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Radiative α7m QED contribution to the helium Lamb shift
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We present a derivation of the last unknown part of the α7m contribution to the Lamb shift of a two-electron
atom, induced by the radiative QED effects beyond the Bethe logarithm. This derivation is performed in the
framework of nonrelativistic quantum electrodynamics and is valid for the triplet (spin S = 1) atomic states. The
obtained formulas are free from any divergences and are suitable for a numerical evaluation. This opens a way for
a complete numerical calculation of the α7m QED effects in helium, which will allow an accurate determination
of the nuclear charge radius from measurements of helium transition frequencies.
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I. INTRODUCTION

The helium atom has been extensively studied since
the very advent of quantum mechanics as the prototypical
three-body problem and an ideal testing ground for various
theoretical approaches describing many-electron atoms. Mod-
ern theoretical calculations of helium spectra [1] approach the
level of accuracy previously achievable only for the simplest
case of the hydrogen atom, with a potential for discovery of
new effects beyond the standard model. Among the major
topics of current interest in the helium atom are possibilities
to obtain an “atomic physics” value for the fine structure con-
stant α = e2/(4πε0 h̄c) [2,3] and to provide another method
for the determination of the nuclear charge radius [4,5].

Up to now, theoretical calculations of the helium Lamb
shift allowed accurate determinations only for the differences
of the nuclear charge radii of two isotopes [6]. In order to
determine the absolute value of the nuclear radius with a
precision comparable to what is expected from muonic helium
[7], one needs to perform a complete calculation of the α7m
QED effects, which is a very challenging task.

The α7m QED effects were first calculated for hydrogen
in Refs. [8–10] and recently generalized for the two-center
hydrogenic problem [11]. For helium, the α7m QED effects
were investigated in the context of the fine-structure splitting
[2,12,13], which offered extensive simplifications to the un-
derlying theory.

Several years ago, we started a project of calculating the
α7m QED effects in the Lamb shift of helium. The first
aim of the project is the triplet (spin S = 1) states, whose
theory is simplified by the absence of the so-called contact
operators ∝ δ(�r1 − �r2). Intermediate results were published in
Refs. [14,15]. In the present work, we complete the derivation
of the α7m contribution, presenting formulas for the last miss-
ing part. More specifically, the α7m contribution to the Lamb
shift are represented as a sum of three parts,

E (7) = E (7)
L + E (7)

exch + E (7)
rad , (1)

where E (7)
L is the relativistic correction to the so-called Bethe

logarithm, E (7)
exch is the part induced by the electron-electron

and electron-nucleus photon exchange, and E (7)
rad is induced by

the radiative QED effects beyond the Bethe logarithm. The
relativistic correction to the Bethe logarithm was calculated
in Ref. [14], whereas the photon-exchange contribution was
derived by us in Ref. [15]. The goal of the present investi-
gation is to perform a derivation of the last missing part in
Eq. (1), thus obtaining the total set of formulas for the α7m
contribution for the triplet states of a two-electron atom. The
numerical evaluation of the obtained formulas is left for the
forthcoming investigation.

II. BASIC APPROACH

The radiative α7 m contribution to the Lamb shift is rep-
resented by a sum of the first-order and the second-order
perturbation corrections,

E (7)
rad = 〈H (7)

rad

〉+ 2

〈
H (4) 1

(E0 − H0)′
H (5)

rad

〉
. (2)

Here, H (7)
rad and H (5)

rad are the effective Hamiltonians induced by
the radiative effects of order α7m and α5m, respectively, H (4)

is the Breit Hamiltonian (of order α4m), and H0 and E0 are the
nonrelativistic Hamiltonian and the corresponding eigenvalue,
respectively.

E (7)
rad consists of contributions coming from the one-loop

self-energy (SE), the one-loop vacuum polarization (VP), and
the two-loop (rad2) and three-loop QED effects (rad3),

E (7)
rad = E (7)

SE + E (7)
VP + E (7)

rad2 + E (7)
rad3. (3)

The main part of the present investigation will be devoted to
the evaluation of the one-loop self-energy correction, which is
by far the most difficult part. The corresponding derivation is
presented in Secs. III–VII. The one-loop vacuum polarization
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is calculated in Sec. VIII, whereas the two- and three-loop
radiative effects are obtained in Sec. IX.

One of the major problems encountered in deriving formu-
las for higher order QED effects is connected with numerous
divergences appearing on intermediate stages of the calcula-
tion. In order to systematically handle these divergences, we
use dimensionally regularized nonrelativistic quantum elec-
trodynamics (NRQED), with the dimension of the space-time
D = 4 − 2 ε and the dimension of space d = 3 − 2 ε. The
parameter ε is considered as small, but only on the level of
matrix elements, where the analytic continuation to a nonin-
teger spatial dimension is allowed. The final results will be
expanded in small ε, and singular contributions ∝ 1/ε will be
canceled algebraically in momentum space. Subsequently, the
results will be transformed into the coordinate representation,
where they can be calculated numerically. The foundation of
the dimensionally regularized NRQED in the context of the
hydrogen Lamb shift was laid in Ref. [16], but our approach
differs in many details.

In our derivation of the radiative α7 m correction for he-
lium, we will rely on the fact that the corresponding correction
is known for hydrogen-like atoms (see, e.g., a review [17]).
With this in mind, in our derivation we will repeatedly drop
the first-order terms containing purely the electron-nucleus
Dirac δ function. (We still have to keep terms in which the
electron-nucleus δ function is combined with the potential,
energy, or momenta, however.) This procedure will simplify
the derivation enormously and the omitted δ-like terms will be
later restored by matching the known hydrogenic results. Our
calculation will be performed in the Coulomb gauge, unless
explicitly specified otherwise.

When working in the dimensionally regularized NRQED,
we need generalizations of basic operators into the ex-
tended number of dimensions, shortly summarized below.
The momentum-space representation of the photon propaga-
tor preserves its form in d dimensions, namely, gμν/k2. The
surface area of a d-dimensional unit sphere is

�d = 2 πd/2

�(d/2)
. (4)

The electron-nucleus Coulomb interaction becomes

VC (r) = −Z e2
∫

dd k

(2 π )d

ei �k·�r

k2

= − Z e2

4 π r1−2 ε

[
(4 π )ε

�(1 − 2 ε)

�(1 − ε)

]
≡ −
[Zα

r

]
ε
. (5)

Here and in what follows, [X ]ε will denote the d-dimensional
generalization of the d = 3 operator X . The d-dimensional
nonrelativistic Hamiltonian of a two-electron atom is given
by

H0 =
∑

a=1,2

�p 2
a

2 m
+ V , (6)

where

V = −
[

Z α

r1

]
ε

−
[

Z α

r2

]
ε

+
[
α

r

]
ε

(7)

and �r = �r1 − �r2. The d-dimensional generalization of the
Breit Hamiltonian for a two-electron atom is

H (4) = H ′(4) + H ′′(4) , (8)

H ′(4) = −π α

m2
δd (r) +

∑
a=1,2

{
− p4

a

8 m3
+ π Zα

2 m2
δd (ra)

}

− α

2 m2
pi

1

[
δi j

r
+ ri r j

r3

]
ε

pj
2 − π α

d m2
σ

i j
1 σ

i j
2 δd (r) ,

(9)

H ′′(4) =
∑

a=1,2

1

4 m2
σ i j

a

(∇ i
aV
)
pj

a

+ 1

4 m2
σ ik

1 σ
jk

2

(
∇ i ∇ j − δi j

d
∇2

)[α
r

]
ε

− 1

2 m2

(
σ

i j
1 ∇ i
[α

r

]
ε

pj
2 − σ

i j
2 ∇ i
[α

r

]
ε

pj
1

)
, (10)

where δd (r) is the Dirac δ function in d dimensions, σ i j =
1/(2i)[σ i, σ j], and σ i are the Pauli matrices. In d = 3 spatial
dimensions, the matrices σ i j reduce to σ i j = εi jk σ k . The d-
dimensional generalization of the algebra of the Pauli matrices
is summarized in Appendix B of Ref. [15].

III. NRQED Hamiltonian

We now turn to the derivation of the NRQED Hamiltonian
incorporating relativistic corrections and a class of radiative
corrections that comes from the high photon momentum, in d
dimensions. This Hamiltonian can be obtained from the Dirac
Hamiltonian by means of the Foldy-Wouthuysen transforma-
tion. In order to incorporate a high-energy part of the radiative
corrections, we start with the Dirac Hamiltonian modified by
the electromagnetic form factors F1 and F2,

HD = �α · [ �p − e F1( �∇2) �A] + β m + e F1( �∇2) A0

+ F2( �∇2)
e

2 m

(
i �γ · �E − β

2
�i j Bi j

)
, (11)

where Bi j = ∇i A j − ∇ j Ai , ∇i ≡ ∇i = ∂/∂xi, and �i j =
i
2 [γ i, γ j]. Formulas for the electromagnetic form factors F1

and F2 are summarized in Appendix A. Introducing the Foldy-
Wouthuysen transformation defined by the operator S,

S = − i

2 m

{
β �α · �π − 1

3 m2
β (�α · �π )3

+e(1 + κ )

2 m
i �α · �E − e κ

8 m2
[�α · �π, β �i j Bi j]

}
, (12)

where κ ≡ F2(0) ≈ α/(2 π ) is the electron anomalous mag-
netic moment, the transformed Hamiltonian is obtained as

HFW = ei S (HD − i ∂t ) e−i S . (13)

We will split the transformed Hamiltonian into two parts,
δH1 and δH2, HFW = δH1 + δH2, where δH1 contains the
form factors only in the form of the anomalous magnetic
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moment κ , and δH2 is the remainder. The result is

δH1 = �π2

2 m
+ eA0 − e

4 m
(1 + κ ) σ i j Bi j − �π 4

8 m3
− e

8 m2
(1 + 2 κ ) [ �∇ · �E + σ i j {Ei, π j}]

+ e

16 m3

[(
1 + κ

2

)
{p2 , σ i j Bi j} + 4 κ pk σ ki Bi j pj + κ �p σ · B �p

]
+ �p6

16 m5
+ (κ2 + κ + 1)

8 m3
e2 �E2

+ 3 + 4 κ

64 m4
e { �p 2, �∇ · �E + σ i j {Ei, pj}} + 5 i e

128m4
[p2, { �p , �E}] − e κ

16m3
{π k, ∂t E

k + ∇ i Bik} + . . . , (14)

δH2 = e
[
F ′

1 (0) � + 1

2
F ′′

1 (0) �2
]
A0 − e

m

(
F ′

1 (0) �p · � �A + 1

4
[F ′

1 (0) + F ′
2 (0)] σ i j �Bi j

)
− e

8 m4
[F ′

1 (0) + 2 F ′
2 (0)] � �∇ · �E + · · · , (15)

where � = �∇2, {X,Y } ≡ X Y + Y X , and �π = �p − e �A. The
ellipsis denotes higher order terms and spin-dependent terms
that do not contribute to the centroid energies.

It should be noted that the neglect of ∂/∂x0 within the
F1 and F2 form factors is not valid for the electron-electron
interactions. In this case, we will calculate effective operators
from the one-photon exchange scattering amplitude in the
Feynman gauge. Moreover, there is an additional radiative
correction to the NRQED Hamiltonian that is not accounted
for by the F1 and F2 form factors. It is represented by an
effective local operator quadratic in the field strengths. This
operator is derived separately by evaluating a low-energy limit
of the electron scattering amplitude off the Coulomb field. It
was calculated in Ref. [18] to be

δH3 = e2

m3
�E 2 χ , (16)

where E is an electric field, and the function χ is given by

χ = α

π

(
1

6
− 1

3ε

)
, (17)

where we included only the one-loop part. We follow through-
out this work the convention of Ref. [18], that a common
factor of [(4π )ε �(1 + ε)] for each loop integration is pulled
out from all matrix elements.

We thus obtain the effective NRQED Hamiltonian as

Hnrqed = δH1 + δH2 + δH3 . (18)

Individual operators from Hnrqed induce numerous contribu-
tions to the one-loop electron self-energy, evaluated term by
term in Sec. VI C.

IV. EFFECTIVE α5m HAMILTONIAN

We now derive the self-energy part of the effective α5 m
operator H (5)

rad , which is required for evaluation of the second-
order contribution in Eq. (2). Despite the fact that the α5 m
correction is well-known in principle [19,20], we here need
a d-dimensional generalization of the corresponding effective
operator. From now on, we will make the simplification of
setting the electron mass equal to one, m = 1.

The leading-order self-energy correction E (5)
SE can be writ-

ten as a sum of low-energy and high-energy contributions,

E (5)
SE = EL0 + EH0. (19)

The low-energy part comes from the radiative photon mo-
menta of the order k ∝ α2 m. It is represented by the one-loop
self-energy contribution in the leading nonrelativistic-dipole
approximation,

EL0 = e2
∫

dd k

(2π )d 2k
δ

i j
⊥ (k)

×〈φ|pi
1

1

E0 − H0 − k
pj

1|φ〉 + (1 ↔ 2) , (20)

where δ
i j
⊥ (k) = δi j − kik j/k2. The integration over |k| is split

into two parts,
∫∞

0 = ∫ �

0 + ∫∞
�

, leading to the separation

EL0 = E (5)
L + E�

L0 , (21)

where the first term E (5)
L is the electron self-energy part of the

Bethe logarithm in three dimensions,

E (5)
L = 2e2

3

∫ �

0

d3k

(2π )32k
〈φ|pi

1
1

E0 − H0 − k
pi

1|φ〉
+(1 ↔ 2) , (22)

while the second term is the remainder to be calculated in d
dimensions. It is assumed that

� = α2λ , (23)

with arbitrary large λ. Namely, it is assumed that the limit
ε → 0 is performed as the first and λ → ∞ as the second one.
So, we obtain

E (5)
L = − 2α

3π
〈φ|pi

1 (H0 − E0) ln

[
(H0 − E0)

α2

]
pi

1|φ〉

+α ln λ

3π
∇2

1V + (1 ↔ 2) . (24)

Here, the second term depends on λ, but it will cancel out in
the sum in Eq. (21). The remainder E�

L0 is evaluated as

E�
L0 = e2

∫ ∞

�

dd k

(2π )d 2k
δ

i j
⊥ (k)

×〈φ|pi
1

1

E0 − H0 − k
pj

1|φ〉 + (1 ↔ 2)

= e2

4

d − 1

d

∫ ∞

�

dd k

(2π )dk3

×〈φ|[pi
1,
[
H0 − E0, pi

1

]]|φ〉 + (1 ↔ 2) . (25)
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Performing the integration with respect to k we obtain

