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Polarization studies on Rayleigh scattering of hard x rays by closed-shell atoms
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We present a theoretical study on the elastic Rayleigh scattering of x-ray photons by closed-shell atoms.
Special attention is paid to the transfer of linear polarization from the incident to the outgoing photons. To
study this process, we apply the density-matrix formalism combined with the relativistic perturbation theory.
This formalism enables us to find general relations between the Stokes parameters of the incident and scattered
photons. By using these expressions, we revisit the recent proposal to use Rayleigh scattering for the analysis of
the polarization purity of synchrotron radiation. We show that this analysis can be performed without any need
for the theoretically calculated scattering amplitudes, if the linear polarization of the scattered light is measured
simultaneously at the azimuthal angles 0◦ and 45◦ with respect to the plane of the synchrotron. To illustrate our
approach, we present detailed calculations for scattering of 145 keV photons by lead atoms.
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I. INTRODUCTION

Owing to the recent advancements in developing the third
generation coherent light sources, new possibilities have
arisen to study elastic scattering of x rays by atomic targets
to which three basic processes contribute: Nuclear Thomson,
Rayleigh, and Delbrück scattering [1]. In the hard-x-ray range
from a few keV to 1 MeV, Rayleigh scattering of photons by
bound atomic electrons is the dominant process. In the past,
mainly the total as well as the angular differential Rayleigh
scattering cross section have been studied [1–5]. These cross
sections are of general interest but are also needed to de-
termine the Delbrück scattering cross sections [6,7]. During
the recent years, moreover, special attention was paid to the
polarization of the elastically scattered photons [8,9]. These
polarization studies have not only allowed us to reveal more
information about the electron-photon interaction in the high-
energy regime, but can also be used for the diagnostics of the
incident photon beams [10–12]. In particular, a very strong
correlation of the polarization of incoming and outgoing pho-
tons has been found for Rayleigh scattering. This polarization
correlation made it possible to propose Rayleigh scattering
as a tool for precise polarization measurements. The feasi-
bility of this Rayleigh polarimetry scheme has been recently
demonstrated in the experiment performed at the PETRA
III synchrotron facility at DESY [11,13]. In this experiment,
where 175 keV photons were scattered by a gold target, the
polarization-resolved measurements of the elastically scat-
tered photons have allowed us to obtain the polarization purity
of synchrotron radiation [11,12]. It was found that the linear
polarization of the synchrotron radiation emitted within the
plane of the ring is about 98%, which deviates from the naive
expectation of 100% [11].

The Rayleigh polarimetry method mentioned above can-
not be performed without the theoretical calculations of the
elastic-scattering amplitudes [1,10,11]. These second-order
calculations are a complicated task, especially for many-
electron target atoms, usually used in experiments. Therefore,
theoretical input can introduce additional uncertainties in the
polarization purity analysis. To overcome the need of theoret-
ical data, we develop a more advanced polarimetry scheme
based on Rayleigh scattering. A first step towards this de-
velopment has been made in Ref. [10], where we proposed
simultaneous measurements of the linear polarization and
the angular distribution of the elastically scattered photons.
However, precise measurements of scattering cross sections
under various observation angles tend to be laborious for ex-
perimentalists because several possible sources of systematic
uncertainties, such as detector efficiency, solid angle cov-
erage, and incident photon flux, need to be under rigorous
control.

In this work, we propose an alternative approach, which
is based on the concurrent measurement of the linear po-
larization of photons scattered within the synchrotron plane
and under the angle of 45◦ with respect to the synchrotron.
The advantage of this scheme is that it is based on the well-
established Compton polarimetry technique and can be easily
realized at the present facilities like PETRA III at DESY.

