 T 12 7 (108)

5. Esand Eq4

The terms Es and E¢ are examlned together, because they both are given by the one-photon exchange amplitude with one

vertex _ZG B and the other vertex e '’/ E| AJ multiplied by a factor « /2 in the case of Eg and k /4 in the case of Es5. The sum

of the contributions is

32 d‘k . i
Es+ Eg = —?x/maj(k)(wa{“v’; e ol VivIg) + He 4+ (1 2)

3¢2 o0y di%k K

16 K d )l k_2<¢| e [V7 p12]|¢) +He. + (1 < 2). (109)

The result in a mixed coordinate and momentum representations is

o [Zar oaf o’
Hs+Hs=01-0\\———|—=| ‘|| TA<2;——7q) (110)
lor | ri 1. L7 | 8
6. E7 andEg

The terms E; and Eg are induced by the one-photon exchange amplitude with one vertex —Zo - B and the other vertex
—ex oM{E" , p/}, multiplied by either « /4 or « /8. The sum of the corresponding contributions is

3¢? d'k ij ik [ kT ok Lo\ —iir
Ei4+Ey = —«k | ———=—=87(k)(¢loj*{ike™™, p\} (Hy — Eo) 302 V5 e * 2 ¢) + He. + (1 < 2)

8 () 2k3
3¢? ik _1j d'k ij KF —ikF
= Fxoto ka) (@™, P} [Ho — Eo, [e7™7, Ph]]1¢) + Hee. + (1 < 2). (111)
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Spin averaging this expression, we get

3¢’ o010, dk p% 2o .
Brth=-5 =2, [{". i} P He. + (1o 2). 112
T 32K d (2n)dk2<¢||:2 [{e Pl} Pz]] |¢) + He. 4+ (1 < 2) (112)
The result in momentum representation is
oy-00 (P -§)(P> -G
Hy+ Hy = 22 2 (P 61)22 61). 1)
2 q

7. Ey

We now move to contributions originating from the §H,
part of the FW Hamiltonian, given by Eq. (15). It is possible
to evaluate them in the same way as the previous E; contri-
butions, with the difference that one has to use the Feynman
gauge instead of the Coulomb gauge. This difference is caused
by the presence of q(z) in the expansion of form factors F; and
F,. We will use a different approach, however, which is more
advantageous and illustrative, namely, the so-called scattering
amplitude approach. We recall that the electromagnetic form
factors F; and F, modify the vertex y* as

yh = Tr=y"+y" F(q5—q )+2Fz(qo

) (5)" a1
(114)

The amplitude of the exchange of one photon between the
electrons with one of the vertices perturbed in this way is

My = @ T"u)Dy (@) @y w2) + (1 <> 2),  (115)

where ¢ = p| — p1 = p» — p, with p; and p| being the in
and out momenta of the first electron, and the same for the
second electron. To obtain contributions up to the order o'm,
we expand the expression of the vertex as

1 o
r— { [F 0) - F”(O)q } - ZFz/(O)qJ[V’, V“]}
[ —4*] (116)
where we omitted terms with gy which contribute to higher
orders in «, and we also excluded anomalous magnetic mo-
ment contribution & F>(0). We now pull the factor g§ — ¢*

out of this expression to cancel it with the denominator of the
photon propagator. The photon propagator thus becomes

(5 — 4)Du(q) = &puv- (117)

The scattering amplitude is then
My = ¢ { [ - 37 O0]
x [y un) @by uz) — @y u )iy uz)]
- in’(O)[(ﬂﬁqj[Vj, ¥ lun )ity uz)
— @ q’ly’, ylun)@y'u)] + (1 < 2)}- (118)
For the bispinor u, we take

(119)

(

where w is the spinor amplitude of the plane wave that in-
cludes the relativistic correction to the kinetic energy. Then,

2 .
_ * q Uoij
(@ un) = i (1= T + 2o’ p] Juwn

i 1 *(+ _Ji _j i i
@y'u) = S (iol'q’ +2p) +q) wi
@ q'ly’, y°lu) = w))*(¢* + 20/ ¢/ pi)wr
@'y, y'lu) = ) 2iol ¢’ w . (120)

The corresponding expressions for the second electron are ob-
tained from the above formulas by changing the index 1 — 2
and reversing the transferred momentum § — —g. We thus
obtain for the scattering amplitude

Mg = —(w))* (wy)* U (p1, P2, §) wiws , (121)

where (omitting higher order terms and terms contributing
only to the fine structure)

2
I g | 1( i
U(pi, pr. §) = ez{F{(O)[ — 1+ T + 4<alkcf{"q q’

1
+ (2p1 + §)(2p2 — 51’))] + EF{'(O) 7

’ 2 1
+F2(0)[‘1Z Jotoltde } (1o 2)} .

(122)

Transforming the expression from momenta p; and p, to ﬁl
and P, and spin-averaging it using the identity

ik _jk i 011.012 2
q

olfod" q'q’ y , (123)

we finally obtain

2 - - o1 - O
U(p1, P §) =e2{F{<0)[— 1+ % +P B+ 14d 2 qz}

1 q2 o1 - 0s
ZF" 0 2 E ) L -1 e 2
+21()61+z()[4+4dq

+(1 < 2)}. (124)

The first term in this equation corresponds to the leading-
order contribution while the remaining ones are the o’m
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corrections. Using the explicit results for the form factors, we

get
H9—012[—26] - 1'132+l<—§6]2—i131'ﬁ2)
20 € 15 3
11 1\ ,
+0’1~02(—@—9—6) i| (125)

8. El()

Next, we have to take into account the exchange of a
Coulomb photon between an electron and the nucleus, orig-
inating from the Hamiltonian §H,. This gives a correction in
which one vertex is eA° while the second one is ——[F ) +
2F)(0) + 4F1”(O)]V2V -E. Only the electron-nucleus part
needs to be taken because the complete electron-electron con-
tribution due to derivative of the form factors was accounted
for in Ey. So, the term Ej is