E�
L0 = α

π
Iε

(∇2
1V + ∇2

2V
)
, (26)

where

Iε = π2 d − 1

d

∫ ∞

�

dd k

(2π )d k3

= −2−d (d − 1)π2− d
2 [α2λ]

d−3

(d − 3)�
(

d
2 + 1

) = 5

18
+ 1

6
ln �ε + O(ε)

(27)

and

ln �ε = 1

ε
+ 2 ln(α−2) − 2 ln(2λ) . (28)

The high-energy contribution, EH0 in Eq. (19), is induced
by the region where the momentum of the radiative photon is
of the order of the electron mass k ∝ m. EH0 is conveniently
split into two parts,

EH0 = EA
H0 + EB

H0. (29)

The first part comes from the exchange of a transverse photon
with one vertex − e

4κ σ · B. It is calculated in the nonretarda-
tion approximation, with the result

EA
H0 = − e2κ

∫
dd k

(2π )d 2k2
δ

i j
⊥ (k)〈φ|

(
pi

1 + 1

2
σ ki

1 ∇k
1

)
ei�k·�r1

(
1

2
σ

l j
2 ∇ l

2

)
e−i�k·�r2 |φ〉 + H.c. + (1 ↔ 2)

= ακ

〈
1

4
σ ik

1 σ
jk

2

(
∇ i∇ j − δi j

d
∇2

)[
1

r

]
ε

− π

d
σ1 · σ2 δd (r) + 1

2
σ

i j
2 ∇ i

1

[
1

r

]
ε

pj
1

〉
+ (1 ↔ 2). (30)

The remaining high-energy contribution comes from the exchange of a Coulomb photon with the vertices eA0 and − e
4κ �∇ · �E −

e
4κ σ i j{Ei, pj} + F ′

1 (0) �∇2eA0. The result is

EB
H0 =

〈[
F ′

1 (0) + 1

4
κ
]
∇2

1V + 1

4
κ σ

i j
1

{∇ i
1V, pj

1

}〉+ (1 ↔ 2) . (31)

Here F ′
1 (0) contains the singular part ∝ 1/ε; see Appendix A. This singularity will cancel exactly with that in ln �ε , so that the

final result for E (5)
SE is finite. We thus obtain

E (5)
SE = E (5)

L + 〈H (5)
SE

〉
, (32)

where the self-energy Hamiltonian H (5)
SE = H ′(5)

SE + H ′′(5)
SE is given by

H ′(5)
SE = α

π

(
Iε − 1

6ε

)(∇2
1V + ∇2

2V
)− α

2πκ

d
σ1 · σ2 δd (r)

≈ α

π

[
5

18
+ 1

3
ln(α−2) − 1

3
ln(2λ)

](∇2
1V + ∇2

2V
)− α

2πκ

3
σ1 · σ2 δd (r) , (33)

H ′′(5)
SE = α

κ

2

{[
�σ2 ·
(

�∇1
1

r

)
× �p1 + �σ1 · �∇1V × �p1 + (1 ↔ 2)

]
− σ i

1σ
j

2

(
∇ i∇ j − δi j

3
∇2

)
1

r

}
. (34)

Here we used d = 3 for H ′′(5)
SE because the corresponding α7m

second-order contribution will not contain any singularities.
Note that the second line in Eq. (33) holds only for the α5m
correction. For the α7m contribution coming from the second-
order perturbation correction with H (5)

SE , we will have to keep
Iε in the closed form because of a contribution from the linear
in ε terms. We also note that both E (5)

L and H (5)
SE are free of any

divergencies but they depend on the cutoff parameter λ, which
cancels out in their sum.

V. SECOND-ORDER α7m SELF-ENERGY CORRECTION

We now turn to the derivation of the second-order α7m self-
energy contribution represented by the second term in Eq. (2),

E (7)
sec,SE = 2

〈
H (4) 1

(E0 − H0)′
H (5)

SE

〉
, (35)

where H (4) is the Breit Hamiltonian and H (5)
SE was derived in

the previous section. It is convenient to split E (7)
sec,SE into the

spin-dependent and spin-independent parts,

E (7)
sec,SE = 2

〈
H ′(4) 1

(E0 − H0)′
H ′(5)

SE

〉

+ 2

〈
H ′′(4) 1

(E0 − H0)′
H ′′(5)

SE

〉
, (36)

where H ′(4) and H ′′(4) are given by Eqs. (9) and (10), respec-
tively, and H ′(5)

SE and H ′′(5)
SE by Eqs. (33) and (34), respectively.

The spin-dependent second-order contribution with H ′′(5)
SE is

finite and can be calculated numerically as it stands. The
contribution induced by H ′(5)

SE , however, is divergent and needs
to be regularized and transformed in order to move all 1/ε

singularities into the first-order terms where they can be
canceled.
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Omitting terms ∝ δd (r) vanishing for triplet states, we
rewrite the first part of the α5 Hamiltonian as

H ′(5)
SE = α

π

(
Iε − 1

6ε

)
[ �P, [V, �P]] , (37)

where �P = �p1 + �p2 is the total momentum. The correspond-
ing second-order contribution is thus of the form

2α

π

(
Iε − 1

6ε

) 〈
H ′(4) 1

(E0 − H0)′
[ �P, [V, �P]]

〉
. (38)

In order to identify divergencies in this second-order matrix
element, we introduce the following identities

H ′(4) = {H0 − E0, Q} + HR , (39)

[Pi, [V, Pi]] = {H0 − E0, Q′} + H ′
R , (40)

where the operators HR and H ′
R are chosen in such a way that

the second-order corrections with these operators are finite.
We have

Q = −1

4

[
Zα

r1
+ Zα

r2

]
ε

+ α

2r
, (41)

Q′ = 2

[
Zα

r1
+ Zα

r2

]
ε

, (42)

and the regularized operators HR and H ′
R are defined by their

action on ket states as

HR|φ〉 =
[

− 1

2
(E0 − V )2 − Zα

4
�r1 · �∇1

r3
1

− Zα

4
�r2 · �∇2

r3
2

+ 1

4
∇2

1∇2
2 − pi

1
α

2r

(
δi j + rir j

r2

)
pj

2

]
|φ〉 , (43)

H ′
R|φ〉 = − 2Zα

( �r1 · �∇1

r3
1

+ �r2 · �∇2

r3
2

)
|φ〉 . (44)

We now rewrite the second-order correction as

〈
[Pi, [V, Pi]]

1

(E0 − H0)′
H ′(4)

〉
=
〈
[Pi, [V, Pi]]

1

(E0 − H0)′
HR

〉
+ 〈(〈Q〉 − Q)[Pi, [V, Pi]]〉 (45)

=
〈
H ′

R

1

(E0 − H0)′
HR

〉
+ 〈HR (〈Q′〉 − Q′)〉 + 〈(〈Q〉 − Q) [Pi, [V, Pi]]〉 . (46)

The first term in the last equation is finite. The third term is evaluated as

〈(〈Q〉 − Q) [Pi, [V, Pi]]〉 =
〈(

E0

2
+
〈

α

4r

〉
+ (Z − 2)α

4r2

)
4πZα δ3(r1) + (1 ↔ 2)

〉
. (47)

Here we used the identity δd (r) [1/r]ε = 0, which is valid in dimensional regularization. The evaluation of the second term in
Eq. (46) is more complicated. We rewrite it as

〈HR (〈Q′〉 − Q′)〉 = E (4)〈Q′〉 − 〈(H ′(4) − {H0 − E0, Q})Q′〉
=
〈
E (4)

(
2α

r
− 4E0

)
+ 1

2
[( �∇1Q) · ( �∇1Q′) + ( �∇2Q) · ( �∇2Q′)] − H ′(4) Q′

〉
= X1 + X2 + X3 , (48)

where E (4) = 〈H (4)〉 = 〈HR〉 since 〈H ′′(4)〉 = 0. Term X1 needs no further simplification,

X1 =
〈
E (4)

(
2α

r
− 4E0

)〉
. (49)

Term X2 reduces to

X2 = 1

2
[( �∇1Q) · ( �∇1Q′) + ( �∇2Q) · ( �∇2Q′)] = −1

4

[
(Zα)2

r4
1

+ (Zα)2

r4
2

]
ε

+ 1

2

(
Zα �r1

r3
1

− Zα �r2

r3
2

)
· α �r

r3
, (50)

where [(Z α)2/r4
1 ]ε = [∇(Z α/r1)]2

ε . Term X3 for triplet states is

X3 = 〈− H ′(4) Q′〉 = 〈[1

8

(
p4

1 + p4
2

)− Zπα

2
[δ3(r1) + δ3(r2)] + α

2
pi

1

(
δi j

r
+ rir j

r3

)
pj

2

]
Q′
〉

=
〈

1

8

(
p4

1 + p4
2

)
Q′ − (Zα)2π

[
δ3(r1)

r2
+ δ3(r2)

r1

]
+ pi

1

(
Zα

r1
+ Zα

r2

)
α

r

(
δi j + rir j

q2

)
pj

2

〉
. (51)

The first term in the last equation contains singularities. We transform it as

1

8

(
p4

1 + p4
2

)
Q′ = 1

8

[(
p2

1 + p2
2

)2 − 2 p2
1 p2

2

]
Q′ = 1

8

[(
p2

1 + p2
2

)
Q′ (p2

1 + p2
2

)+ 1

2

[
p2

1 + p2
2,
[
p2

1 + p2
2, Q′]]− 2 p2

1 Q′ p2
2

]

= 1

2

[
2(E0 − V )2

[
Zα

r1
+ Zα

r2

]
ε

+
{[

(Zα)2

r4
1

]
ε

− Zα �r1

r3
1

· α �r
r3

+ (1 ↔ 2)

}
− p2

1

(
Zα

r1
+ Zα

r2

)
p2

2

]
. (52)
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It is convenient to convert [Z3/r3
a ]ε into [Z2/r4

a ]ε , which is achieved by the following identity,〈[
(Zα)2

r4
1

]
ε

〉
=
〈
−2

[
Zα

r1

]3

ε

− 2Y1

〉
, (53)

where

Y1 =
(

E0 + Zα

r2
− α

r
− p2

2

2

)
(Zα)2

r2
1

− 1

2
�p1

(Zα)2

r2
1

�p1 . (54)

The final result for the second-order contribution is a sum X1 + X2 + X3 and takes the form

E (7)
sec,SE = 2

〈
H ′′(4) 1

(E0 − H0)′
H ′′(5)

SE

〉
+ α

π

[
5

9
+ 2

3
ln(α−2) − 2

3
ln(2λ)

](〈
H ′

R

1

(E0 − H0)′
HR

〉

+
〈
E (4)

(〈
2α

r

〉
− 4E0

)
+
{(

2E0 +
〈
α

r

〉)
πZα δ3(r1) +

(
E0 + Zα

r2
− α

r

)2 Zα

r1
+ 2

(
E0 + Zα

r2
− α

r

)
(Zα)2

r2
1

−Y1 − 1

2
p2

1
Zα

r1
p2

2 − 1

4

[
(Zα)2

r4
1

]
ε

− 2πZα2 δ3(r1)

r2
+ pi

1
Zα

r1

α

r

(
δi j + rir j

r2

)
pj

2 + (1 ↔ 2)

}〉)
. (55)

Note that the above expression is written completely in the
coordinate representation. In the following derivation of other
contributions, we will often find it convenient to keep the
two-body electron-electron terms in the momentum repre-
sentation. This is advantageous because in the momentum
representation the evaluation of the electron-electron terms is
simpler.

VI. EFFECTIVE α7m HAMILTONIAN

We now turn to the derivation of the first-order self-energy
α7m contribution represented by the first term in Eq. (2). This
correction can be conveniently split into three parts, according
to the region of the contributing photon momenta,〈

H (7)
SE

〉 = E�
L + EM + EH . (56)

Here, the three contributions E�
L , EM , and EH are induced

by momenta k of the radiative photon of the order mα2,
mα, and m, respectively. These three terms will be referred
to as the low-energy, middle-energy, and high-energy parts,
correspondingly.

A. Low-energy part

We now turn to the evaluation of relativistic corrections of
order α7m to the leading-order one-loop nonrelativistic dipole
self-energy contribution, EL0, given by Eq. (20). Contributions
arising from the small-k region, k < �, give rise to the rela-
tivistic corrections to the Bethe logarithm, already computed
in Ref. [14]. So, in the present work we are only concerned
with the large-k region, k > �.

The α7m corrections to E�
L0 arise as (i) perturbations of the

reference-state wave function φ, the zeroth-order energy E0,
and the zeroth-order Hamiltonian H0 by the Breit Hamiltonian
H (4), (ii) a perturbation of the current �p → δ �j, and (iii) a
retardation (quadrupole) correction. The corresponding α7m
corrections will be denoted as EL1, EL2, and EL3, respectively,

E�
L = E�

L1 + E�
L2 + E�

L3 . (57)

Our calculation of these terms will be similar to that of
the low-energy photon-exchange contributions, described in
Sec. III of Ref. [15].

1. E�
L1

The first term E�
L1 is due to a perturbation by the Breit

Hamiltonian and is written as

E�
L1 = e2

∫ ∞

�

dd k

(2π )d 2k
δ

i j
⊥ (k) δ〈φ|pi

1
1

E0 − H0 − k
pj

1|φ〉
+(1 ↔ 2) . (58)

Here the symbol δ〈· · · 〉 denotes the first-order perturbation of
the matrix element 〈· · · 〉 by the Breit Hamiltonian H (4), which
implies perturbations of the reference-state wave function φ,
the energy E0, and the zeroth-order Hamiltonian H0. Since k
is much bigger than H0 − E0, we can expand the integrand
of Eq. (58) in large k, keeping only the 1/k2 term, while 1/k
contributes at the lower order of α6 m. The result is

δ〈φ|pi
1

1

E0 − H0 − k
pj

1|φ〉 + (1 ↔ 2)

= 1

2 k2
δ〈φ|[pi

1,
[
H0 − E0, pj

1

]]|φ〉 + (1 ↔ 2)

= 1

k2
〈φ|[pi

1,
[
V, pj

1

]] 1

(E0 − H0)′
H (4)|φ〉

+ 1

2 k2
〈φ|[pi

1,
[
H (4), pj

1

]]|φ〉 + (1 ↔ 2) . (59)

The first term in the last equation is the second-order contri-
bution already accounted for in the previous section, and thus
it will be omitted here. Note that the above expansion is valid
up to the electron-nucleus Dirac δ-function terms, which we
are omitting for the present. They will be restored later by
matching our calculation against the hydrogenic result. The
same will apply also for E�

L2 and E�
L3.
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After expanding in ε = (3 − d )/2 and then in α, we obtain the result for the corresponding effective Hamiltonian HL1,
E�

L1 = 〈HL1〉,

HL1 = α2

(
5

36
+ 1

12
ln �ε

)
Z
[∇2

1δd (r1) + ∇2
2δd (r2)

]− α2

{
σ1 · σ2

(
− 7

27
− 1

9
ln �ε

)
q2

+
(

− 5

9
− 1

3
ln �ε

)[
q2 + 4 �P1 · �P2 − 4

( �P1 · �q)( �P2 · �q)

q2

]}
, (60)

where �P1 = 1
2 ( �p1 + �p1

′) and �P2 = 1
2 ( �p2 + �p2

′) are sums of the in and out momenta of the corresponding electron, and �q =
�p′

1 − �p1. Using the identity valid for the expectation values of the operators,

∇2
1δd (r1) = −2 p2

1 δd (r1) + 2 �p1 δd (r1) �p1 = −4
(
E0 − V − p2

2/2
)
δd (r1) + 2 �p1 δd (r1) �p1 , (61)

we simplify the expression further, obtaining the final result

HL1 = α2

{
Zδd (r1)

(
− 5

9
− 1

3
ln �ε

)(
E0 − V − p2

2

2

)
+
(

5

18
+ 1

6
ln �ε

)
�p1 Zδd (r1) �p1 + (1 ↔ 2)

}

+α2

{
σ1 · σ2

(
7

27
+ 1

9
ln �ε

)
q2 +

(
5

9
+ 1

3
ln �ε

)[
q2 + 4 �P1 · �P2 − 4

( �P1 · �q)( �P2 · �q)

q2

]}
. (62)

Note that in the above expression we keep the electron-nucleus terms in the coordinate representation but the electron-electron
terms in the momentum representation.