To analyze the polarization transfer in Rayleigh scattering,
we discuss in Sec. II the geometry of this elastic process. Later
in Sec. III A we continue with the theoretical discussion of
the Rayleigh scattering amplitudes. The application of this
second-order matrix element for the evaluation of the density
matrix of the scattered light is discussed in Sec. III B. The
advantage of the density matrix is that it enables us to show
how the Stokes parameters of incident and outgoing photons
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FIG. 1. The geometry of Rayleigh scattering. The propagation
direction of the incident light is chosen as the z axis. Together
with the incident linear polarization vector ε1, the z axis defines the
synchrotron plane. For the theoretical description, the plane, spanned
by the propagation directions of incident and outgoing photons, is
important. This plane is usually referred to as the scattering plane.

can be related to each other. In Sec. IV, we present the details
of our numerical calculations. Furthermore, in Sec. V, we dis-
cuss the Stokes parameters for a typical synchrotron setup. We
performed detailed calculations for 145 keV photons scattered
off lead atoms. In particular, we suggest, based on these re-
sults, to make two polarization-sensitive measurements at two
different azimuthal angles, 0◦ and 45◦ with respect to the plane
of the synchrotron to determine the incident polarization. For
the least uncertainty, the scattered photons should be detected
at the polar angle 70◦ or 105◦. The summary of these results
is presented in Sec. VI.

II. GEOMETRY

Before we present the theory to describe Rayleigh scat-
tering, we first introduce the geometry of this process. We
consider the typical setup of an elastic photon-atom scatter-
ing experiment as performed at synchrotron facilities such as
PETRA III at DESY. In this setup, the incoming x rays are
almost completely linearly polarized within the plane of the

synchrotron ring. We will denote this plane as the synchrotron
plane, in which the x and z axes are chosen along the polariza-
tion and wave vectors ε1 and k1 of the incident radiation. In
this coordinate system, the direction of the scattered photons
is characterized by the angles θ and ϕ. While the polar angle
θ is defined with respect to the z axis, the angle ϕ is the
azimuthal angle between the wave vector of the scattered
photon k2 and the xz plane.

The synchrotron plane describes the setup as seen from
an experimental viewpoint. For the theoretical description of
the scattering process, however, it is more convenient to use
another coordinate system. In this case the xz plane is spanned
by the wave vectors of the incoming and outgoing photons, k1

and k2. This plane will be denoted as the scattering plane. The
tilt angle between both planes is the azimuthal angle ϕ, as seen
from Fig. 1. The azimuthal angle between the polarization
vectors of the initial and scattered photon, ε1 and ε2, and the
scattering plane are called χ1 and χ2, respectively. We note
that, for the particular case shown here, χ1 = ϕ.

III. THEORETICAL BACKGROUND

After discussing the geometry of the Rayleigh scattering
process, we are ready to present its basic theory. We start
our discussion from the scattering amplitude, which is the
main quantity for the evaluation of the polarization properties
of the scattered photons, and we show how this many-body
amplitude can be evaluated within the independent-particle
approximation (IPA). Later, this amplitude will be used to
calculate the Stokes parameters of the scattered photons for
an arbitrary polarization of the incident light.

A. Scattering amplitudes

1. Scattering amplitudes in helicity representation

In this section, we calculate the scattering amplitude of
Rayleigh scattering. Using second-order perturbation theory,
we obtain

M f i(k1, λ1, k2, λ2) =
∑

ανJνMν

{〈
α f J f M f

∣∣R̂†
λ2

(k2)
∣∣ανJνMν

〉〈ανJνMν |R̂λ1 (k1)|αiJiMi〉
Ei + ω1 − Eν

+ 〈α f J f M f |R̂λ1 (k1)|ανJνMν〉
〈
ανJνMν

∣∣R̂†
λ2

(k2)
∣∣αiJiMi

〉
Ei − ω2 − Eν

}
, (1)

where k1,2 and ε1,2 are the wave- and polarization-vectors
of the incident and outgoing light [1]. The initial, interme-
diate, and final states |αiJiMi〉, |ανJνMν〉, and |α f J f M f 〉 are
characterized by their energy E , the total angular momentum
J , and its projection M. Moreover, α is used as a shorthand
notation for all other quantum numbers needed for the unique
specification of the atomic state. In the denominator, ω1 and
ω2 are the energies of the incident and outgoing photons,
respectively.