1
Ey = g[F{(O) + 2F5(0) + 4F1”(0)](¢IV4[ - —] )

+(1 < 2). (126)

Using the relation (61) and results for the form factors from
Appendix A, we evaluate it as (omitting linear in € terms)

13 11 D3
— 2 - = _ _y 22 d
Hy=« ( 10 306>|: 2<E0 14 2>Z8 (r1)

+p1 28 (r) pr+ (1 & 2)}. (127)

9. Eu

We now continue to examine contributions originating
from the exchange of the Coulomb photons. The first such
contribution, E};, originates from the exchange of a Coulomb
photon with one vertex being %K{ﬁz,ﬁ .E}. The corre-
sponding contribution is

Ey = —gc (9P ViVIg) + (1 < 2).  (128)
After some simplifications, we get
2 1 P d
Hj =« —3 Ey — -5 Z&(r)+ 0 < 2),
(129)

where we omitted terms p% 84(r) which vanish for triplet
states.

10. E12 and E13

We treat the terms E}, and E3 together because they have
similar structure. Specifically, they both come from the ex-

change of a Coulomb photon where one vertex is either % K E| 2
or H; = €2 EH X . We thus have

Epn+E; = <§ + X)(¢|(§1V)2|¢) + (1 < 2). (130)

Taking into account that

N (Za)? B Za T . ﬂ’
owr=[EF] 2[5 [

—m?a?{1 +€2In2 —2Ing)lq,

(131)

we obtain

- o1 11z
=l — — — —€ j—
12 48 3¢ 4 )izl A~ .

R )
__[g} [“_3} +(162)}
mlor Je L de

+ 7’ —11+2+4ln2—4ln
24 733 3 n4)d
(132)

11. Eq4
Ey4 is induced by the exchange of a Coulomb photon
with vertices —§ (V-E +ol {E|, p’}) and =5« (V-E+
o'/ {E}, p’}). The corresponding contribution is
Eyy = éK /.ﬂ@ﬂ(
32 (27)? k?
x &7 (K* + 2iS K ph) 1) + (1 < 2).

—2iokip )
(133)
Simplifying this expression, we get

1 1 _ 1 (P q)(Pz q)
Hyy = o?| =¢* : P - P —
14 =0 |:86] + 01 (12 1 B
(134)

12. Eis

Eis orlgmates from the one-photon exchange with one
vertex — - {p 8,Ek + Vi B*} and the other vertex —e jj - A.
We calculate this contribution starting from the corresponding
Feynman diagram,

e’ d’k  (—1) - . oy
Eic — S k ij i , 2 k2 ik-7y
5= 165 | Grpi o — ot W@l {ph (@ — Kt
1

—lkrz H 1 2
EO_HO_w+l€p |¢) +He+ (1 < 2)

e . R,
_ —8 k) 1’ ik-7y
16K,/ e RO
1
Eo—Ho—w+16

*"”2|¢> +He. +(12).
(135)

Performing the w integration and expressing the result in the
momentum space, we obtain

E e? /‘ d%k
= —K
5735 ] 2n)y

57 k) gl{p,, €* 7 ph ) + Hec.

+(1 < 2)
1. - 1B-9P-§
— 1B Pz__(l DP9\ (136)
2 2 q>
13. Ei
E¢ is induced by the exchange of a Coulomb photon with
one vertex of the form —%= { p 8t }. The contribution from
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the corresponding Feynman diagram is We then obtain
2 d 2
e dPk (-1 -z E.=_° d’k { s 7 ikrn| P2 —ikn
LS S 5 ik 16 = — 35K (Pl{p1, ke™ "} =, e ()
Eig = 16/( (27t)Di<]_éZ ){(Q)I{pl,ka)e '} 32 (27 )k? 2
1 i _ —ik7y P_% S 7R <2
x _ o7 ) @[ e ™7, B2 (51, ke™ M) | + (1 < 2)
Ey—Hy —w+ie 2
2 1 oz é? dk ; T
_ —ik-Fp 5k ik-7 — __ 2 i ik-7
<¢|e EO—HO—CU‘I-iG{pl, we }|¢)} 32K (zn)dk2<¢|[p27{p19[plse ]}]|¢)
+ (1< 2), (137) +(1 < 2)
i i i o’ [ (P )P - §)
where in the second term we introduced a mirror transforma- — _< 1 2 > ) (139)
tion k — —k. The denominator is now expanded for small 2 q*
Ey — Hp up to the linear term and the o integration is per-

formed as 14. Total high-energy part

Adding together all E; contributions, we arrive at the final

do ) 1 . A
—_— =, (138) result for the high-energy contribution,
2mi (w —i€)> 2
|

E a [11[(Za)? 11+01~02 ZoT of 13 Z08%(r)) +1 1 (Za)?
=(—{— =+ — = —=ph= r -z
e\ sl )\ e T = T L R WY R
2[ Za ¥y arf 11 y . 4 3 » 11 P
- A - ZpinZas Za's “(Ep-v-2)y —(E-v-£
+3[ n } [r3 } 30717 (rl)p')+” * (“)[20( ° 2) T\ 2

FISIDIGSY U (S A B g S PPN 3 LY L Y (s N 2
<~ T’ —— — —— 4+ — + = —=1In ay — =P -P,— — - -=P-P——
247 8 33 3 4)e 2 T gl T T s

1. . 1. - 13 1 1 [(P — P) -G
coy| — (P, — P>)2 + =P, - P e s S L L
+o0 02[24( 1 —P) +6 | 2+( 16 96>q 54 7
+8 23 (89(r)) + 84(r)) . (140)

Here, § is as yet undetermined state-independent coefficient, which will be obtained in the next section by matching the
hydrogenic result.