2. E�
L2

The second term in Eq. (57), E�
L2, comes from a correction to the current. Specifically, �p1 gets a correction δ �j1, which is

δ ji
1 = i
[
H (4), ri

1

] = −1

2
pi

1 p2
1 − α

2

[
δi j

r
+ rir j

r3

]
ε

pj
2 , (63)

and the same for �p2. The contribution E�
L2 is then

E�
L2 = 2e2

∫ ∞

�

dd k

(2π )d2k
δ

i j
⊥ (k) 〈φ|δ ji

1
1

E0 − H0 − k
pj

1|φ〉 + (1 ↔ 2) . (64)

Expanding this expression in large k and performing the angular average, we arrive at

E�
L2 = e2 d − 1

d

∫ ∞

�

dd k

(2π )d 2k3
〈φ| [δ ji

1,
[
V, pi

1

]] |φ〉 + (1 ↔ 2) = EA
L2 + EB

L2 + EC
L2 . (65)

This expression consists of three-body and two-body terms. The three-body contribution EA
L2 is due to the first term in δ �j1; it is

transformed as

EA
L2 = −e2 d − 1

2d

∫ ∞

�

dd k

(2π )d2k3
〈φ|
[

pi
1 p2

1,

[
−
[

Zα

r1

]
ε

, pi
1

]]
|φ〉 + (1 ↔ 2)

= α

π

(
− 5

18
− 1

6
ln �ε

)
〈φ| −

[
V,

[
p2

1,

[
Zα

r1

]
ε

]]
+ 8πZα δd (r1) (E0 − V ) − �p2 4πZα δd (r1) �p2|φ〉 + (1 ↔ 2) . (66)

There are two two-body contributions, the first one coming from the term [− 1
2 pi

1 p2
1, [α/r, pi

1]]. We evaluate it by switching into
the momentum representation,

EB
L2 = e2 d − 1

d

∫ ∞

�

dd k

(2π )d 2k3
〈φ|
[

− 1

2
pi

1 p2
1,

[[
α

r

]
ε

, pi
1

]]
|φ〉 + (1 ↔ 2)

= α2

(
20

9
+ 4

3
ln �ε

)
〈φ|1

2
( �P1 − �P2)2 + �P1 · �P2 + 1

4
q2 + [( �P1 − �P2) · �q]2

q2
+ 2

( �P1 · �q)( �P2 · �q)

q2
|φ〉 . (67)

The two-body contribution induced by the second term in δ �j1 is evaluated with help of integration formulas from Appendix C
of Ref. [15] as

EC
L2 = e2 d − 1

d

∫ ∞

�

dd k

(2π )d 2k3
〈φ|
(

− α

2

[
δi j

r
+ rir j

r3

]
ε

)[
pj

2,

[[
α

r

]
ε

, pi
1

]]
|φ〉 + (1 ↔ 2)

= πα3〈φ|
(

− 4

9
− 2

3
ln �ε − 4

3
ln 2 + 4

3
ln q

)
q|φ〉 . (68)
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Adding together the individual contributions to E�
L2 and using the expectation value identity

α
[( �P1 − �P2) · �q]2

q2
=
{

1

4π

[
Zα �r1

r3
1

]
ε

·
[
α �r
r3

]
ε

+ (1 ↔ 2)

}
+ πα2

2
{1 + ε (2 ln 2 − 2 ln q)}q , (69)

we write the result in terms of the effective Hamiltonian HL2, E�
L2 = 〈HL2〉, which is

HL2 = α

π

((
− 5

9
− 1

3
ln �ε

){[
(Zα)2

r4
1

]
ε

− 2

[
Zα �r1

r3
1

]
ε

·
[
α �r
r3

]
ε

+ 4πZα δd (r1)

(
E0 − V − p2

2

2m

)}
+ (1 ↔ 2)

)

+ α2

(
20

9
+ 4

3
ln �ε

)[
1

2
( �P1 − �P2)2 + �P1 · �P2 + 1

4
q2 + 2

( �P1 · �q)( �P2 · �q)

q2

]
+ 2π

3
α3 q . (70)

3. E�
L3

The third term in Eq. (57), E�
L3, is a retardation correction. It can be expressed as

E�
L3 = e2

∫ ∞

�

dd k

(2π )d 2k
δ

i j
⊥ (k) δk2〈φ|pi

1 ei�k·�r1
1

E0 − H0 − k
pj

1 e−i�k·�r1 |φ〉 + (1 ↔ 2) , (71)

where the symbol δk2〈 . . . 〉 means that the exponential factors ei�k·�r1 and e−i�k·�r1 in the matrix element 〈 . . . 〉 are expanded in small
k up to order k2. Because � is arbitrarily large, we perform the large-k expansion of the resolvent,

1

E0 − H0 − k
= −1

k
+ H0 − E0

k2
− (H0 − E0)2

k3
+ (H0 − E0)3

k4
+ · · · . (72)

The k expansion needs to be extended up to order k−4 because of the additional k2 from the expansion of the exponential factors.
The resulting correction of order α7 m is

E�
L3 = e2

∫ ∞

�

dd k

(2π )d2k5
δ

i j
⊥ (k) δk2〈φ|pi

1 ei�k·�r1 (H0 − E0)3 pj
1 e−i�k·�r1 |φ〉 + (1 ↔ 2) . (73)

The radial integration k can be performed in the same way as in the previous low-energy contributions. For the angular
integration, we will use the formulas from Appendix C of Ref. [15]. The matrix element in Eq. (73) can be simplified by
using identity exp(i�k · �r) f ( �p) exp(−i�k · �r) = f ( �p − �k) . We, therefore, have

δk2

[
pi

1 ei�k·�r1 (H0 − E0)3 pj
1 e−i�k·�r1

] = δk2

[
pi

1

(
H0 − E0 − �p1 · �k + k2

2

)3

pj
1

]

= pi
1

[
3

2
(H0 − E0)2 k2 + �p1 · �k (H0 − E0) �p1 · �k + 2 ( �p1 · �k)2 (H0 − E0)

]
pj

1 . (74)

We will refer to the contributions induced by the three terms in the brackets of the above expression as EA
L3, EB

L3, and EC
L3,

respectively,

E�
L3 = EA

L3 + EB
L3 + EC

L3 . (75)

Starting with the three-photon contribution EA
L3, we obtain

EA
L3 = 3e2

2

∫ ∞

�

dd k

(2π )d 2k3
δ

i j
⊥ (k) 〈φ|pi

1 (H0 − E0)2 pj
1|φ〉 + (1 ↔ 2) . (76)

Averaging this expression over the angular variables, commuting H0 − E0 to the left and to the right, and performing the
integration, we obtain

EA
L3 = 〈φ|α

π

{(
5

6
+ 1

2
ln �ε

)[
(Zα)2

r4
1

]
ε

−
(

5

3
+ ln �ε

)[
Zα �r1

r3
1

]
ε

·
[
α �r
r3

]
ε

+ (1 ↔ 2)

}

+πα3

(
− 5

3
− ln �ε − 2 ln 2 + 2 ln q

)
q|φ〉 . (77)

The contribution of the second term is evaluated as

EB
L3 = e2

∫ ∞

�

dd k

(2π )d 2k5
δ

i j
⊥ (k)kmkn 〈φ|pi

1 pm
1 (H0 − E0) pn

1 pj
1|φ〉 + (1 ↔ 2)

= e2

d (d + 2)

∫ ∞

�

dd k

(2π )d 2k3
〈φ|d pi

1 pj
1 (H0 − E0) pi

1 pj
1 − p2

1 (H0 − E0) p2
1|φ〉 + (1 ↔ 2) . (78)
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We transform this expression further with the help of the following identities,

p2
1 (H0 − E0) p2

1 = 1

2

[
p2

1,
[
H0 − E0, p2

1

]] = 1

2

[
p2

1,
[
V, p2

1

]]
, (79)

pi
1

[
pi

1,
[
V, pj

1

]]
pj

1 = 1

4

[
p2

1,
[
V, p2

1

]]− 1

2
p2

1

[
pi

1,
[
V, pi

1

]]+ 1

2
pi

1

[
pj

1,
[
V, pj

1

]]
pi

1 , (80)

and

pi
1 pj

1 (H0 − E0) pi
1 pj

1 = 1

2
p2

1

[
pi

1,
[
V, pi

1

]]+ 1

4

[
p2

1,
[
V, p2

1

]]+ 1

2
pi

1

[
pj

1,
[
V, pj

1

]]
pi

1 . (81)

The result for the second term is

EB
L3 = α

π
〈φ|
(

2

225
+ 1

120
ln �ε

)[
p2

1,
[
V, p2

1

]]+ ( 3

25
+ 1

20
ln �ε

)

×(pi
1

[
pj

1,
[
V, pj

1

]]
pi

1 + p2
1

[
pi

1,
[
V, pi

1

]])|φ〉 + (1 ↔ 2)

= 〈φ|α
π

{(
8

225
+ 1

30
ln �ε

)([
(Zα)2

r4
1

]
ε

−
[

Zα �r1

r3
1

]
ε

·
[
α �r
r3

]
ε

)
+
(

3

25
+ 1

20
ln �ε

)

×
[

pi
1 4πZα δd (r1) pi

1 +
(

E0 − V − p2
2

2

)
8πZα δd (r1)

]
+ (1 ↔ 2)

}

+α2

(
− 32

225

[( �P1 − �P2) · �q]2

q2
− 24

25
( �P1 − �P2)2 − 48

25
�P1 · �P2 − 64

225

( �P1 · �q)( �P2 · �q)

q2

+ ln �ε

{
− 2

5
( �P1 − �P2)2 − 2

15

[( �P1 − �P2) · �q]2

q2
− 4

5
�P1 · �P2 − 4

15

( �P1 · �q)( �P2 · �q)

q2

})
|φ〉 . (82)

Finally, the term EC
L3 is calculated as

EC
L3 = 2e2

∫ ∞

�

dd k

(2π )d2k5
δ

i j
⊥ (k)kmkn 〈φ|pi

1 pm
1 pn

1 (H0 − E0) pj
1|φ〉 + (1 ↔ 2)

= e2
∫ ∞

�

dd k

(2π )d2k3
〈φ| (d − 1)

d (d + 2)

[
pi

1 p2
1,
[
V, pi

1

]]|φ〉 + (1 ↔ 2)

= 〈φ|α
π

{(
62

225
+ 2

15
ln �ε

)(
4πZα δd (r1)

(
E0 − V − p2

2

2

)
+
[

(Zα)2

r4
1

]
ε

−
[

Zα �r1

r3
1

]
ε

·
[
α �r
r3

]
ε

)
+ (1 ↔ 2)

}

+α2

(
124

225
+ 4

15
ln �ε

)(
− ( �P1 − �P2)2 − 1

2
q2 − 2 �P1 · �P1 − 2

[( �P1 − �P2) · �q]2

q2
− 4

( �P1 · �q)( �P2 · �q)

q2

)
|φ〉 . (83)

Adding together EA
L3, EB

L3, and EC
L3 and transforming the sum with help of Eq. (69), we obtain the retardation correction E�

L3 as

E�
L3 = 〈φ|α

π

{
464

225
πZα δd (r1)

(
E0 − V − p2

2

2

)
+ 103

90

[
(Zα)2

r4
1

]
ε

− 103

45

[
Zα �r1

r3
1

]
ε

·
[
α �r
r3

]
ε

+ 3

25
pi

1 4πZα δd (r1) pi
1 + ln �ε

(
14

15
πZα δd (r1)

(
E0 − V − p2

2

2

)

+2

3

[
(Zα)2

r4
1

]
ε

− 4

3

[
Zα �r1

r3
1

]
ε

·
[
α �r
r3

]
ε

+ 1

20
pi

1 4πZα δd (r1) pi
1

)
+ (1 ↔ 2)

}

+α2

{
− 68

45
( �P1 − �P2)2 − 62

225
q2 − 136

45
�P1 · �P2 − 112

45

( �P1 · �q)( �P2 · �q)

q2

+ ln �ε

(
− 2

3
( �P1 − �P2)2 − 2

15
q2 − 4

3
�P1 · �P2 − 4

3

( �P1 · �q)( �P2 · �q)

q2

)}

+πα3

(
− 103

45
− 4

3
ln �ε − 8

3
ln 2 + 8

3
ln q

)
q |φ〉 . (84)
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4. Total low-energy result

Adding together E�
L1, E�

L2, and E�
L3, we arrive at the final result for the low-energy contribution, which is

H�
L = α

π

{
πZα δd (r1)

[
− 161

225

(
E0 − V − p2

2

2

)
− 11

15
ln �ε

(
E0 − V − p2

2

2

)]
+ 53

90

[
(Zα)2

r4
1

]
ε

− 53

45

[
Zα �r1

r3
1

]
ε

·
[
α �r
r3

]
ε

+ 341

450
pi

1πZα δd (r1) pi
1 + ln �ε

(
1

3

[
(Zα)2

r4
1

]
ε

− 2

3

[
Zα �r1

r3
1

]
ε

·
[
α �r
r3

]
ε

+ 11

30
pi

1 πZα δd (r1) pi
1

)
+ (1 ↔ 2)

}

+ πα3

{
− 73

45
− 4

3
ln �ε − 8

3
ln 2 + 8

3
ln q

}
q + α2

{
− 2

5
( �P1 − �P2)2 + 188

225
q2 + 64

45
�P1 · �P2

− 4

15

( �P1 · �q)( �P2 · �q)

q2
+ ln �ε

(
4

3
�P1 · �P2 + 8

15
q2

)
+ σ1 · σ2

(
7

27
+ 1

9
ln �ε

)
q2

}
. (85)

B. Middle-energy part

We now turn to the second term in Eq. (56), the middle-energy contribution EM . This part originated from the region where
both the radiative and the exchanged photons are of the order k ∝ mα. We separate EM into two parts, EM = EM1 + EM2, which
are examined as follows.