The absorption and emission of photons with well-defined
helicity by an atom in Eq. (1) are described by the operators
R̂λ and R̂†

λ. These operators can be written as a sum of their

one-electron counterparts:

R̂λ(k) =
∑

n

αnελeikrn , (2)

where αn and rn are the vector of Dirac matrices and coordi-
nate vectors of the nth electron, respectively. The polarization
vector ελ describes the right- (λ = −1) or the left-handed
(λ = +1) circular polarization, with λ = ±1 being the helic-
ity of the photon [14].

In general, the Rayleigh amplitudes for scattering off
closed-shell systems (Ji = Jf = 0) possess an important
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symmetry property:

M f i(k1, λ1, k2, λ2) = M f i(k1,−λ1, k2,−λ2). (3)

This expression implies that, for given k1 and k2, only two
independent scattering amplitudes are needed to describe the
Rayleigh process. In the next section, we see how these am-
plitudes can be obtained in the linear polarization basis.

2. Scattering amplitudes for linearly polarized photons

The Rayleigh scattering amplitudes for circularly polarized
incoming and outcoming photons are represented by Eqs. (1)
and (2). In modern synchrotron experiments, however, the
incident light is almost fully linearly polarized and the detec-
tors for the scattered photons are able to measure the linear
polarization. To describe these experiments, it is therefore
convenient to rewrite M f i in the linear polarization basis. To
achieve this, we use the standard relation between circular and
linear polarization vectors,

εl = 1√
2

∑
λ

e−iλχελ, (4)

where we follow the convention introduced by Rose [14]. In
this expression, moreover, χ is the azimuthal angle between
the linear polarization vector εl and the scattering plane, see
Fig. 1. By inserting the expansion (4) into Eq. (1) and per-
forming some simple algebra, we obtain

M f i(k1, χ1, k2, χ2) = 1

2

∑
λ1,λ2

e−i(λ1χ1−λ2χ2 )

× M f i(k1, λ1, k2, λ2). (5)

While Eq. (5) can be applied to describe the scat-
tering of photons with arbitrary linear polarization,
it is convenient to consider four linearly independent
amplitudes: M f i(k1, χ1 = 0◦, k2, χ2 = 0◦), M f i(k1, χ1 =
90◦, k2, χ2 = 90◦), M f i(k1, χ1 = 0◦, k2, χ2 = 90◦), and
M f i(k1, χ1 = 90◦, k2, χ2 = 0◦). Owing to the symmetry

property of the matrix elements (3), only the first two of
these amplitudes are nonzero. In the literature, these two
amplitudes are often denoted A‖ and A⊥ for the cases where
the incoming and outgoing photons are polarized either
parallel or perpendicular to the scattering plane (see, for
example, Refs. [1,3,10]). We now introduce the ratio of the
two independent amplitudes:

S(ω, θ ) ≡ S = A‖
A⊥

. (6)

This ratio depends on the photon energy ω = ω1 = ω2, the
scattering angle θ , as well as on the electronic structure of the
target atom, and it is of particular importance since it defines
many polarization properties of the Rayleigh scattering, as
will be shown below.

B. Density-matrix formalism

Having discussed the evaluation of the scattering amplitude
both in the circular and in linear polarization basis, we proceed
to the analysis of the Stokes parameters of Rayleigh scattered
light. Most naturally, this analysis can be performed within the
framework of density-matrix theory. In this theory, the initial
and final states of the system are described by means of the
so-called statistical operators ρ̂i and ρ̂ f , which are related to
each other as

ρ̂ f = T̂ ρ̂iT̂
†. (7)

The transition operator T̂ describes the interaction between
photons and bound electrons during the scattering [15,16].