VII. TOTAL RESULT FOR «’ m ONE-LOOP SELF-ENERGY

In this section, we will obtain the total result for the o’ m one-loop self-energy correction that is beyond the relativistic
correction to the Bethe logarithm already calculated in Ref. [15]. We add together the previously calculated parts, namely, the
second-order contribution given by Eq. (55), the low-energy contribution given by Eq. (85), the middle-energy contribution given
by Eq. (96), and the high-energy contribution given by Eq. (140),

Eg = EQsp + E + En + En = Egg + Eg; - (141)

sec,

We have split the total result into two parts, Eg‘E and EEE. E§‘E contains those two-body and three-body terms that are already
in the coordinate representation, whereas ES. consists of the remaining electron-electron two-body terms that are presently
written in the momentum representation. We find that all terms o 1/€ cancel each other in the sum, so we can make the
transition d — 3. The result is still dependent on the intermediate momentum cutoff parameter A. The examination presented
in Appendix C demonstrates that all A-dependent terms cancel when we add together Eél?, the photon-exchange contribution
derived in Ref. [15], and the Bethe-logarithm corrections calculated in Ref. [14]. Therefore, we can just set A — 1 everywhere.
The resulting expression, in atomic units and with the factor «’ pulled out, is

1 1/5 1 1 1 (16322 589  TJoy-0y\ZF, F
EA —o(g/o_— — @\, (24 o WWH ——H = (= Z
> < (o — Hy EEACRE *E—Hy ) \zl2m07 " \Geo T o6 )T S

5 z 1\’z z IN\Z> 1,7 , Z 1 p\Z* 1 7%
+§ Ey+———-) —+2 Eo-i-——; 7 TR Ey+ — Py r—2+§P1r—2P1

lrl r r

r r) n r 1 2 1 1
iy 8,.].+r"rf 4277 5 22830 Brts 122+1 2] 2Z+2E+Z 1\ 22
P P 72 ) P2 T 1800 P! P 4rt 3 LR o, r
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LpZ o (g 2L \E 1525 Z (7 A N XY
——pr=ps - ———— =+ =Pl — — — — P wZ8(r
2p1r1 12 0 nor 2 5 2171 5 P1 T D r 123 ) r 3 30171 1) P1

nzson[ Oy AL 5097 509 L, SII\ LB Lz s LN
7Z8 ()| —FEy— —— — —— + —— —{- ———t— <
1900° " 900/, 9007, 180072 T 9\ 15" 15r, 157 307273\7

2E® (5 1 1 . 3
+ ~ =L )((=)=2E ) )+ 827 (8(r) + 8 (), (142)
T 9 3 r
2 . . 919 85 5 4 (P -q)(Py- Q) 8 4. | I
ES =(—-2(P -P) + ¢+ —P-Pb——— 4L 4+ _P-P con| — (P, — P,)?
SE < 5( 1 — P+ 18002 +90 AT 7 + 159 +3 Py ) +o1-0n 24( | —P)
| 43 799 oy -0y 4 4
PP+ |—+-C ——————ﬁ——l — -1 143
e 2+<216+ ) ]+”( 360 48 3 3n“>> (143)

Here, we transformed term [(P, — P,) - §]?/¢” into a three-photon form using Eq. (69). The operators 1/r} and 1/r; are
understood as distributions examined in Appendix E, so that their matrix elements are well defined. £ is obtained from In A, by
dropping 1/e andIn A, £ = 2In(a™?) —2In2.

We now recall that the result (142) is not complete because it contains as yet undefined coefficient § originating from the
electron-nucleus Dirac §-function terms omitted in our derivation. There are several sources of such terms. One of them is the
forward scattering amplitude of the three-photon exchange perturbed by the Breit Hamiltonian, the correction to the current, and
the retardation. Furthermore, such terms originate from the singular operator [Z2/ ri‘]6

We now proceed to obtaining the coefficient §. To this end, we first evaluate the hydrogenic limit of Eq. (142) and compare
it with the literature hydrogenic result for the normalized difference n’E (nS) — E(1S). We should get an agreement because all
terms proportional to the electron-nucleus Dirac § function vanish in the normalized difference. Second, we match the hydrogenic
limit of Eq. (142) with the known 1S hydrogenic result and thus obtain the coefficient § in Eq. (142).

A. Restoration of the electron-nucleus Dirac § term

Dropping the electron-electron terms, writing r; = r, and omitting terms that do not contribute to the S states, we obtain the
hydrogenic limit of Eq. (142) as

1/5 1 1 (/163 1 \Z> (5 1 72
E{] (hydr, nS “+-L\(H,———H, “H—=+-c)=+(=+=c)| —2E +E,=~
(hydr, n5) = 7r<9+3 RE—Hy ¥ T\z\2a0 T2%) = T 513 0t E0T
7 779 11
P35

1 491 1
- B — AE,E® VA% EqmZ8> — §Z383(n).
2 P 0 >+(1800+ E)PJT (P p+EynZ8(r) 500 15£ + (r)

(144)

We note that the hydrogenic limit of Eq. (143) vanishes because this expression contains only the electron-electron terms. With
help of the formulas from Appendix F, we obtain for the normalized difference

16087 | 263 7583 163 o
—_—t —— = n) —Inn
5400 © 60n 54002 30 ¥

cn @ 1 T ) — ) (145)
n—1_§ — — + — — —1In
2 45 T a5 T T U "

%[ﬁEgg(hydr, nS) — ESD (hydr, 18)] = —

This result agrees with Eq. (3.43) of Ref. [18] (with the Bethe-logarithm part omitted and with Z set to 1), which indicates
consistency of the derived formulas with the hydrogen theory. The reason for setting Z = 1 in the result of Ref. [18] is that we
are now using a different scaling in the low-energy part. In particular, in Eq. (24) we define the Bethe logarithm to be rescaled
by a factor of o2, whereas in Ref. [18] it was rescaled by a factor of (Za)?.