1. Triple seagull contribution

The first middle-energy part is the triple seagull contribution, which is expressed (with k3 being the radiative photon) as

EM1 = e6
∫

dd k1

(2π )d 2k1

∫
dd k2

(2π )d 2k2

∫
dd k3

(2π )d 2k3
δik
⊥ (k1)δ jk

⊥ (k2)δi j
⊥ (k3)

×〈φ|ei(�k1+�k2 )·�r1
1

E0 − H0 − k1 − k2
ei(�k3−�k1 )·�r2

1

E0 − H0 − k2 − k3
e−i(�k2+�k3 )·�r2

+e−i(�k1+�k3 )·�r2
1

E0 − H0 − k1 − k3
e−i(�k2−�k3 )·�r2

1

E0 − H0 − k1 − k2
ei(�k1+�k2 )·�r1

+e−i(�k1+�k3 )·�r2
1

E0 − H0 − k1 − k3
ei(�k1+�k2 )·�r1

1

E0 − H0 − k2 − k3
e−i(�k2+�k3 )·�r2 |φ〉 + (1 ↔ 2) . (86)

We now have to expand the resolvents for large k. To get the contribution of the order α7m, it is sufficient to take the
nonretardation approximation, thus omitting H0 − E0. We arrive at

EM1 = e6
∫

dd k1

(2π )d 2k1

∫
dd k2

(2π )d 2k2

∫
dd k3

(2π )d 2k3
δik
⊥ (k1)δik

⊥ (k2)
(d − 1)

d

×〈φ|ei(�k1+�k2 )·�r
[

1

(k1 + k2)(k2 + k3)
+ 1

(k1 + k3)(k1 + k2)
+ 1

(k1 + k3)(k2 + k3)

]
|φ〉 + (1 ↔ 2) . (87)

Similarly to the case of the low-energy contribution, we will express EM1 as an expectation value of some effective operator
HM1. Because it contains purely two-body electron-electron terms, we express it in momentum representation. We obtain

HM1 = (4πα)3 (d − 1)

8d

∫
dd k

(2π )d

∫
dd k3

(2π )d

δik
⊥ (k1)δik

⊥ (k2)

k1 k2 k3

×
[

1

(k1 + k2)(k2 + k3)
+ 1

(k1 + k3)(k1 + k2)
+ 1

(k1 + k3)(k2 + k3)

]
+ (1 ↔ 2) , (88)

with k1 = |�k − �q/2| and k2 = |�k + �q/2|. The integration over radiative photon k3 is trivial. The remaining integration is
performed in spheroidal coordinates as explained in Appendix B. The result for the triple seagull contribution is

HM1 = α3π

(
− 1

3
+ 4

3
ln 2

)
q. (89)

2. Single seagull with retardation

The second middle-energy contribution comes from the diagram with a single seagull and retardation. The diagram contains
two photons, one of which is a transverse photon exchanged between the electrons and another one is a radiative photon. The
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corresponding contribution is expressed as

EM2 = e4
∫

dd k1

(2π )d 2k1

∫
dd k2

(2π )d 2k2
δin
⊥ (k1)δim

⊥ (k2)

×〈φ| jn
1 (k1) ei�k1·�r1

1

E0 − H0 − k1
e−i(�k1+�k2 )·�r2

1

E0 − H0 − k2
jm
2 (k2) ei�k2·�r2

+ jn
2 (k1) ei�k1·�r2

1

E0 − H0 − k1
e−i(�k1+�k2 )·�r2

1

E0 − H0 − k2
jm
1 (k2) ei�k2·�r1

+ jn
1 (k1) ei�k1·�r1

1

E0 − H0 − k1
jm
2 (k2) ei�k2·�r2

1

E0 − H0 − k1 − k2
e−i(�k1+�k2 )·�r2

+ jn
2 (k1) ei�k1·�r2

1

E0 − H0 − k1
jm
1 (k2) ei�k2·�r1

1

E0 − H0 − k1 − k2
e−i(�k1+�k2 )·�r2

+e−i(�k1+�k2 )·�r2
1

E0 − H0 − k1 − k2
jn
1 (k1) ei�k1·�r1

1

E0 − H0 − k2
jm
2 (k2) ei�k2·�r2

+e−i(�k1+�k2 )·�r2
1

E0 − H0 − k1 − k2
jn
2 (k1) ei�k1·�r2

1

E0 − H0 − k2
jm
1 (k2) ei�k2·�r1 |φ〉 + (1 ↔ 2) , (90)

where jl
i (k) is defined as

jl
i (k) = pl

i + i

2
σ kl

i kk . (91)

The first two terms in the matrix element vanish after perform-
ing the retardation expansion and carrying out the integration
over the momentum of the radiative photon as

∫
dd k kα = 0,

which is true by definition in the dimensional regularization.
The remainder of the expression can be cast in the form

EM2 = −2e4
∫

dd k1

(2π )d 2k1

∫
dd k2

(2π )d 2k2

1

k2
1 (k1 + k2)

×δin
⊥ (k1)δim

⊥ (k2)

×〈φ|[[ jn
1 (k1) ei�k1·�r1 , H0 − E0

]
, j2(k2) ei�k2·�r2

]
×e−i(�k1+�k2 )·�r2 |φ〉 + (1 ↔ 2) . (92)

The above expression was rearranged so that only photon
k2 is radiative (thus the additional factor of 2 in the front).
Taking into account that only spin-independent terms survive
the double commutator and performing the angular average
for the radiative photon, we arrive at

EM2 = − (4πα)2

2

(d − 1)

d

∫
dd k1

(2π )d

∫
dd k2

(2π )d

1

k3
1k2(k1 + k2)

× δmn
⊥ (k1)〈φ| ei�k1·�r ∂m

1 ∂n
2V |φ〉 + (1 ↔ 2) . (93)

This can be again expressed as an expectation value of an
effective operator HM2, which is in momentum space

HM2 = − (4πα)3 (d − 1)

d

∫
dd k1

(2π )d

∫
dd k2

(2π )d

× δmn
⊥ (k1)qmqn

k3
1 |�k1 − �q|2 k2(k1 + k2)

. (94)

Performing the remaining integrations, we obtain the result

HM2 = α3π

(
4

9
+ 2

3ε
− 8

3
ln q

)
q . (95)

3. Total result for the middle-energy contribution

Adding together HM1 and HM2, we obtain the total result
for the effective operator responsible for the middle-energy
contribution,

HM = πα3

(
1

9
+ 2

3ε
+ 4

3
ln 2 − 8

3
ln q

)
q . (96)

It is not obvious that EM = 〈HM〉 is the complete middle-
energy contribution, so we have verified this by calculating the
corresponding scattering amplitude and obtaining agreement
with the above result.

C. High-energy part

We now turn to the third term in Eq. (56), the high-energy
part EH . It consists of 16 terms originating from the anoma-
lous magnetic moment κ and the slopes of form factors F ′

1 (0)
and F ′

2 (0),

EH =
16∑

i=1

Ei . (97)

The contributions Ei are derived as corrections to the one-
photon and two-photon exchange amplitudes induced by
individual terms in the NRQED Hamiltonian Hnrqed, see
Eq. (18), as illustrated by Table I. The computational method
is very similar to the one used in the derivation of the α6 m
correction to the helium Lamb shift [21]. Each contribution Ei

will be expressed as an expectation value of the corresponding
effective operator, Ei = 〈Hi〉, and we now examine the contri-
butions Ei one by one.

1. E1

E1 is the retardation correction to the one-photon exchange
between the electrons, where one vertex is − e

4σ · B and the
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TABLE I. Contributions originating from δH1, δH2, and δH3, given by Eqs. (14), (15), and (16).

Vertex Vertex Vertex Retardation order Diagram

− e
4 σ · B − e

4 κ σ · B (H − E )2 E1

e2

2
�A 2 − e

4 κ σ · B − e
4 σ · B (H − E )0 E2

e
16 { �p 2, σ · B} − e

4 κ σ · B (H − E )0 E3

− e
4 σ · B e

16 κ ( 1
2 { �p 2, σ · B} + 4pkσ kiBi j pj + �pσ · B �p) (H − E )0 E4

e2

4 σ i jE i
‖Aj − e

4 κ σ · B e A0 (H − E )0 E5

− e
4 σ · B e2

2 κ σ i jE i
‖Aj e A0 (H − E )0 E6

− e
4 σ · B − e

4m2 κ σ i j{Ei
⊥, pj} (H − E ) E7

− e
8 σ i j{Ei

⊥, pj} − e
4 κ σ · B (H − E ) E8

eA0 − e
8 [F ′

1 (0) + 2F ′
2 (0) + 4F ′′

1 (0)] �∇2 �∇ · �E (H − E )0 E10

eA0 1
16 κ { �p2, �∇ · �E} (H − E )0 E11

eA0 e2

8 κ �E 2
‖ eA0 (H − E )0 E12

eA0 e2 �E 2
‖ χ eA0 (H − E )0 E13

− e
8 ( �∇ · �E + σ i j {Ei

‖, pj}) − e
4 κ ( �∇ · �E + σ i j {Ei

‖, pj}) (H − E )0 E14

−e �p · �A − e κ

16 {pk, ∂t Ek
⊥ + ∇ i Bik} (H − E )0 E15

eA0 − e κ

16 {pk, ∂t Ek
‖ } (H − E )0 E16

second vertex is − e
4κ σ · B. We have

E1 = − e2κ

∫
dd k

(2π )d 2k4
δ

i j
⊥ (k)〈φ|

(
1

2
σ ki

1 ∇k
1

)
ei�k·�r1

× (H0 − E0)2

(
1

2
σ

l j
2 ∇ l

2

)
e−i�k·�r2 |φ〉 + H.c. + (1 ↔ 2) .

(98)

Commuting H0 − E0 to the left and to the right and perform-
ing the spin averaging, we obtain

E1 = − e2

4
κ

σ1 · σ2

d

∫
dd k

(2π )dk2

× 〈φ|
[

p2
2

2

[
ei�k·�r,

p2
1

2

]]
|φ〉 + (1 ↔ 2) . (99)

We now use the result for κ ≡ F2(0) from Appendix A,

κ = α

π

[
1

2
+ 2ε

]
, (100)

and transform the momenta into �P1 and �P2. We obtain in the
momentum representation

H1 = −α2

3
σ1 · σ2

( �P1 · �q)( �P2 · �q)

q2
. (101)

2. E2

E2 is induced by the single-seagull diagram with the double
vertex e2

2
�A 2 and the single vertices − e

4σ · B and − e
4κ σ · B.

The corresponding contribution is written as

E2 = e4κ

∫
dd k1

(2π )d 2k1

∫
dd k2

(2π )d 2k2
δin
⊥ (k1)δim

⊥ (k2)

×
{
〈φ|
(

1

2
σ rn

1 ∇r
1

)
ei�k1·�r1

1

E0 − H0 − k1
e−i(�k1+�k2 )·�r2

1

E0 − H0 − k2

(
1

2
σ sm

1 ∇s
1

)
ei�k2·�r1 |φ〉

+ 〈φ|
(

1

2
σ rn

1 ∇r
1

)
ei�k1·�r1

1

E0 − H0 − k1

(
1

2
σ sm

1 ∇s
1

)
ei�k2·�r1

1

E0 − H0 − k1 − k2
e−i(�k1+�k2 )·�r2 |φ〉

+ 〈φ|e−i(�k1+�k2 )·�r2
1

E0 − H0 − k1 − k2

(
1

2
σ rn

1 ∇r
1

)
ei�k1·�r1

1

E0 − H0 − k2

(
1

2
σ sm

1 ∇s
1

)
ei�k2·�r1 |φ〉

}
+ (1 ↔ 2) . (102)

Expanding denominators in large k, we get the α7m contribution of the form

E2 = e4

2
κ

∫
dd k1

(2π )d k2
1

∫
dd k2

(2π )d k2
2

δin
⊥ (k1)δim

⊥ (k2)〈φ|
(

i

2
σ rn

1 kr
1

)
ei(�k1+�k2 )·�r

(
i

2
σ sm

1 ks
2

)
|φ〉 + (1 ↔ 2)

= −e4

8
κ

∫
dd k1

(2π )d k2
1

∫
dd k2

(2π )d k2
2

σ rn
1 σ sm

1 kr
1ks

2 δin
⊥ (k1)δim

⊥ (k2)〈φ| ei(�k1+�k2 )·�r |φ〉 + (1 ↔ 2) . (103)
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Averaging the spin matrices and performing the integrations by using formulas from Appendix C of Ref. [15], we obtain the
result for E2 in the momentum representation,

H2 = −πα3 q

4
. (104)

3. E3

E3 is induced by the exchange of a single transverse photon, with one vertex − e
4κ σ · B and the other e

4 { �p 2, 1
4 σ · B}. We thus

get

E3 = e2

4
κ

∫
dd k

(2π )d 2k2
δ

i j
⊥ (k)〈φ|

(
1

2
σ ki

1 ∇k
1

)
ei�k·�r1

{
p2

2,
1

2
σ

l j
2 ∇ l

2 e−i�k·�r2

}
|φ〉 + H.c. + (1 ↔ 2)

= e2

32
κ

σ1 · σ2

d

∫
dd k

(2π )d
〈φ|{p2

2, ei�k·�r} |φ〉 + H.c. + (1 ↔ 2) . (105)

This expression is proportional to {p2
2, δ

d (r)}, which vanishes for triplet states. Therefore, E3 = 0 .