For practical reasons, it is convenient to rewrite Eq. (7)
in matrix form. To achieve this, we have to agree about the
representation of the matrix of operators ρ̂, which is known as
the density matrix. It is very useful to express this matrix in
the photon helicity representation. In this representation, the
density matrix of a photon scattered off a closed-shell atom
can be written as

〈k2λ2|ρ̂ f |k2λ
′
2〉 =

∑
λ1,λ

′
1

〈k1λ1|ρ̂i|k1λ
′
1〉〈αiJiMi, k1λ

′
1|T̂ +|α f J f M f , k2λ

′
2〉〈α f J f M f , k2λ2|T̂ |αiJiMi, k1λ1〉

= C
∑
λ1,λ

′
1

〈k1λ1|ρ̂i|k1λ
′
1〉M∗

f i(k1, λ
′
1, k2, λ

′
2) M f i(k1, λ1, k2, λ2), (8)

where we use the fact that the matrix elements of the transition
operator T̂ are proportional to the second-order scattering
amplitude (1) and Ji = Jf = Mi = M f = 0.

In the helicity representation (8), the density matrix
of incident and outgoing photons can be parametrized
in terms of the so-called Stokes parameters as
follows:

〈kλ|ρ̂|kλ′〉 =
(

1 + P3 P1 − iP2

P1 + iP2 1 − P3

)
. (9)

As usual in atomic physics, the Stokes parameters P1 and P2

are expressed in terms of intensities I of light, linearly polar-
ized under different angles with respect to the scattering plane.

For instance, the parameter P1 = [I (0◦) − I (90◦)]/[I (0◦) +
I (90◦)] characterizes the light, which is linearly polarized
within or perpendicular to the scattering plane. The Stokes
parameter P2 is obtained from the analogous expression for tilt
angles of 45◦ and 135◦. Finally, the degree of circular polar-
ization is characterized by the parameter P3 = [I (λ = +1) −
I (λ = −1)]/[I (λ = +1) + I (λ = −1)] [14]. As already men-
tioned above, the present work focuses especially on the linear
polarization of incoming and outgoing photons. The polariza-
tion of a photon can be illustrated by the polarization ellipse.
The semimajor axis of this ellipse is related to the Stokes
parameters via Pl = (P2

1 + P2
2 )1/2 and is tilted with respect to

the scattering plane by χ = 1
2 arctan P2

P1
.
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C. Stokes parameters of scattered light

By inserting the parametrization of the density matrix (9)
into Eq. (8), we can relate the Stokes parameters of the incom-
ing and scattered photons for a closed-shell system:

P1 f = |S|2(P1i + 1) − (1 − P1i )

|S|2(P1i + 1) + (1 − P1i )
, (10)

P2 f = 2P2i Re (S) + 2P3i Im (S)

|S|2(P1i + 1) + (1 − P1i )
, (11)

P3 f = 2P3i Re (S) − 2P2i Im (S)

|S|2(P1i + 1) + (1 − P1i )
. (12)

Here, the indices i and f denote the Stokes parameters of the
initial and final photons and S is the amplitude ratio (6). We
remind the reader that the Stokes parameters P1 and P2, which
describe the linear polarization, are defined with respect to the
scattering plane, characterized by the momenta k1 and k2.

Equations (10)–(12) describe the most general case when
the polarization of incoming and outgoing photons are charac-
terized by all three Stokes parameters. In today’s experiments,
however, not all of these parameters can be observed. In
typical synchrotron studies, for example, the incident photons
are linearly polarized within the synchrotron plane and only
linear polarization of scattered light can be measured. In the
next section, we discuss how Eqs. (10)–(12) can be adapted
for this synchrotron scenario.