We will now take into account that for the 1S hydrogenic state, our result (142) should match the one-loop self-energy part of
the function Fy given by Eq. (5.116) from Ref. [8], which is

121 5 61 ) 163 5 22 )
Fg=——++ {()—— —%an—Sln 2+ 1In(Za) E—4ln2—4lnA —glnA—?ln2lnA+ln A

60
(146)
Here, A is the intermediate momentum cutoff used in Ref. [8], which is the same as the cutoff A in the present work; see Eq. (23).
We now restore the cutoff dependence of our result (144) by shifting

L— L =2In[a?] —2In(2A) = —2In A —2In2. (147)

012803-17



PATKOS, YEROKHIN, AND PACHUCKI PHYSICAL REVIEW A 103, 012803 (2021)

Equation (144) for the 1S state thus becomes

—E”)(hd 18) = 7271 ﬁrnz 41’2+ 1In A Y 4m2—4mz +InZ @—41112 +6 (148)
76 se Y ~ 1800 T 30 15 30 '

The matching condition

FH = ﬁEm(hydr IS) (149)
leads to the following result for §,
3641 362 2 5 163 18 10
= 1300~ 25 M2+W°2+3 <:(3)— =’ a5 —4n2) +nA( - = —4lna— —2) +I’A. (150)

Next, we check that the cutoff dependence disappears when Eq. (150) is combined together with the Bethe logarithm. This is
done in Appendix D; the conclusion is that we can just replace In A — Ina? in the above expression. In this way, we obtain the
final result for the § coefficient as

3641 362 5 53 16
§=— — " "In2+1n22 3)— = Ina™2 —In2)—Ina2. 151
1800 45 + + C() 187TJrn (60+3n> " (D

Inserting Eq. (151) into Eq. (142), employing the explicit form of £, and using the identity o, - oo = 26, - G2 = 2 valid for
d = 3 and triplet states, we obtain for E§‘E the following result:

1 1/5 2 a7 1
Ef =(H ———HY) 4 —(Z 4+ ZIn— |(H,————H
& < G-y T\ T3 2 )\ Hy
L 16322+SE+Z 1zz+10E+z 1\2> 5 2z S(p 2] I AYA
| 240 r‘f g\ rn r)n 9 0 rn o r rl2 18 p2 A rhn o r 2 r%

+5 ﬁzzq+5 . Z 8ij+rirj ; 1283Z?,-?+779 28%(r) B 41 12> 4ZF-F
T —pl — — - 7 Z8(r nd (2 Tt
g T g 2 )7 70 st igeo ”! v 2 \27 3 A

+ L 5wz )+ 2 (Eo + 2 12Z+4E+Z Nz A S n\Z
B nZ8(r L)L 47 2 _\Z _= L1
15]71 e 3\ r) rn 3 0 1) 31 P 3\ rnor 2

i
W12 252 (6 ’f) ez L - AL 5092 509 L S e
R R D15007° " 9007, 9007 ' 180072 T 9\~ 2

2F 2 227 11 2/1 3641 1289 16 5 a2
x(——0+ ———+—p%+§<;>>+Z{———l 2+—122+ ;(3)——n —In?

15 15, 15r @ 15 1800 ~ 180 3 18 2
cn (B0, +(12) L2ET (S 2y e (L (152)
n— — < —+—-In— -)— .
2 \60 " 3 z \9 "3 2 r 0

B. Transformation of E§;, into coordinate space

The expression for ES;, given by Eq. (143), is written in momentum space and needs to be transformed into the coordinate

representation to make a numerical evaluation tractable. We first express the momenta 131 and ﬁz in terms of new variables 13, P,
and ¢, defined as

P=pi+p, p=21p1—p2). and G=p/' — p. (153)
We thus have
Pi—PBY=¢+4p-p', P - =—(P2—q —4p-p, (154)
P - 9P §) (1 NG =5 1, 1,
- - PPl — pf 1)——- —P —_p.p. 155
7 1 pp 7 17T 3PP (155)

Furthermore, we employ the relation o} - 05 = 2 valid in d = 3 and take into account that the operators P283(r) and p? 83(r)
vanish for triplet states. Moreover, we perform the replacement ¢g> — —2 5 - p’ because there are no ¢> In g terms. Performing
these transformations and using formulas for the Fourier transform from Appendlx G, we bring the expression for E sg into the
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coordinate representation (with the overall factor o’ pulled out),

o 2108, 196 o2 55005 L pip
= — _— —_— —_— r _
SE 675 45 PORIP = eor

2
1 (203 a2

3rrt\ 15

- +6ln7 —2In2 -4y —4lnr>>.

i(Sijrz —3rir))

(812 — 3rirT) n 1
rd 157 rd

pj

(156)

The final result for the o’ m one-loop self-energy contribution beyond the Bethe-logarithmic part is given by the sum of

Eqgs. (152) and (156).

VIII. ONE-LOOP VACUUM POLARIZATION

We now turn to the derivation of the a’ m correction in-
duced by the one-loop vacuum polarization. Its calculation is
much simpler than that of the self-energy. It will be convenient
to split the vacuum-polarization correction into the electron-
nucleus (en) and the electron-electron (ee) parts,

E\p = Egy + EGy . (157)

The electron vacuum polarization modifies the photon propa-
gator as
8uv 8

Z—-7 G- [1 = elas =)

(158)

Here, the function w(g?) is the Uehling correction defined as

00
o(q*) = %qz /4 d(k%mu(l&), (159)
where
u(k®) = 1,/1 - i(l + 3) ) (160)
3 k2 k2
The low-momentum expansion of Eq. (159) is
w(q2)=%q2+ﬁq4+m. (161)

In the coordinate representation and for the electron-nucleus
interaction, these expansion terms give rise to the following
corrections to the Coulomb potential,

4 2
sV = —%zad(rl)ﬂl ), (162)

2
SV — _;‘—5%22 54 + (1 < 2). (163)

A. Electron-nucleus vacuum polarization

We start with the electron-nucleus part of the vacuum po-
larization. The corresponding correction is represented as a

J

r

(

sum of four parts,

Egh = B+ " + Eff + Ey.

sec

(164)

where EZ is the second-order Uehling correction, E;" and
Ej" are the low-energy and the high-energy Uehling contri-
butions, respectively; and Eg is the Wichman-Kroll part.
The low- and the high-energy contributions are induced
by the exchanged momentum of the order «m and m,
respectively.