4. E4

E4 comes from the exchange of a single transverse photon, with one vertex being − e
4σ · B and the other e

16κ ( 1
2 { �p, { �p, σ ·

B}} + 4pkσ kiBi j pj ). The corresponding contribution is written as

E4 = e2

16
κ

∫
dd k

(2π )d 2k2
δ

i j
⊥ (k)〈φ|

(
1

2
σ ki

1 ∇k
1

)
ei�k·�r1

×[{pl
2,
{

pl
2, σ

m j
2 ∇m

2 e−i�k·�r2
}}+ 4pl

2

(
σ lm

2 ∇m
2 e−i�k·�r2 pj

2 − σ
l j
2 ∇m

2 e−i�k·�r2 pm
2

)] |φ〉 + H.c. + (1 ↔ 2) . (106)

After differentiating and spin averaging, we arrive at

E4 = e2

16
κ

σ1 · σ2

d

∫
dd k

(2π )d k2
〈φ|1

4
{ �p2, { �p2, k2 ei�k·�r}} − δ

i j
⊥ (k)

(d − 1)
pi

2 k2 ei�k·�r pj
2 − pk

2 kkkm ei�k·�r pm
2 |φ〉 + H.c. + (1 ↔ 2) . (107)

Transforming the momenta in this expression into �P1 and �P2, we obtain the result in the momentum space,

H4 = α2σ1 · σ2

{
1

24
( �P1 − �P2)2 + 1

12
�P1 · �P2 − 1

24

[( �P1 − �P2) · �q]2

q2
+ 1

24
q2 − 1

12

( �P1 · �q)( �P2 · �q)

q2

}
. (108)

5. E5 and E6

The terms E5 and E6 are examined together, because they both are given by the one-photon exchange amplitude with one
vertex − 1

4σ · B and the other vertex e2 σ i jE i
‖Aj , multiplied by a factor κ/2 in the case of E6 and κ/4 in the case of E5. The sum

of the contributions is

E5 + E6 = −3e2

8
κ

∫
dd k

(2π )d 2k2
δ

i j
⊥ (k)〈φ|σ ki

1 ∇k
1 ei�k·�r σ

l j
2 ∇ l

2 V |φ〉 + H.c. + (1 ↔ 2)

= −3e2

16
κ

σ1 · σ2

d

∫
dd k

(2π )d

kl

k2
〈φ| ei�k·�r [V, pl

2

]|φ〉 + H.c. + (1 ↔ 2) . (109)

The result in a mixed coordinate and momentum representations is

H5 + H6 = σ1 · σ2

({
− α

16π

[
Zα �r1

r3
1

]
ε

·
[
α �r
r3

]
ε

+ (1 ↔ 2)

}
− πα3

8
q

)
. (110)

6. E7 and E8

The terms E7 and E8 are induced by the one-photon exchange amplitude with one vertex − e
4σ · B and the other vertex

−eκ σ i j{Ei
⊥, pj}, multiplied by either κ/4 or κ/8. The sum of the corresponding contributions is

E7 + E8 = 3e2

8
κ

∫
dd k

(2π )d 2k3
δ

i j
⊥ (k)〈φ|σ ik

1

{
ik ei�k·�r1 , pk

1

}
(H0 − E0)

(
1

2
σ

l j
2 ∇ l

2

)
e−i�k·�r2 |φ〉 + H.c. + (1 ↔ 2)

= 3e2

32
κ σ ik

1 σ
l j
2

∫
dd k

(2π )d k2
δ

i j
⊥ (k) 〈φ|{ei�k·�r1 , pk

1

} [
H0 − E0,

[
e−i�k·�r2 , pl

2

]] |φ〉 + H.c. + (1 ↔ 2) . (111)
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Spin averaging this expression, we get

E7 + E8 = −3e2

32
κ

σ1 · σ2

d

∫
dd k

(2π )d k2
〈φ|
[

p2
2

2
,
[{

ei�k·�r, pi
1

}
, pi

2

]] |φ〉 + H.c. + (1 ↔ 2). (112)

The result in momentum representation is

H7 + H8 = α2 σ1 · σ2

2

( �P1 · �q)( �P2 · �q)

q2
. (113)

7. E9

We now move to contributions originating from the δH2

part of the FW Hamiltonian, given by Eq. (15). It is possible
to evaluate them in the same way as the previous Ei contri-
butions, with the difference that one has to use the Feynman
gauge instead of the Coulomb gauge. This difference is caused
by the presence of q2

0 in the expansion of form factors F1 and
F2. We will use a different approach, however, which is more
advantageous and illustrative, namely, the so-called scattering
amplitude approach. We recall that the electromagnetic form
factors F1 and F2 modify the vertex γ μ as

γ μ → �μ = γ μ+γ μ F1
(
q2

0 − q2
)+ i

2
F2
(
q2

0 − q2
)( i

2

)
[γ μ, q/].

(114)

The amplitude of the exchange of one photon between the
electrons with one of the vertices perturbed in this way is

M f i = e2(ū′
1�

μu1)Dμν (q)(ū′
2γ

νu2) + (1 ↔ 2) , (115)

where q = p′
1 − p1 = p2 − p′

2 with p1 and p′
1 being the in

and out momenta of the first electron, and the same for the
second electron. To obtain contributions up to the order α7m,
we expand the expression of the vertex as

�μ →
{
γ μ

[
F ′

1 (0) − 1

2
F ′′

1 (0) q2

]
− 1

4
F ′

2 (0) q j[γ j, γ μ]

}

×[q2
0 − q2

]
, (116)

where we omitted terms with q0 which contribute to higher
orders in α, and we also excluded anomalous magnetic mo-
ment contribution ∝ F2(0). We now pull the factor q2

0 − q2

out of this expression to cancel it with the denominator of the
photon propagator. The photon propagator thus becomes

(q2
0 − q2)Dμν (q) = gμν. (117)

The scattering amplitude is then

M f i = e2

{[
F ′

1 (0) − 1

2
F ′′

1 (0) q2
]

× [(ū′
1γ

0u1)(ū′
2γ

0u2) − (ū′
1γ

iu1)(ū′
2γ

iu2)
]

− 1

4
F ′

2 (0)
[
(ū′

1q j[γ j, γ 0]u1)(ū′
2γ

0u2)

− (ū′
1q j[γ j, γ i]u1)(ū′

2γ
iu2)
]+ (1 ↔ 2)

}
. (118)

For the bispinor u, we take

u =
((

1 − p2

8

)
w

(�σ · �p)
2 w

)
, (119)

where w is the spinor amplitude of the plane wave that in-
cludes the relativistic correction to the kinetic energy. Then,

(ū′
1γ

0u1) = (w′
1)∗
(

1 − q2

8
+ i

4
σ

i j
1 qi pj

1

)
w1 ,

(ū′
1γ

iu1) = 1

2
(w′

1)∗
(
i σ ji

1 q j + 2pi
1 + qi

)
w1 ,

(ū′
1q j[γ j, γ 0]u1) = (w′

1)∗
(
q2 + 2 i σ i j

1 q j pi
1

)
w1 ,

(ū′
1q j[γ j, γ i]u1) = (w′

1)∗ 2 i σ i j
1 q j w1 . (120)

The corresponding expressions for the second electron are ob-
tained from the above formulas by changing the index 1 → 2
and reversing the transferred momentum �q → −�q. We thus
obtain for the scattering amplitude

M f i = −(w′
1)∗(w′

2)∗ U ( �p1, �p2, �q) w1w2 , (121)

where (omitting higher order terms and terms contributing
only to the fine structure)

U ( �p1, �p2, �q) = e2

{
F ′

1 (0)

[
− 1 + q2

4
+ 1

4

(
σ ik

1 σ
jk

2 qiq j

+ (2 �p1 + �q)(2 �p2 − �q)

)]
+ 1

2
F ′′

1 (0) q2

+ F ′
2 (0)

[
q2

4
+ 1

4
σ ik

1 σ
jk

2 qiq j

]
+ (1 ↔ 2)

}
.

(122)

Transforming the expression from momenta �p1 and �p2 to �P1

and �P2 and spin-averaging it using the identity

σ ik
1 σ

jk
2 qiq j = σ1 · σ2

d
q2 , (123)

we finally obtain

U ( �p1, �p2, �q) = e2

{
F ′

1 (0)

[
− 1 + q2

4
+ �P1 · �P2 + σ1 · σ2

4d
q2

]

+ 1

2
F ′′

1 (0) q2 + F ′
2 (0)

[
q2

4
+ σ1 · σ2

4d
q2

]

+ (1 ↔ 2)

}
. (124)

The first term in this equation corresponds to the leading-
order contribution while the remaining ones are the α7m
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corrections. Using the explicit results for the form factors, we
get

H9 = α2

[
− 9

20
q2 − �P1 · �P2 + 1

ε

(
− 8

15
q2 − 4

3
�P1 · �P2

)

+ σ1 · σ2

(
− 11

108
− 1

9ε

)
q2

]
. (125)

8. E10

Next, we have to take into account the exchange of a
Coulomb photon between an electron and the nucleus, orig-
inating from the Hamiltonian δH2. This gives a correction in
which one vertex is eA0 while the second one is − e

8 [F ′
1 (0) +

2F ′
2 (0) + 4F ′′

1 (0)] �∇2 �∇ · �E . Only the electron-nucleus part
needs to be taken because the complete electron-electron con-
tribution due to derivative of the form factors was accounted
for in E9. So, the term E10 is

E10 = 1

8
[F ′

1 (0) + 2F ′
2 (0) + 4F ′′

1 (0)]〈φ| �∇4
1

[
− Zα

r1

]
ε

|φ〉

+ (1 ↔ 2) . (126)

Using the relation (61) and results for the form factors from
Appendix A, we evaluate it as (omitting linear in ε terms)

H10 = α2

(
− 13

40
− 11

30ε

)[
− 2

(
E0 − V − p2

2

2

)
Z δd (r1)

+ �p1 Zδd (r1) �p1 + (1 ↔ 2)

]
. (127)

9. E11

We now continue to examine contributions originating
from the exchange of the Coulomb photons. The first such
contribution, E11, originates from the exchange of a Coulomb
photon with one vertex being 1

16κ { �p2, �∇ · �E}. The corre-
sponding contribution is

E11 = − 1
8κ 〈φ| �p1

2 �∇2
1V |φ〉 + (1 ↔ 2) . (128)

After some simplifications, we get

H11 = α2

[
− 1

2

(
E0 − V − p2

2

2

)
Z δd (r1) + (1 ↔ 2)

]
,

(129)
where we omitted terms p2

1 δd (r) which vanish for triplet
states.

10. E12 and E13

We treat the terms E12 and E13 together because they have
similar structure. Specifically, they both come from the ex-
change of a Coulomb photon where one vertex is either e2

8 κ �E2
‖

or δH3 = e2 �E 2
‖ χ . We thus have

E12 + E13 =
(

κ

8
+ χ

)
〈φ|( �∇1V )2|φ〉 + (1 ↔ 2) . (130)

Taking into account that

( �∇1V )2 =
[

(Zα)2

r4
1

]
ε

− 2

[
Zα �r1

r3
1

]
ε

·
[
α �r
r3

]
ε

−π2α2{1 + ε (2 ln 2 − 2 ln q)}q , (131)

we obtain

H12 + H13 = α

(
11

48
− 1

3ε
+ 1

4
ε

){
1

π

[
(Zα)2

r4
1

]
ε

− 2

π

[
Zα �r1

r3
1

]
ε

·
[
α �r
r3

]
ε

+ (1 ↔ 2)

}

+ πα3

(
− 11

24
+ 2

3ε
+ 4

3
ln 2 − 4

3
ln q

)
q .

(132)

11. E14

E14 is induced by the exchange of a Coulomb photon
with vertices − e

8 ( �∇ · �E + σ i j {Ei
‖, pj}) and − e

4 κ ( �∇ · �E +
σ i j {Ei

‖, pj}). The corresponding contribution is

E14 = e2

32
κ

∫
dd k

(2π )d k2
〈φ|(k2 − 2iσ i j

1 ki pj
1

)
× ei�k·�r (k2 + 2iσ kl

2 kk pl
2

)|φ〉 + (1 ↔ 2) . (133)

Simplifying this expression, we get

H14 = α2

[
1

8
q2 + σ1 · σ2

(
1

12
�P1 · �P2 − 1

12

( �P1 · �q)( �P2 · �q)

q2

)]
.

(134)

12. E15

E15 originates from the one-photon exchange with one
vertex − e κ

16 {pk, ∂t Ek
⊥ + ∇ i Bik} and the other vertex −e �p · �A.

We calculate this contribution starting from the corresponding
Feynman diagram,

E15 = e2

16
κ

∫
dDk

(2π )Di

(−1)

ω2 − �k2
δ⊥(k)i j〈φ|{pi

1, (ω2 − �k2)ei�k·�r1
}

× 1

E0 − H0 − ω + iε
pj

2 e−i�k·�r2 |φ〉 + H.c + (1 ↔ 2)

= − e2

16
κ

∫
dDk

(2π )Di
δ⊥(k)i j〈φ|{pi

1, ei�k·�r1
}

× 1

E0 − H0 − ω + iε
pj

2 e−i�k·�r2 |φ〉 + H.c. + (1 ↔ 2) .

(135)

Performing the ω integration and expressing the result in the
momentum space, we obtain

E15 = e2

32
κ

∫
dd k

(2π )d
δ

i j
⊥ (k)〈φ|{pi

1, ei�k·�r}pj
2 |φ〉 + H.c.

+ (1 ↔ 2)

= α2

〈
1

2
�P1 · �P2 − 1

2

( �P1 · �q)( �P2 · �q)

q2

〉
. (136)

13. E16

E16 is induced by the exchange of a Coulomb photon with
one vertex of the form − e κ

16 {pk, ∂t Ek
‖ }. The contribution from
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the corresponding Feynman diagram is

E16 = e2

16
κ

∫
dDk

(2π )Di

(−1

�k2

){
〈φ|{ �p1, �kωei�k·�r1}

× 1

E0 − H0 − ω + iε
e−i�k·�r2 |φ〉

−〈φ|e−i�k·�r2
1

E0 − H0 − ω + iε
{ �p1, �kωei�k·�r1}|φ〉

}
+ (1 ↔ 2) , (137)

where in the second term we introduced a mirror transforma-
tion �k → −�k. The denominator is now expanded for small
E0 − H0 up to the linear term and the ω integration is per-
formed as ∫

dω

2π i

ω

(ω − iε)2
= 1

2
. (138)

We then obtain

E16 = − e2

32
κ

∫
dd k

(2π )dk2

{
〈φ|{ �p1, �kei�k·�r1}

[
p2

2

2
, e−i�k·�r2

]
|φ〉

− 〈φ|
[

e−i�k·�r2 ,
p2

2

2

]
{ �p1, �kei�k·�r1}|φ〉

}
+ (1 ↔ 2)

= − e2

32
κ

∫
dd k

(2π )dk2
〈φ|[p2

2,
{

pi
1, [p1, ei�k·�r]

}]|φ〉
+ (1 ↔ 2)

= α2

2

〈
( �P1 · �q)( �P2 · �q)

q2

〉
. (139)

14. Total high-energy part

Adding together all Ei contributions, we arrive at the final
result for the high-energy contribution,

EH =
〈
α

π

{
11

48

[
(Zα)2

r4
1

]
ε

−
(

11

24
+ σ1 · σ2

16

)[
Zα �r1

r3
1

]
ε

·
[
α �r
r3

]
ε

− 13

40
�p1 πZα δd (r1) �p1 + 1

ε

(
− 1

3

[
(Zα)2

r4
1

]
ε

+ 2

3

[
Zα �r1

r3
1

]
ε

·
[
α �r
r3

]
ε

− 11

30
�p1 πZα δd (r1) �p1

)
+ πZα δd (r1)

[
3

20

(
E0 − V − p2

2

2

)
+ 11

15ε

(
E0 − V − p2

2

2

)]

+ (1 ↔ 2)

}
+ πα3

(
− 17

24
− σ1 · σ2

8
+ 2

3ε
+ 4

3
ln 2 − 4

3
ln q

)
q + α2

{
− 1

2
�P1 · �P2 − 13

40
q2 + 1

ε

(
− 4

3
�P1 · �P2 − 8

15
q2

)

+ σ1 · σ2

[
1

24
( �P1 − �P2)2 + 1

6
�P1 · �P2 +

(
− 13

216
− 1

9ε

)
q2 − 1

24

[( �P1 − �P2) · �q]2

q2

]}〉

+δ Z3 〈δd (r1) + δd (r2)〉 . (140)

Here, δ is as yet undetermined state-independent coefficient, which will be obtained in the next section by matching the
hydrogenic result.