The low-energy part E7" is induced by an effective operator

H{", E[" = (H["), which is evaluated as

1.
H" =8v® 4 gv23<‘>v

13“2%22551( )+ (1< 2)
= — <~
210 "
13 a? A
= 2{Ey—V —2)Z8%r) — pr1 Z8%r) 1 |
105 |: < ) 2) (r1) —p1 (r1) P1
(165)
The second-order contribution is
ES =2(8V) ———— H'W), 166
sec < (EO _HO)/ ( )

Rewriting it as

g — 2 ([13 [v. P1]
To15p VU

sec

—_HW), 167
(Eo — Hy) > (167)

we obtain the second-order correction we encountered earlier.
The result thus is

b =2 (g ) (5 (229 2 29 4 i

1 (Za)? Zoa o\’ Za
— + | Eo+ p
2

— 4+ 2( E
4]"11 }’1+<0+

lﬁ(Zot)zﬂ 1 , Za 2 iZot2<8ij+
2Pl r12 P1 2171 " P> TP nr

rr—zl) Pt 2)}>>.

r 2¢

a) (Za)? B <E0 . Zoa « p_%) (Za)?

r r? ) ro 2 r?

(168)
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The high-energy part is expressed as

d‘q, d’q> !
Een = 4 V4 32 O /
n = (@rZa)’ ¢7(0) Qm)t J Qm) (Gi)* (§2)* (§12)?

x[o( =% +o( - 3°) +o(-d1)]. (169)

where G1» = ¢ — ¢» and p; = (1, ;). We evaluate the trace as

I
Tr[(p1 + Dyo(p, + 1)(;/0: )]

(vo+1)
4

T (py + Dro(py + DT =441 3. (170)

Denoting the part of Ey induced by the first term in the right-hand side of Eq. (170) as Ey, we obtain
a(dnZ a)’ o d? dq, u(k?) 1 2 2 G2
Em = _—4¢2(0)/ d(kz)/ e ((SE S+ SR+ St ). am

b4 4 (2m) Qr) k= qiqg54d 1, \k*+q7  k*+q; kK +4q1,

We evaluate this integral with help of the following formula:
d'k diq 1 1 1
Qmy J Qm)d [ [k — @)1 [g* +m?]™
m*@=m=m=m) 1(d/2 —n))T(d/2 —ny)T(ny +ny —d/2)T(ny +ny +n3 —d)

= i . 172)
(4m) () () F(n3) I'(d/2)
In the special case of m = 0, the integral vanishes because of the dimensional regularization. We obtain
2
Ey, = —?(x4(Z383(7’1) + 7383 (r)) . (173)
Similarly, we evaluate the contribution due to the second term in the right-hand side of Eq. (170),
Epy =a*( — 2, L (Z°83(r) + 283 () (174)
" 225 ' 15¢ '
The final result for the one-loop Uehling electron-nucleus vacuum polarization (in atomic units) is
Ee — Ee +(Hen>+Een - _ 2 H/ 1 HR + E(4) % —4E0
Ue sec L H 157 R (E() _ HO), r
(e o ! 13Z+13p§+1+127z2 i 28y 122+E+z 1\*z
—Fy—— — — 4+ —=+(- —Z7Z° - na |mw r)—-— ——— =
707 In 14 T \r[ 7105 Ve T\ ) n
g 2 - NE LB s (e 2o B\E L
_—— — — — 7'[ = r —_— _—— ——— — — —
0 rhnor rl2 14p1 v 0 rn r 2 rl2 2p1 rl2 P
12Z 5 o Z (i i1 (1< 2) (175)
—=p] — — — <~ .
5P " P2 T Py " 2 )P

The term with In o comes from rescaling of the operator (Za)?/ r? into atomic units. The hydrogenic limit of this expression for
nS states is (with r; = r)

2 1 1 127
E{ (hydr, nS) = —— {(Hp———H, —4EEW —2E} + | cEo+ —Z*+ Z’Ina? | nZ8°
Ue (hydr, n§) 157 {< R (Eo — Hyy R>+< 0 ot 7 0+105 + no b4 (r)
127 z2 1.7
a4 +E0r2 +§pﬁp (176)
Using the expectation values of operators from Appendix F, we get
E¢ (hydr, nS) = Z° 19 4 1724 + 4 F W) —In o In[(Za) %] (177)
r,nS) = — — n)—In-\)— n[(Za s
UelY 3505 150 15750 15 \) 2) 7 150

in agreement with the known result [22].
To complete our treatment of the electron-nucleus vacuum polarization, we have to include the Wichman-Kroll correction,
which is purely a Dirac-§-like type of contribution. It is given by

o~ (127 (Z8(r)+ 278 (). (178)
WK 45 27
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B. Electron-electron vacuum polarization

The electron-electron part of the vacuum polarization is
simpler to evaluate because the corresponding high-energy
and second-order contributions vanish for triplet states. The
low-energy part consists of two parts. The first one is due to
the ¢* term of the expansion (161). Denoting the correspond-
ing operator as H;{, we obtain