VII. TOTAL RESULT FOR α7 m ONE-LOOP SELF-ENERGY

In this section, we will obtain the total result for the α7 m one-loop self-energy correction that is beyond the relativistic
correction to the Bethe logarithm already calculated in Ref. [15]. We add together the previously calculated parts, namely, the
second-order contribution given by Eq. (55), the low-energy contribution given by Eq. (85), the middle-energy contribution given
by Eq. (96), and the high-energy contribution given by Eq. (140),

E (7)
SE = E (7)

sec,SE + E�
L + EM + EH = EA

SE + EB
SE . (141)

We have split the total result into two parts, EA
SE and EB

SE. EA
SE contains those two-body and three-body terms that are already

in the coordinate representation, whereas EB
SE consists of the remaining electron-electron two-body terms that are presently

written in the momentum representation. We find that all terms ∝ 1/ε cancel each other in the sum, so we can make the
transition d → 3. The result is still dependent on the intermediate momentum cutoff parameter λ. The examination presented
in Appendix C demonstrates that all λ-dependent terms cancel when we add together E (7)

SE , the photon-exchange contribution
derived in Ref. [15], and the Bethe-logarithm corrections calculated in Ref. [14]. Therefore, we can just set λ → 1 everywhere.
The resulting expression, in atomic units and with the factor α7 pulled out, is

EA
SE = 2

〈
H ′′(5)

SE

1

(E0 − H0)′
H ′′(4)

〉
+ 1

π

(
5

9
+ 1

3
L
)〈

H ′
R

1

(E0 − H0)′
HR

〉
+
〈

1

π

{
163

240

Z2

r4
1

−
(

589

360
+ 7σ1 · σ2

96

)
Z�r1

r3
1

· �r
r3

+ 5

9

[(
E0 + Z

r2
− 1

r

)2 Z

r1
+ 2

(
E0 + Z

r2
− 1

r

)
Z2

r2
1

− 1

2
p2

1
Z

r1
p2

2 −
(

E0 + Z

r2
− 1

r
− p2

2

2

)
Z2

r2
1

+ 1

2
�p1

Z2

r2
1

�p1

+ pi
1

Z

r1 r

(
δi j + rir j

r2

)
pj

2

]
+ 779

1800
�p1 πZδ3(r1) �p1+L

(
1

4

Z2

r4
1

+1

3

[(
E0 + Z

r2
− 1

r

)2 Z

r1
+ 2

(
E0 + Z

r2
− 1

r

)
Z2

r2
1
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−1

2
p2

1
Z

r1
p2

2 −
(

E0 + Z

r2
− 1

r
− p2

2

2

)
Z2

r2
1

+ 1

2
�p1

Z2

r2
1

�p1 + pi
1

Z

r1 r

(
δi j + rir j

r2

)
pj

2

]
− 2

3

Z�r1

r3
1

· �r
r3

+ 11

30
�p1 πZδ3(r1) �p1

)

+πZδ3(r1)

[
491

900
E0 − 491

900 r2
− 509

900

Z

r2
+ 509

1800
p2

2 + 5

9

〈
1

r

〉
+L
(

−E0

15
+ 1

15 r2
−11

15

Z

r2
+11

30
p2

2+
1

3

〈
1

r

〉)]
+(1 ↔ 2)

}

+ 2E (4)

π

(
5

9
+ 1

3
L
)(〈

1

r

〉
− 2E0

)〉
+ δ Z3 〈δ3(r1) + δ3(r2)〉 , (142)

EB
SE =

〈
− 2

5
( �P1 − �P2)2 + 919

1800
q2 + 83

90
�P1 · �P2 − 4

15

( �P1 · �q)( �P2 · �q)

q2
+ L
(

8

15
q2 + 4

3
�P1 · �P2

)
+ σ1 · σ2

[
1

24
( �P1 − �P2)2

+ 1

6
�P1 · �P2 +

(
43

216
+ 1

9
L
)

q2

]
+ π

(
− 799

360
− 7σ1 · σ2

48
− 4

3
L − 4

3
ln q − 4

3
ln α

)
q

〉
. (143)

Here, we transformed term [( �P1 − �P2) · �q]2/q2 into a three-photon form using Eq. (69). The operators 1/r4
1 and 1/r3

1 are
understood as distributions examined in Appendix E, so that their matrix elements are well defined. L is obtained from ln �ε by
dropping 1/ε and ln λ, L = 2 ln(α−2) − 2 ln 2 .

We now recall that the result (142) is not complete because it contains as yet undefined coefficient δ originating from the
electron-nucleus Dirac δ-function terms omitted in our derivation. There are several sources of such terms. One of them is the
forward scattering amplitude of the three-photon exchange perturbed by the Breit Hamiltonian, the correction to the current, and
the retardation. Furthermore, such terms originate from the singular operator [Z2/r4

1 ]ε .
We now proceed to obtaining the coefficient δ. To this end, we first evaluate the hydrogenic limit of Eq. (142) and compare

it with the literature hydrogenic result for the normalized difference n3E (nS) − E (1S). We should get an agreement because all
terms proportional to the electron-nucleus Dirac δ function vanish in the normalized difference. Second, we match the hydrogenic
limit of Eq. (142) with the known 1S hydrogenic result and thus obtain the coefficient δ in Eq. (142).

A. Restoration of the electron-nucleus Dirac δ term

Dropping the electron-electron terms, writing r1 ≡ r, and omitting terms that do not contribute to the S states, we obtain the
hydrogenic limit of Eq. (142) as

E (7)
SE (hydr, nS) = 1

π

(
5

9
+ 1

3
L
)〈

H ′
R

1

(E0 − H0)′
HR

〉
+
〈

1

π

{(
163

240
+ 1

4
L
)

Z2

r4
+
(

5

9
+ 1

3
L
)(

− 2E3
0 + E0

Z2

r2

+ 1

2
�p Z2

r2 �p − 4 E0E (4)

)
+
(

779

1800
+ 11

30
L
)

�pπZδ3(r) �p + E0 πZδ3(r)

(
491

900
− 1

15
L
)}

+ δ Z3 δ3(r)

〉
.

(144)

We note that the hydrogenic limit of Eq. (143) vanishes because this expression contains only the electron-electron terms. With
help of the formulas from Appendix F, we obtain for the normalized difference

π

Z6

[
n3E (7)

SE (hydr, nS) − E (7)
SE (hydr, 1S)

] = −16087

5400
+ 263

60n
− 7583

5400n2
+ 163

30
[γ + �(n) − ln n]

+ ln
α−2

2

{
− 103

45
+ 4

n
− 77

45n2
+ 4[γ + �(n) − ln n]

}
. (145)

This result agrees with Eq. (3.43) of Ref. [18] (with the Bethe-logarithm part omitted and with Z set to 1), which indicates
consistency of the derived formulas with the hydrogen theory. The reason for setting Z = 1 in the result of Ref. [18] is that we
are now using a different scaling in the low-energy part. In particular, in Eq. (24) we define the Bethe logarithm to be rescaled
by a factor of α2, whereas in Ref. [18] it was rescaled by a factor of (Zα)2.

We will now take into account that for the 1S hydrogenic state, our result (142) should match the one-loop self-energy part of
the function FH given by Eq. (5.116) from Ref. [8], which is

FH = −121

60
+ 5

2
ζ (3) − 5

18
π2 − 61

90
ln 2 − 3 ln2 2 + ln(Zα)

(
163

30
− 4 ln 2 − 4 ln �

)
− 5

3
ln � − 22

3
ln 2 ln � + ln2 � .

(146)
Here, � is the intermediate momentum cutoff used in Ref. [8], which is the same as the cutoff � in the present work; see Eq. (23).
We now restore the cutoff dependence of our result (144) by shifting

L → L′ = 2 ln[α−2] − 2 ln(2λ) = −2 ln � − 2 ln 2 . (147)

012803-17



PATKÓŠ, YEROKHIN, AND PACHUCKI PHYSICAL REVIEW A 103, 012803 (2021)

Equation (144) for the 1S state thus becomes

π

Z6
E (7)

SE (hydr, 1S) = −7271

1800
+ 221

30
ln 2 − 4 ln2 2 + ln �

(
29

15
− 4 ln 2 − 4 ln Z

)
+ ln Z

(
163

30
− 4 ln 2

)
+ δ . (148)

The matching condition

FH = π

Z6
E (7)

SE (hydr, 1S) (149)

leads to the following result for δ,

δ = 3641

1800
− 362

45
ln 2 + ln2 2 + 5

2
ζ (3) − 5

18
π2 + ln α

(163

30
− 4 ln 2

)
+ ln �

(
− 18

5
− 4 ln α − 10

3
ln 2
)

+ ln2 � . (150)

Next, we check that the cutoff dependence disappears when Eq. (150) is combined together with the Bethe logarithm. This is
done in Appendix D; the conclusion is that we can just replace ln � → ln α2 in the above expression. In this way, we obtain the
final result for the δ coefficient as

δ = 3641

1800
− 362

45
ln 2 + ln2 2 + 5

2
ζ (3) − 5

18
π2 + ln α−2

(
53

60
+ 16

3
ln 2

)
− ln2 α−2 . (151)

Inserting Eq. (151) into Eq. (142), employing the explicit form of L, and using the identity σ1 · σ2 = 2 �σ1 · �σ2 = 2 valid for
d = 3 and triplet states, we obtain for EA

SE the following result:

EA
SE =

〈
H ′′(5)

SE

1

(E0 − H0)′
H ′′(4)

〉
+ 1

π

(
5

9
+ 2

3
ln

α−2

2

)〈
H ′

R

1

(E0 − H0)′
HR

〉

+
〈

1

π

{
163

240

Z2

r4
1

+ 5

9

(
E0 + Z

r2
− 1

r

)2 Z

r1
+ 10

9

(
E0 + Z

r2
− 1

r

)
Z2

r2
1

− 5

18
p2

1
Z

r1
p2

2 − 5

9

(
E0 + Z

r2
− 1

r
− p2

2

2

)
Z2

r2
1

+ 5

18
�p1

Z2

r2
1

�p1 + 5

9
pi

1
Z

r1 r

(
δi j + rir j

r2

)
pj

2 − 1283
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Z�r1 · �r
r3

1 r3
+ 779

1800
�p1 πZδ3(r1) �p1 + ln

α−2

2

(
1

2

Z2

r4
1

− 4

3

Z�r1 · �r
r3

1 r3

+ 11

15
�p1 πZδ3(r1) �p1 + 2

3

(
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r2
− 1

r

)2 Z

r1
+ 4

3

(
E0 + Z

r2
− 1

r

)
Z2

r2
1

− 1

3
p2

1
Z

r1
p2

2 − 2

3

(
E0 + Z

r2
− 1

r
− p2

2

2

)
Z2

r2
1

+ 1

3
�p1

Z2

r2
1

�p1 + 2

3
pi

1
Z

r1 r

(
δi j + rir j

r2

)
pj

2

)
+ πZδ3(r1)

[
491

900
E0 − 491

900 r2
− 509

900

Z

r2
+ 509

1800
p2

2 + 5

9

〈
1

r

〉
+ ln

α−2

2

×
(

− 2E0

15
+ 2

15 r2
− 22

15

Z

r2
+ 11

15
p2

2 + 2

3

〈
1

r

〉)
+ Z2

{
3641

1800
− 1289

180
ln 2 + 16

3
ln2 2 + 5

2
ζ (3) − 5

18
π2 − ln2 α−2

2

+ ln
α−2

2

(
53

60
+ 10

3
ln 2

)}]
+ (1 ↔ 2)

}
+ 2E (4)

π

(
5

9
+ 2

3
ln

α−2

2

)(〈
1

r

〉
− 2E0

)〉
. (152)

B. Transformation of EB
SE into coordinate space

The expression for EB
SE, given by Eq. (143), is written in momentum space and needs to be transformed into the coordinate

representation to make a numerical evaluation tractable. We first express the momenta �P1 and �P2 in terms of new variables �P, �p,
and �q, defined as

�P = �p1 + �p2 , �p = 1
2 ( �p1 − �p2) , and �q = �p1

′ − �p1 . (153)

We thus have

( �P1 − �P2)2 = q2 + 4 �p · �p ′ , �P1 · �P2 = 1

4
(P2 − q2 − 4 �p · �p ′) , (154)

( �P1 · �q)( �P2 · �q)

q2
=
(1

4
PiP j − pi p′ j

)qiq j − δi j

3 q2

q2
− 1

4
q2 + 1

12
P2 − 1

3
�p · �p ′ . (155)

Furthermore, we employ the relation σ1 · σ2 = 2 valid in d = 3 and take into account that the operators P2 δ3(r) and p2 δ3(r)
vanish for triplet states. Moreover, we perform the replacement q2 → −2 �p · �p ′ because there are no q2 ln q terms. Performing
these transformations and using formulas for the Fourier transform from Appendix G, we bring the expression for EB

SE into the
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coordinate representation (with the overall factor α7 pulled out),

EB
SE =

〈
−
(

2108

675
+ 196

45
ln

α−2

2

)
�p δ3(r) �p − 1

60π
PiP j (δi j r2 − 3rir j )

r5
+ 1

15π
pi (δi j r2 − 3rir j )

r5
pj

+ 1

3π r4

(
203

15
+ 6 ln

α−2

2
− 2 ln 2 − 4γ − 4 ln r

)〉
. (156)

The final result for the α7 m one-loop self-energy contribution beyond the Bethe-logarithmic part is given by the sum of
Eqs. (152) and (156).

VIII. ONE-LOOP VACUUM POLARIZATION

We now turn to the derivation of the α7 m correction in-
duced by the one-loop vacuum polarization. Its calculation is
much simpler than that of the self-energy. It will be convenient
to split the vacuum-polarization correction into the electron-
nucleus (en) and the electron-electron (ee) parts,

E (7)
VP = Een

VP + Eee
VP . (157)

The electron vacuum polarization modifies the photon propa-
gator as

gμν

q2
0 − q2

→ gμν

q2
0 − q2

[
1 − ω

(
q2

0 − q2
)]

. (158)

Here, the function ω(q2) is the Uehling correction defined as

ω(q2) = α

π
q2
∫ ∞

4
d (k2)

1

k2(k2 − q2)
u(k2) , (159)

where

u(k2) = 1

3

√
1 − 4

k2

(
1 + 2

k2

)
. (160)

The low-momentum expansion of Eq. (159) is

ω(q2) = α

15π
q2 + α

140π
q4 + · · · . (161)

In the coordinate representation and for the electron-nucleus
interaction, these expansion terms give rise to the following
corrections to the Coulomb potential,

δV (1) = −4 α2

15
Z δd (r1) + (1 ↔ 2) , (162)

δV (2) = −α2

35
�∇2Z δd (r1) + (1 ↔ 2) . (163)

A. Electron-nucleus vacuum polarization

We start with the electron-nucleus part of the vacuum po-
larization. The corresponding correction is represented as a

sum of four parts,

Een
VP = Een

sec + Een
L + Een

H + Een
WK , (164)

where Een
sec is the second-order Uehling correction, Een

L and
Een

H are the low-energy and the high-energy Uehling contri-
butions, respectively; and EWK

VP is the Wichman-Kroll part.
The low- and the high-energy contributions are induced
by the exchanged momentum of the order α m and m,
respectively.

The low-energy part Een
L is induced by an effective operator

Hen
L , Een

L = 〈Hen
L 〉, which is evaluated as

Hen
L = δV (2) + 1

8
�∇2 δ(1)V

= −13 α2

210
�∇2Z δd (r1) + (1 ↔ 2)

= 13 α2

105

[
2

(
E0 − V − p2

2

2

)
Z δd (r1) − �p1 Z δd (r1) �p1

]
.

(165)

The second-order contribution is

Een
sec = 2

〈
δV (1) 1

(E0 − H0)′
H ′(4)

〉
. (166)

Rewriting it as

Een
sec = − 2α

15π

〈
[ �P, [V, �P]]

1

(E0 − H0)′
H ′(4)
〉
, (167)

we obtain the second-order correction we encountered earlier.
The result thus is

Een
sec = − 2α

15π

(〈
H ′

R

1

(E0 − H0)′
HR

〉
+
〈
E (4)
(〈2α

r

〉
− 4E0

)
+
{[

2E0 − 2α

r2
+
〈α

r

〉
+ (Zα)2

2ε
− 2(Zα)2

]
πZα δ3(r1)

−1

4

(Zα)2

r4
1

+
(

E0 + Zα

r2
− α

r

)2 Zα

r1
+ 2

(
E0 + Zα

r2
− α

r

)
(Zα)2

r2
1

−
(

E0 + Zα

r2
− α

r
− p2

2

2

)
(Zα)2

r2
1

+ 1

2
�p1

(Zα)2

r2
1

�p1 − 1

2
p2

1
Zα

r1
p2

2 + pi
1

Zα2

r1 r

(
δi j + rir j

r2

)
pj

2 + (1 ↔ 2)
}〉)

. (168)
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The high-energy part is expressed as

Een
H = (4πZ α)3 φ2(0)

∫
dd q1

(2π )d

∫
dd q2

(2π )d

1

(�q1)4 (�q2)4 (�q12)2
Tr
[
(/p1 + 1)γ0(/p2 + 1)

(γ0 + I )

4

]
×[ω(− �q1

2)+ ω
(− �q2

2)+ ω
(− �q 2

12

)]
, (169)

where �q12 = �q1 − �q2 and pi = (1, �qi ). We evaluate the trace as

Tr
[
(/p1 + 1)γ0(/p2 + 1)

(γ0 + I )

4

]
= 4 + �q1 · �q2 . (170)

Denoting the part of EH induced by the first term in the right-hand side of Eq. (170) as EH1, we obtain

EH1 = −α(4πZ α)3

π
4φ2(0)

∫ ∞

4
d (k2)

∫
dd q1

(2π )d

∫
dd q2

(2π )d

u(k2)

k2

1

q4
1 q4

2 �q 2
12

(
q2

1

k2 + q2
1

+ q2
2

k2 + q2
2

+ �q 2
12

k2 + �q 2
12

)
. (171)

We evaluate this integral with help of the following formula:∫
dd k

(2 π )d

∫
dd q

(2 π )d

1

[k2]n1

1

[(k − q)2]n2

1

[q2 + m2]n3

= m2 (d−n1−n2−n3 )

(4 π )d

�(d/2 − n1) �(d/2 − n2) �(n1 + n2 − d/2) �(n1 + n2 + n3 − d )

�(n1) �(n2) �(n3) �(d/2)
. (172)

In the special case of m = 0, the integral vanishes because of the dimensional regularization. We obtain

EH1 = −2

7
α4〈Z3δ3(r1) + Z3δ3(r2)〉 . (173)

Similarly, we evaluate the contribution due to the second term in the right-hand side of Eq. (170),

EH2 = α4

(
− 32

225
+ 1

15ε

)
〈Z3δ3(r1) + Z3δ3(r2)〉 . (174)

The final result for the one-loop Uehling electron-nucleus vacuum polarization (in atomic units) is

Een
Ue = Een

sec + 〈Hen
L

〉+ Een
H = − 2

15π

{〈
H ′

R

1

(E0 − H0)′
HR

〉
+
〈
E (4)

(〈
2

r

〉
− 4E0

)

+
{(

1

7
E0 − 1

7 r2
− 13Z

7 r2
+ 13p2

2

14
+
〈

1

r

〉
+ 127

105
Z2 − 2Z2 ln α

)
πZδ3(r1) − 1

4

Z2

r4
1

+
(

E0 + Z

r2
− 1

r

)2 Z

r1

+ 2

(
E0 + Z

r2
− 1

r

)
Z2

r2
1

+ 13

14
�p1 πZδ3(r1) �p1 −

(
E0 + Z

r2
− 1

r
− p2

2

2

)
Z2

r2
1

+ 1

2
�p1

Z2

r2
1

�p1

−1

2
p2

1
Z

r1
p2

2 + pi
1

Z

r1 r

(
δi j + rir j

r2

)
pj

2 + (1 ↔ 2)

}〉}
. (175)

The term with ln α comes from rescaling of the operator (Zα)2/r4
1 into atomic units. The hydrogenic limit of this expression for

nS states is (with r1 ≡ r)

Een
Ue(hydr, nS) = − 2

15π

{〈
H ′

R

1

(E0 − H0)′
HR

〉
+
〈
− 4E0E (4) − 2E3

0 +
(

1

7
E0 + 127

105
Z2 + Z2 ln α−2

)
πZδ3(r)

−1

4

Z2

r4
+ E0

Z2

r2
+ 1

2
�p Z2

r2 �p
〉}

. (176)

Using the expectation values of operators from Appendix F, we get

Een
Ue(hydr, nS) = Z6

[
19

35 n5
− 4

15 n4
− 1724

1575 n3
+ 4

15 n3

(
γ + �(n) − ln

n

2

)
− 2

15n3
ln[(Zα)−2]

]
, (177)

in agreement with the known result [22].
To complete our treatment of the electron-nucleus vacuum polarization, we have to include the Wichman-Kroll correction,

which is purely a Dirac-δ-like type of contribution. It is given by

Een
WK =

(
19

45
− π2

27

)
〈Z3 δ3(r1) + Z3 δ3(r2)〉. (178)
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B. Electron-electron vacuum polarization

The electron-electron part of the vacuum polarization is
simpler to evaluate because the corresponding high-energy
and second-order contributions vanish for triplet states. The
low-energy part consists of two parts. The first one is due to
the q4 term of the expansion (161). Denoting the correspond-
ing operator as Hee

L1, we obtain

Hee
L1 = δV (2) = α2

35
�∇2

1δd (r) + (1 ↔ 2)

= 4α2

35
�p δd (r) �p . (179)

The remaining part of the electron-electron contribution is
induced by the q2

0 − q2 term of the expansion (161). For its
calculation, we again use the scattering amplitude approach in
the Feynman gauge, like in the derivation of E9 in the one-loop
self-energy calculation. In this case, the perturbed vertex is

�μ = − α

15 π

(
q2

0 − q2) γ μ ≡ αVP
(
q2

0 − q2) γ μ. (180)

Again, we pull out the factor q2
0 − q2 and cancel it with the

same factor in the denominator of the photon propagator. The
derivation then proceeds in the same way as in the self-energy
calculation, leading to the result

U ( �p1, �p2, �q) = αVPe2

[
− 1 + q2

4
+ �P1 · �P2 + σ1 · σ2

4 d
q2

]
+ (1 ↔ 2) . (181)

The first term here corresponds to the leading vacuum po-
larization correction, whereas the remaining terms are the
α7m corrections. We now transform them into the coordinate
representation with help of the following transformations,

�P1 · �P2 = 1

4
( �P2 − �q 2 − 4 �p · �p ′) , (182)

�q 2 → −2 �p · �p ′ , (183)

σ1 · σ2 → 2 , (184)

where the second and third equations are valid for triplet
states. We then get

Hee
L2 = −αVPe2 8

3
�p δ3(r) �p =

(
4α2

15

)
8

3
�p δ3(r) �p . (185)

The total electron-electron part of the α7 m vacuum polar-
ization is the sum of Hee

L1 and Hee
L2, with the result in atomic

units

Hee
VP = 52

63
�p δ3(r) �p . (186)

C. Total vacuum polarization

Adding together the electron-nucleus and the electron-
electron parts, we get the final result for the one-loop vacuum
polarization to the order α7 m in atomic units,

E (7)
VP = − 2

15π

{〈
H ′

R

1

(E0 − H0)′
HR

〉
+
〈
E (4)

(〈
2

r

〉
− 4E0

)

+
[(

1

7
E0 − 1

7 r2
− 13Z

7 r2
+ 13p2

2

14
+
〈1
r

〉
+ 127

105
Z2 + Z2 ln α−2

)
πZδ3(r1) − 1

4

Z2

r4
1

+
(

E0 + Z

r2
− 1

r

)2 Z

r1

+ 2

(
E0 + Z

r2
− 1

r

)
Z2

r2
1

+ 13

14
�p1 πZδ3(r1) �p1 −

(
E0 + Z

r2
− 1

r
− p2

2

2

)
Z2

r2
1

+ 1

2
�p1

Z2

r2
1

�p1 − 1

2
p2

1
Z

r1
p2

2

+ pi
1

Z

r1 r

(
δi j + rir j

r2

)
pj

2 + (1 ↔ 2)

]〉}
+
〈

52

63
�p δ3(r) �p +

(
19

45
− π2

27

)
[Z3 δ3(r1) + Z3 δ3(r2)]

〉
. (187)

IX. TWO-LOOP AND THREE-LOOP CONTRIBUTIONS

The two-loop radiative contribution is proportional to the
electron-nucleus Dirac δ function and is obtained immediately
from the hydrogenic result,

E (7)
rad2 = Z2

π
〈δ3(r1) + δ3(r2)〉 B50 , (188)

where the coefficient B50 is known only numerically [9,10,23],
B50 = −21.554 47 (13).

After dropping the part contributing to the fine structure,
the three-loop radiative correction becomes also propor-
tional to the electron-nucleus Dirac δ function and is

given by [24,25]

E (7)
rad3 = Z

π2
〈δ3(r1) + δ3(r2)〉

[
− 568 a4

9
+ 85 ζ (5)

24

− 121 π2 ζ (3)

72
− 84 071 ζ (3)

2304
− 71 ln4 2

27

− 239 π2 ln2 2

135
+ 4787 π2 ln 2

108
+ 1591 π4

3240

− 252 251 π2

9720
+ 679 441

93 312

]
, (189)

where a4 =∑∞
n=1 1/(2n n4) = 0.517 479 061 . . . .
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X. SUMMARY

In this work, we derived the radiative α7m QED correction
for the triplet states of a two-electron atom. This correction
consists of the one-loop self-energy part E (7)

SE given by the sum
of Eqs. (152) and (156), the one-loop vacuum-polarization
part E (7)

VP given by Eq. (187), the two-loop part E (7)
rad2 given by

Eq. (188), and the three-loop part E (7)
rad3 given by Eq. (189).