2
o -
HY =8V® = §V128d(r) +(1 <2

4o’ d
=2 58l p. (179)

35

The remaining part of the electron-electron contribution is
induced by the qg — ¢* term of the expansion (161). For its
calculation, we again use the scattering amplitude approach in
the Feynman gauge, like in the derivation of Ey in the one-loop
self-energy calculation. In this case, the perturbed vertex is

o

1571(

Again, we pull out the factor g3 — ¢* and cancel it with the
same factor in the denominator of the photon propagator. The
derivation then proceeds in the same way as in the self-energy
calculation, leading to the result

I = a%—4)v" =ave(go—q)y"*.  (180)

2. . o0
U(ﬁl’ﬁZvQ)zaVPez[_l+qZ+P1.P2+ l4d2q2:|

+(1 < 2). (181)

J

EQ = 2 H’;HR +(E@((2 — 4E,
vP 157 R (E() — H())/ r

1 127
+(—>+ —7*+7’Ina?

N 1 132 13p}
Trn Tr, 14 105
Z2 13
+2| E = apanS (r)pr —

7 N 52 19
+p’lm(8”+rr—2)19’2+(1<—>2)}>} <6 p8(r)p +<45 27)[2383(r)+Z35(rz)]>

IX. TWO-LOOP AND THREE-LOOP CONTRIBUTIONS

The two-loop radiative contribution is proportional to the
electron-nucleus Dirac § function and is obtained immediately
from the hydrogenic result,

2
Eghy = — (8 ) + () Bso. (188)

where the coefficient Bs is known only numerically [9,10,23],
Bsy = —21.554 47 (13).

After dropping the part contributing to the fine structure,
the three-loop radiative correction becomes also propor-
tional to the electron-nucleus Dirac § function and is

The first term here corresponds to the leading vacuum po-
larization correction, whereas the remaining terms are the
a’m corrections. We now transform them into the coordinate

representation with help of the following transformations,

I Lo
PI-P2=Z<P2—q2—4p-p’>, (182)
Gg>— —2p-p’, (183)
o100 = 2, (184)

where the second and third equations are valid for triplet
states. We then get

2

e 8. . 4o
Hf§ = —aype® §P53(V)P = ( 35

8.3

3P5 (rnp. (185)

The total electron-electron part of the o’ m vacuum polar-
ization is the sum of H;{ and Hf5, with the result in atomic
units

52 .
Hy, = Z 583 p.

3 (186)

C. Total vacuum polarization

Adding together the electron-nucleus and the electron-
electron parts, we get the final result for the one-loop vacuum
polarization to the order o’ m in atomic units,

s, 12 z_1\Vz
nZ8 (1) 15 + | Eo+

1 r r ry

Z 1 pI\zZ*> .72, 1 ,Z
(Eo+—————2>—2+—Pl—2P1 —Sp =P
r r rt

2 )r 20 2

(187)
{
given by [24,25]
Z 568a, 85¢(5)
T _ 3 3 4
Erad3_F<8 (71)+8(7‘2)>|:— 9 24
12172¢(3)  84071¢(3) 71 In*2
72 2304 27
23972 In%2 N 4787 7% n2 1591 x=*
135 108 3240
25225172 679441
- il (189)
9720 93312

where ag = > 02 1/(2"n*) = 0.517479061 ...
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X. SUMMARY

In this work, we derived the radiative o’m QED correction
for the triplet states of a two-electron atom. This correction
consists of the one-loop self-energy part Es(;:) given by the sum
of Egs. (152) and (156), the one-loop vacuum-polarization
part E\(,7P) given by Eq. (187), the two-loop part Emd)2 given by
Eq. (188), and the three-loop part Er(;/ ) given by Eq. (189).

In order to obtain the complete ad;’m QED correction, we
have to add to the above mentioned contributions the nonra-

diative photon exchange part E () derived in Ref. [15] and

exch
the relativistic correction to the Bethe logarithm E.” from
Ref. [14]. More specifically, the photon-exchange correction
is

ED — (H(7)

exch ™ exch

)+ 2<H(4); H® > (190)

(Ey — Hyy =~

where He(zgh and He(fgh are given, correspondingly, by Egs.
(156) and (10) of Ref. [15], and the Bethe-logarithm correc-
tion is

E;" =E) +E) +ES. (191)
with E\7, E]), and E{}) given by Egs. (14), (20), and (27) of
Ref. [14], respectively.

The final step of our project will be the numerical evalua-
tion of all o”m QED corrections. The most complicated part of
the computation is already accomplished in Ref. [14], where
we obtained numerical results for the relativistic corrections to
the Bethe logarithm for the 2 3§ and 2 °P states. A computation
of the remaining photon-exchange and radiative contributions
looks relatively straightforward. The only additional feature as
compared to our previous calculations of higher order QED
corrections in helium [6,26] is the appearance of singular
operators with Inr, such as Inr/r* in Eq. (156). Matrix ele-
ments of such operators should be understood in terms of a
special limit, as discussed in Appendix E. In particular, the
regularized operator Inr/r* is defined by Eq. (E3). We are
currently working on developing an effective computational
scheme for such operators.

ACKNOWLEDGMENTS

K.P. and V.P. acknowledge support from the National Sci-
ence Center (Poland) Grant No. 2017/27/B/ST2/02459. V.P.
was also supported by the Czech Science Foundation GACR
(Grant No. P209/18-00918S).