In order to obtain the complete α7m QED correction, we
have to add to the above mentioned contributions the nonra-
diative photon exchange part E (7)

exch derived in Ref. [15] and
the relativistic correction to the Bethe logarithm E (7)

L from
Ref. [14]. More specifically, the photon-exchange correction
is

E (7)
exch = 〈H (7)

exch

〉+ 2
〈
H (4) 1

(E0 − H0)′
H (5)

exch

〉
, (190)

where H (7)
exch and H (5)

exch are given, correspondingly, by Eqs.
(156) and (10) of Ref. [15], and the Bethe-logarithm correc-
tion is

E (7)
L = E (7)

L1 + E (7)
L2 + E (7)

L3 , (191)

with E (7)
L1 , E (7)

L2 , and E (7)
L3 given by Eqs. (14), (20), and (27) of

Ref. [14], respectively.
The final step of our project will be the numerical evalua-

tion of all α7m QED corrections. The most complicated part of
the computation is already accomplished in Ref. [14], where
we obtained numerical results for the relativistic corrections to
the Bethe logarithm for the 2 3S and 2 3P states. A computation
of the remaining photon-exchange and radiative contributions
looks relatively straightforward. The only additional feature as
compared to our previous calculations of higher order QED
corrections in helium [6,26] is the appearance of singular
operators with ln r, such as ln r/r4 in Eq. (156). Matrix ele-
ments of such operators should be understood in terms of a
special limit, as discussed in Appendix E. In particular, the
regularized operator ln r/r4 is defined by Eq. (E3). We are
currently working on developing an effective computational
scheme for such operators.
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APPENDIX A: ELECTROMAGNETIC FORM FACTORS

The electromagnetic form factors F1 and F2 of an electron
are defined as

γμ → �μ = γμ + γμ F1
(
q2

0 − q2)
+ i

2m
F2
(
q2

0 − q2
)( i

2

)
[γμ, q/] , (A1)

where q is the outgoing photon momentum. The small-
q expansion of the one-loop form factors in D = 4 − 2ε

is [27]

F (1)
1 (q2) = α

π

[
q2

(
−1

8
− 1

6ε
− 1

2
ε

)

+ q4

(
− 11

240
− 1

40ε
− 5

48
ε

)]
, (A2)

F (1)
2 (q2) = α

π

[
1

2
+ 2ε + q2

(
1

12
+ 5

12
ε

)

+ q4

(
1

60
+ 11

120
ε

)]
. (A3)

APPENDIX B: INTEGRATIONS IN SPHEROIDAL
COORDINATES IN d DIMENSIONS

To introduce the spheroidal coordinates in d dimensions,
we start with the volume element in the spherical coordinates
in d − 1 dimensions, with variable z for the last dimension,

dV = rd−2dr dz �d−1 . (B1)

Let us define

r1 =
√

r2 +
(

z + a

2

)2
, (B2)

r2 =
√

r2 +
(

z − a

2

)2
, (B3)

and introduce spheroidal variables ξ and η as

ξ = r1 + r2

a
, (B4)

η = r1 − r2

a
. (B5)

The following relations hold:

z = ξ η

2
, (B6)

r2 = 1

4
(ξ 2 − 1)(1 − η2). (B7)

In the new coordinates, the volume element is

dV =
(a

2

)d
�d−1[(ξ 2 − 1)(1 − η2)]

d−3
2

× (ξ − η)(ξ + η) dξ dη , (B8)

and η ∈ (−1, 1), ξ ∈ (1,∞).
We now consider the integral of the form∫

dd k f

(∣∣∣∣�k + �a
2

∣∣∣∣,
∣∣∣∣�k − �a

2

∣∣∣∣
)

=
∫

dd k f (r1, r2)

=
(a

2

)d
�d−1

∫
dξ dη [(ξ 2 − 1)(1 − η2)]

d−3
2

× (ξ − η)(ξ + η) f

(
a

(ξ + η)

2
, a

(ξ − η)

2

)
. (B9)

In spheroidal coordinates, it is just a two-dimensional integral
over ξ and η.
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The particular case of such an integral with integer powers
i and j

Ji j =
∫

dd k
1∣∣�k + �q

2

∣∣i
1∣∣�k − �q

2

∣∣ j
1∣∣�k + �q

2

∣∣+ ∣∣�k − �q
2

∣∣ (B10)

can be transformed to the spheroidal coordinates as

Ji j = qd−i− j−1 2i+ j−d�d−1

∫ ∞

1
dξ

∫ 1

−1
dη

× [(ξ 2 − 1)(1 − η2)]
d−3

2 (ξ − η)1− j (ξ + η)1−i 1

ξ
.

(B11)

The integrations over ξ and η can now be performed for each
particular i and j, yielding results in agreement with those
from Appendix C of Ref. [15]. The advantage of using the

spheroidal coordinates, however, is that this approach can be
applied also to noninteger values of i and j, in particular, for
the case when they are equal to d , which is needed in the
evaluation of the middle-energy contribution.

APPENDIX C: CANCELATION OF THE λ DEPENDENCE

In this section, we demonstrate that the sum of all α7 m
terms depending on the intermediate momentum cutoff λ van-
ishes. The dimensionless cutoff parameter λ appears when
the integral over the photon momentum k is divided into
the k < � and k > � regions, � = α2λ; see Eq. (23). In
order to cancel the λ-dependent terms, we need to add the
radiative contribution calculated in this work, the nonradiative
photon-exchange contribution from Ref. [15], and the Bethe-
logarithm correction from Ref. [14].

We first address the λ-dependent part of the radiative cor-
rection from Eqs. (55) and (85). Denoting it as Eλ

rad, we have

Eλ
rad = ln λ

{
− 2

3π

〈
H ′

R

1

(E0 − H0)′
HR

〉
+ 〈φ| 1

π

{
πZδd (r1)

[
− 2

15

(
− E0 + 1 − 11Z

r2
+ 11

2
p2

2

)
− 2

3

〈
1

r

〉]

−1

2

Z2

r4
1

+ 5

3

Z�r1

r3
1

· �r
r3

− 11

15
pi

1 πZδd (r1) pi
1 − 2

3

(
E0 + Z

r2
− 1

r

)2 Z

r1
− 4

3

(
E0 + Z

r2
− 1

r

)
Z2

r2
1

+ 1

3
p2

1
Z

r1
p2

2 + 4

3
E0 E (4) − 2

3
E (4)

〈
1

r

〉
+ 2

3
Y1 − 2

3
pi

1
Z

r1 r

(
δi j + rir j

r2

)
pj

2 + (1 ↔ 2)

}

−8

3
�P1 · �P2 − 16

15
q2 − 4

3

[( �P1 − �P2) · �q]2

q2
− 2q2

9
σ1 · σ2 + 10π

3
q|φ〉
}

. (C1)

Second, we need to account for the λ-dependent part of the nonradiative photon-exchange correction derived in our previous
paper [15]. It is

Eλ
exch = ln λ

〈{
8

15

[
pi

1,

[
Z

r1
, pj

1

]](
− 4δi j + qiq j

q2

)
1

q2
− 7

15π

Z�r1

r3
1

· �r
r3

+ (1 ↔ 2)

}
+ 4

5
( �P1 − �P2)2

+ 16

15
q2 + 8

3
�P1 · �P2 + 4

3

[( �P1 − �P2) · �q]2

q2
+ 2q2

9
σ1 · σ2 − 6π

5
q

〉
. (C2)

It is advantageous to use this form of the expression in the momentum representation and not the final formula in the coordinate
representation presented in Ref. [15] because of strong cancellation of the electron-electron terms in the sum with Eq. (C1).
Adding the two contributions and then transforming this result into the coordinate representation with help of formulas from
Appendix G, we obtain for Eλ = Eλ

exch + Eλ
rad the result

Eλ = ln λ

{
− 2

3π

〈
H ′

R

1

(E0 − H0)′
HR

〉
+ 〈φ| 1

π

{
πZδd (r1)

[
− 2

15

(
− E0 − 41

3r2
− 11Z

r2
+ 11

2
p2

2

)

−2

3

〈
1

r

〉]
− 1

2

Z2

r4
1

+ 6

5

Z�r1 · �r
r3

1r3
− 11

15
pi

1 πZδd (r1) pi
1 − 2

3

(
E0 + Z

r2
− 1

r

)2 Z

r1
− 4

3

(
E0 + Z

r2
− 1

r

)
Z2

r2
1

+ 1

3
p2

1
Z

r1
p2

2 + 4

3
E0 E (4) − 2

3
E (4)

〈
1

r

〉
+ 2

3
Y1 − 2

3
pi

1
Z

r1 r

(
δi j + rir j

r2

)
pj

2 + Z

15

(
δi j r2

1 − 3 ri
1r j

1

)
r3

1

rir j

r3

+ (1 ↔ 2)

}
+ 8

5
�p δd (r) �p − 32

15π

1

r4
|φ〉
}

. (C3)

Eλ has to be combined with the λ-dependent part of the relativistic correction to the Bethe logarithm, which will be denoted as
Eλ

Bethe. It is given by the sum of the contributions induced by the asymptotic coefficients given in Eqs. (A7), (A10), (B7), (B9),
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(C21), and (C24) of Ref. [14], which is

Eλ
Bethe = ln λ

{
2

3π

〈
H ′

R

1

(E0 − H0)′
HR

〉
+ 〈φ| 1

π

{
πZδd (r1)

[
− 2

15

(
E0 + 41

3r2
+ 11Z

r2
− 11

2
p2

2

)

+ 2

3

〈
1

r

〉]
− 6

5

Z�r1 · �r
r3

1r3
+ 11

15
pi

1 πZδd (r1) pi
1 + 2

3

(
E0 + Z

r2
− 1

r

)2 Z

r1
+ 4

3

(
E0 + Z

r2
− 1

r

)
Z2

r2
1

− Z3

r3
1

−1

3
p2

1
Z

r1
p2

2 − 4

3
E0 E (4) + 2

3
E (4)

〈
1

r

〉
− 5

3
Y1 + 2

3
pi

1
Z

r1 r

(
δi j + rir j

r2

)
pj

2 − Z

15

(
δi j r2

1 − 3 ri
1r j

1

)
r3

1

rir j

r3

+ (1 ↔ 2)

}
− 8

5
�p δd (r) �p + 32

15π

1

r4
|φ〉
}

. (C4)

We now take into account the identity

Z2

r4
1

= −2
Z3

r3
1

− 2Y1 − 12Z3π δd (r1) , (C5)

where we should drop the second term on the right-hand side, in accordance with the procedure of omitting all the electron-
nucleus δ-like contributions at this stage of the derivation. Therefore, we find that Eλ + Eλ

Bethe = 0.
The cancellation of the λ-dependent terms proportional to the pure electron-nucleus Dirac δ function is demonstrated in

Appendix D. After we checked that all λ-dependent terms vanish as they should, we can just set λ → 1 in all final formulas.

APPENDIX D: CANCELATION OF THE λ DEPENDENCE IN THE HYDROGENIC LIMIT

In Appendix C, we proved that all λ-dependent α7 m terms vanish, with the exception of pure electron-nucleus Dirac-δ
contributions, which were omitted in the derivation. The δ-like contribution was restored in Sec. VII A by matching our results
against the known hydrogenic limit. Here we will show that the λ-dependent terms proportional to the electron-nucleus Dirac δ

function in the hydrogenic limit vanish as well.
Let us return to the λ-dependent part of the relativistic correction to the Bethe logarithm from Ref. [14], now keeping the

δ-like terms. Performing the hydrogenic limit and taking only terms contributing to S states, we have

Eλ
Bethe (hydr) = ln λ

(
2

3π

〈
H ′

R

1

(E0 − H0)′
HR

〉
+ 〈φ| 1

π

{
πZδd (r)

[
Z2

(
− 12

5
+ 10

3
ln 2 − ln λ

)
− 2

15
E0

]

+ 11

15
pi πZδd (r) pi − 4

3
E3

0 − 1

3
E0

Z2

r2
− Z3

r3
+ 5

6
�p Z2

r2 �p − 8

3
E0 E (4)

}
|φ〉
)

. (D1)

Using results for the matrix elements from Appendix F, we obtain for the 1S state

Eλ
Bethe(hydr, 1S) = − ln2 λ + ln λ

(
5

3
+ 22

3
ln 2

)
. (D2)

Switching to the same cutoff � as in FH from Eq. (146), � = α2λ, we see that all cutoff-dependent terms cancel in the sum
Eλ

Bethe(hydr, 1S) + FH .

APPENDIX E: EXPECTATION VALUES OF SINGULAR OPERATORS

In our derivation, we encounter expectation values of several singular operators, which need to be evaluated in the coordinate
representation. These expectation values should be understood in the sense of a distribution. Specifically, the expectation values
of the operators 1/r3, 1/r4, and ln r/r4 are defined by the following limits:

〈φ| 1

r3
|ψ〉 ≡ lim

a→0

∫
d3r φ∗(�r)ψ (�r)

[
1

r3
�(r − a) + 4 π δ3(r)(γ + ln a)

]

= lim
a→0

∫ ∞

a
dr

f (r)

r
+ f (0) (γ + ln a) , (E1)

〈φ| 1

r4
|ψ〉 ≡ lim

a→0

∫ ∞

a
dr

f (r)

r2
− f (0)

a
+ f ′(0) (γ + ln a) , (E2)

〈φ| ln r

r4
|ψ〉 ≡ lim

a→0

∫ ∞

a
dr

f (r) ln r

r2
− f (0)

(1 + ln a)

a
+ f ′(0)

ln2 a

2
, (E3)
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where

f (r) =
∫

d�φ∗(�r) ψ (�r) . (E4)

APPENDIX F: HYDROGENIC EXPECTATION VALUES

Here we list the expectation values of various α7 m operators for the hydrogenic S states. They are

E0 = − Z2

2n2
, (F1)

E (4) = Z4

(
3

8n4
− 1

2n3

)
, (F2)

Z2

r4
= 8Z6

n3

[
− 5

3
+ 1

2n
+ 1

6n2
+ γ + �(n) − ln

n

2Z

]
, (F3)

Z3

r3
= 4Z6

n3

[
1

2
− 1

2n
− γ − �(n) + ln

n

2Z

]
, (F4)

Z2

r2
= 2Z4

n3
, (F5)

�p Z2

r2 �p = Z6

(
− 2

3n5
+ 8

3n3

)
, (F6)

�pπZδd (r) �p = 0 , (F7)

πZδd (r1) = Z4

n3
, (F8)

where �(n) = �′(n)/�(n). The expectation value of Z3/r3 and Z2/r4 were calculated according to the definitions in Appendix
E. Note that the terms with ln Z originate from the rescaling r → Z−1 r, which was needed for the correct matching of our results
with the hydrogenic limit; see discussion under Eq. (145).

The hydrogenic limit of the second-order correction is

〈
H ′

R

1

(E0 − H0)′
HR

〉
= Z6

(
− 1

n6
− 4

3n5
+ 3

n4
+ 7

3n3

)
, (F9)

where the operators HR and H ′
R act on ket states as

HR|φ〉 =
[

− 1

2

(
E0 + Z

r

)2

− Z

4
�r · �∇

r3

]
|φ〉 , (F10)

H ′
R|φ〉 = −2Z

�r · �∇
r3

|φ〉 . (F11)

APPENDIX G: FOURIER TRANSFORM

Here we list the formulas needed to transform our formulas from momentum space into the coordinate representation. The
results are [15]

∫
d3q

(2π )3
ei �q·�r 4π

q2
= 1

r
, (G1)∫

d3q

(2π )3
ei �q·�r 4π

qi

q2
= i

ri

r3
, (G2)

∫
d3q

(2π )3
ei �q·�r 4π

qiq j − δi j

3 q2

q2
= δi j r2 − 3rir j

r5
, (G3)∫

d3q

(2π )3
ei �q·�r 4π

qiq j

q4
= 1

2r3
(δi j r2 − rir j ). (G4)
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The transformation of singular operators 1/r4 and ln r/r4 is more complicated. Here we present results valid for triplet states
[15] ∫

d3r ei �q·�r 1

r4
= lim

ε→0

∫
d3r ei �q·�r

[
1

r4
θ (r − ε) − 4πδ3(r)

1

ε

]

= lim
ε→0

2π

∫ 1

−1
dx
∫ ∞

ε

dr

r2
eiqrx − 4π

ε

= −π2 q (G5)

and ∫
d3r ei �q·�r ln r

r4
= lim

ε→0

∫
d3r ei �q·�r

[
ln r

r4
θ (r − ε) − 4πδ3(r)

1 + ln ε

ε

]

= lim
ε→0

2π

∫ 1

−1
dx
∫ ∞

ε

dr

r2
ln r eiqrx − 4π

1 + ln ε

ε

= π2

(
− 3

2
+ γ + ln q

)
q . (G6)
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