APPENDIX A: ELECTROMAGNETIC FORM FACTORS

The electromagnetic form factors F; and F; of an electron
are defined as

Yu = Tu=vu+v.Fi(qg—q°)
i i

L Y e (—) 4. (Al

+5 2(a5 —4°) > ) dls (AD

where ¢ is the outgoing photon momentum. The small-
q expansion of the one-loop form factors in D =4 — 2¢

is [27]
o1
F () = [cf (—g " 56)
m1 s
e = — — A2
+q( 240 ~ 40e 486)]’ (A2)
15

(A3)

APPENDIX B: INTEGRATIONS IN SPHEROIDAL
COORDINATES IN d DIMENSIONS

To introduce the spheroidal coordinates in d dimensions,
we start with the volume element in the spherical coordinates
in d — 1 dimensions, with variable z for the last dimension,

dv = r2drdz Qu_; . (B1)
Let us define
an2
n=\r+(+3). (B2)

n=r (- g)z (B3)

and introduce spheroidal variables & and 7 as
r+rnr

§ = , (B4)
a
p=11"" (B5)
a
The following relations hold:
&n
=21 B6
Z > (B6)
1
=2 = D=7 (B7)
In the new coordinates, the volume element is
_(4)! 2 231452
av = (3) QuailE = D1 =)
x (& —=n)& +n)dédn, (BY)

andn € (—1,1), & € (1, 00).
We now consider the integral of the form

. a
d% f( [k + =
fats ([ 3 -3))

= [ @k girnry
d
= (5) @ [ dganie* - naa -y

2
(§+n),a($—n)). (B9)
2 2

,‘z_?
2

x (& —n)& +n)f<a

In spheroidal coordinates, it is just a two-dimensional integral
over £ and 7.
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The particular case of such an integral with integer powers spheroidal coordinates, however, is that this approach can be

iand j applied also to noninteger values of i and j, in particular, for
the case when they are equal to d, which is needed in the
Jij = / d%%k 1 — 1 S 1 _— (B10) evaluation of the middle-energy contribution.
fr il i 4 R+ A+ -1

APPENDIX C: CANCELATION OF THE A DEPENDENCE
can be transformed to the spheroidal coordinates as
In this section, we demonstrate that the sum of all o’ m

deiej—1 mitjd o0 1 terms depending on the intermediate momentum cutoff A van-

Jij =4 2 241 /] d§ /_ | dn ishes. The dimensionless cutoff parameter A appears when
| the integral over the photon momentum k is divided into

x [(€2 = D)1 — ;72)]% E—m'E+n=. the k < A and k > A regions, A = a?1; see Eq. (23). In

§ order to cancel the A-dependent terms, we need to add the

(B11) radiative contribution calculated in this work, the nonradiative
photon-exchange contribution from Ref. [15], and the Bethe-
The integrations over & and 1 can now be performed for each logarithm correction from Ref. [14].
particular i and j, yielding results in agreement with those We first address the A-dependent part of the radiative cor-
from Appendix C of Ref. [15]. The advantage of using the rection from Eqgs. (55) and (85). Denoting it as Er’;d, we have

J

gl 2l g\ o st - 2 e L2121 2

=InAy — — —_— — | — — — — e

rad 3w\ K(Ey—Hoy ¥ 7r VLT T, 22) 73\,
1zz+5271 ol 260 2(5 . 2 1\*z g 2 1 22
_—— —_——_— — — — 7'[ r _—— —_—— = —_—— = _—— = —_—
2rf 31 P 1571 PP\ o nor)rn 3T hnr r?

1,7 4 2 1\ 2 2 . Z (. rr\
—l——pf—p%—l——EoE“)——E(4)<—>+— 1 — 3 P —<5”+—2> p+d 92)}
l’1 r 3 rr r

3 3 3 3
8. -~ 16 4P —P)-3P? 24 107

PP =T T, —_— ) Cl1
P B - 54— 3 7 o 1 o2t — q1¢) (ChH

Second, we need to account for the A-dependent part of the nonradiative photon-exchange correction derived in our previous
paper [15]. Ttis

81 . [z ogd¢\N1 71 Z#H F 4
Eéxch=1n/\<{—[p’1,[—,p’lﬂ(—45[’+2—z)—z——fl~g+(192)}+§(P1—P2)2

15 r ¢> 157 r}
16 , 85 - 4l —-P)GP 24 67
S A A K T T O iy C2
+1561+31 2+3 p +901 lop) 561 (€2)

It is advantageous to use this form of the expression in the momentum representation and not the final formula in the coordinate
representation presented in Ref. [15] because of strong cancellation of the electron-electron terms in the sum with Eq. (C1).
Adding the two contributions and then transforming this result into the coordinate representation with help of formulas from
Appendix G, we obtain for E* = EX | + E, the result

excl rad

E* =1nA —iH’—1 Hg +<¢|l nZ8%ry) 2 —Eo—ﬂ—EJrl—lp%
3\ R(E,— Hp) T 15 3r, 2

2/1 1ZZ+6271-7 L sy — 2 (B4 2 1\’z o 2 1\ 22
2rf 5 1P 1571 AL oo 0 2

3\, rp 3 rnor)n
1 ,Z , 4 2 oI\ 20 2 . Z (o rrN o Z (89 =3rir]) i
2= “E E(4)_ _E(4) _ Zy, — 2 2| sl - J i SO SR b A
+3p,r1p2+3 0 3 r +3] 3plr1r +r2 p2+15 r r3
8 .y, . 321
+(<2)+-p8(NP— =—1d) - (C3)
5 157 r

E* has to be combined with the A-dependent part of the relativistic correction to the Bethe logarithm, which will be denoted as
E} .- It is given by the sum of the contributions induced by the asymptotic coefficients given in Egs. (A7), (A10), (B7), (B9),
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(C21), and (C24) of Ref. [14], which is

Ehpe = Ina] = Hy, L_n +<q>|1 Z8(ry) B+ Nz 1,
n —_— —\ 7T r)| — — —_— = =
Bethe = ) 37\ "R (Ey — Hoy 7 ! 3, T, T2k

6Zr1-r 11 Z64(r,) 2E+ 2z+4E+z 1\z* Z°
b4 r = —— =) —+= —— =5 -
5r1r3 15pI P+ 3\ 70 no 3\, oo
1 z , 4 2 1\ 5 2, Z rl‘rf o Z (89} = 3rir]) rird
__ — —E, E® L Zp®[ 2\ _ “y P sl )l Lo monn)rr
3P 3 T3P\ T3 T Em )T " ”
8 4 .. 321
+(1 < 2)p —-p&(rNp+——=—lo) ¢ - (C4)
5 157 r
We now take into account the identity
7> z?
= =25 -2 - 1227 8% (n), (C3)
r r
1 1

where we should drop the second term on the right-hand side, in accordance with the procedure of omitting all the electron-
nucleus §-like contributions at this stage of the derivation. Therefore, we find that E Ay Eﬁethe =0.

The cancellation of the A-dependent terms proportional to the pure electron-nucleus Dirac é function is demonstrated in
Appendix D. After we checked that all A-dependent terms vanish as they should, we can just set A — 1 in all final formulas.

APPENDIX D: CANCELATION OF THE A DEPENDENCE IN THE HYDROGENIC LIMIT

In Appendix C, we proved that all A-dependent «’ m terms vanish, with the exception of pure electron-nucleus Dirac-8
contributions, which were omitted in the derivation. The §-like contribution was restored in Sec. VII A by matching our results
against the known hydrogenic limit. Here we will show that the A-dependent terms proportional to the electron-nucleus Dirac §
function in the hydrogenic limit vanish as well.

Let us return to the A-dependent part of the relativistic correction to the Bethe logarithm from Ref. [14], now keeping the
8-like terms. Performing the hydrogenic limit and taking only terms contributing to S states, we have

EL: . (hydr) =InA 2 H’—l H +<¢>|1 nZ84(r)| 22 12 + 101n2 In X 2 E
= — — r - — 4+ — — - —
Bethe (1Y 37\ R(Eg— Hyy X - 573 1570
ML z84(ryp! te g z_z 432 z S g EW o) (D1)
P T =SB = 3By = s P s P 3 h
Using results for the matrix elements from Appendix F, we obtain for the 1§ state
N ) 5 22
Egepethydr, 1S) = —In"A 4+ InA 3 + £ In2). (D2)

Switching to the same cutoff A as in Fy from Eq. (146), A = a?X, we see that all cutoff-dependent terms cancel in the sum
Egethe(hydr, 1S) + Fy.
APPENDIX E: EXPECTATION VALUES OF SINGULAR OPERATORS

In our derivation, we encounter expectation values of several singular operators, which need to be evaluated in the coordinate
representation. These expectation values should be understood in the sense of a distribution. Specifically, the expectation values
of the operators 1/r3, 1/r*, and Inr/r* are defined by the following limits:

<¢|713|w> = igr%/d3r¢*(?)w(?)[%®(r—a)+4n 8 )y +1na)]

=[11133) T ar &-Ff(o)(y +1Ina), (ED
0
9l51v) = lim / arfQ IO 4 o) 4, E2)
1 1 141
(1 1) _lm/ f(rjznr f(O)( ha ““)+f/(0>¥, (E3)
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where

£ = / 4Q¢* () Y (7). (E4)

APPENDIX F: HYDROGENIC EXPECTATION VALUES

Here we list the expectation values of various o’ m operators for the hydrogenic S states. They are

ZZ
E0=—ﬁ, (F1)
3 1
4 _ 74
E _z<@—ﬁ>, (F2)
Z B s L f - (F3)
_ = | — = _ _ — In —
r4 n3 3 2n 6n? 4 " 27 |
z _4zrl 1 W(n) + In — (F4)
_ = | - - — — —_ n — |,
r3 w2 2n 4 27
z: 2z*
i )
Zr 2 8
Pr—2P=Z _ﬁ—‘_ﬁ’ (F6)
prZs'(rp=0, (F7)
Z4
nZ8'(n) = = . (F8)
7

where W(n) = I'"(n)/T'(n). The expectation value of Z3/r* and Z?/r* were calculated according to the definitions in Appendix
E. Note that the terms with In Z originate from the rescaling » — Z~! r, which was needed for the correct matching of our results
with the hydrogenic limit; see discussion under Eq. (145).

The hydrogenic limit of the second-order correction is

1
Hy———Hg) =2 —— — —+ =+ — ), F9
< R(Ey — Hyy R> < n® 3’ + n* + 3n3) )

where the operators Hg and Hy act on ket states as

1 ASVARY
HR|¢>=[—5<EO+7 -1 }| ), (F10)
Y
Hil¢) = =227~ 1¢) (F11)

r

APPENDIX G: FOURIER TRANSFORM

Here we list the formulas needed to transform our formulas from momentum space into the coordinate representation. The
results are [15]

Bq o 4r 1
q3 ezq.r _jzt [ , (Gl)
2r) q r
d3q . qi ri
T4y L = i— G2
eryp ¢ e T @
d’q iGF q'q’ 8”612 _ 81y — 3pipi (G3)
(2m)? ¢
g .. gl 1. o
a4 LT (5112 — yipi), (G4)
2r)? q* 2r3
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The transformation of singular operators 1/r* and Inr/r* is more complicated. Here we present results valid for triplet states

[15]
3 iG-F 1 . 3 ig-r 1 3 1
d’reé” — =1im | &re'?"| —=0(r —¢e) —4n 8’ (r) -
r4 e—0 r4 €
1 © dr . 4
= lim 27 / —relqm =z
e—>0 —1 e T €
ey (G3)
and
1 _ Tl 1+1
$reé®™ 20 _gim | @r o7 E9(1’ —&) —47T53(r)ﬂ
r4 =0 7‘4 &
1 o 4 . 1+1
:limZn/ dx/ —rlnrelqrx—477_+ a
e—0 _1 e r2 €
) 3
=7 —§+V+lnq q- (G6)
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