IV. DETAILS OF CALCULATIONS

The relations between the Stokes parameters of the in-
coming and outgoing photons (10)–(12) are general and hold
true for any closed-shell system. However, to calculate the
particular values of the polarization parameters we have to
evaluate the amplitude ratio S. As seen from Eqs. (1), (6),
and (8), the calculation of the matrix elements M f i requires
the summation over the intermediate states |ανJνMν〉. This
summation runs over the entire spectrum of the many-electron
atom, including the positive and negative continua. For many-
electron systems, this summation can be carried out only
approximately by using various approximative methods. In
the present study, we use the independent-particle approxima-
tion (IPA), in which the photon interacts with a single active
electron, while the other electrons remain frozen. During the
last decades, the IPA model has been successfully applied to
describe Rayleigh scattering off closed-shell atoms for which
Jf = Ji = 0 and Mi = M f = 0 [2,17]. For such a closed-shell
system, the many-electron-scattering amplitude can be written
within the IPA as

M f i(k1, χ1, k2, χ2) =
∑
n jlm

Mn jlm(k1, χ1, k2, χ2), (13)

where the summation runs over all occupied single electron
states. These states are described by the principle quantum
number n, the total and angular momenta j and l , and where
the projection of the total angular momentum m in the initial
and final states is the same. For the sake of brevity, we do
not discuss the evaluation of the one-electron matrix element
Mn jlm and refer to the literature [1,3,18–22].

V. RESULTS AND DISCUSSION

In this section, we apply the general expressions (10)–
(12) to analyze the polarization transfer between incident
and outgoing photons for the typical setup of a synchrotron
experiment. In this setup, the incident photons are almost
completely linearly polarized within the synchrotron plane
and the detectors can only measure the linear polarization of
the scattered photons. Therefore, we assume P3i = 0 and focus
on the first and second Stokes parameter of the scattered light:

P1 f = |S|2[1 + Pl,i cos (2ϕ)] − [1 − Pl,i cos (2ϕ)]

|S|2[1 + Pl,i cos (2ϕ)] + [1 − Pl,i cos (2ϕ)]
, (14)

P2 f = 2Pl,i sin (2ϕ) Re (S)

|S|2[1 + Pl,i cos (2ϕ)] + [1 − Pl,i cos (2ϕ)]
. (15)

These expressions are obtained from Eqs. (10) and (11), in
which the parameters of the polarization ellipse are used in-
stead of the initial-state Stokes parameters P1i and P2i and the
tilt angle with respect to the scattering plane of the semimajor
axis of this ellipse is given by χ = ϕ, see Fig. 1.

Despite the naive expectation that synchrotron radiation
is completely linearly polarized if emitted within the syn-
chrotron plane, this is not the case under real conditions. For
example, a small depolarization δi = 1 − Pl,i � 1 of x rays
emitted from PETRA III facility at DESY has been reported
recently in Refs. [10,11]. The determination of δi remains
for the moment a theoretical and experimental challenge. Re-
cently, it was proposed to determine δi from the measurements
of the linear polarization of the scattered photons [10]. The
outcome of these measurements depends on the azimuthal
angle ϕ under which the scattered photons are detected. For
example, in the experiment by Blumenhagen and coworkers
[11], the detector was placed within the synchrotron plane,
i.e., at ϕ = 0◦. In this case Eqs. (14) and (15) can be simplified
to

P1 f (ϕ = 0◦) =
|S|2−1
|S|2+1 + (1 − δi )

1 + |S|2−1
|S|2+1 (1 − δi )

= 1 − 2

1 + 2−δi
δi

|S|2 , (16)

P2 f (ϕ = 0◦) = 0, (17)

as was already shown in Ref. [10]. These formulas indicate
that the depolarization δi can be determined from measuring
the Stokes parameter P1 f (ϕ = 0◦), if the amplitude ratio S is
known from theoretical calculations. As already mentioned
above, however, the evaluation of S is a very complicated
task and can be performed only approximately. Therefore, the
calculation of the second-order amplitudes can introduce ad-
ditional uncertainties to the determination of the polarization
purity of synchrotron radiation.

To avoid theoretical uncertainties in the analysis of the
polarization purity of synchrotron radiation, we propose to
extend the previous measurement scheme in such a way that
δi is determined based solely on the experimental data. This
new scenario requires us to measure the linear polarization of
the photons, scattered not only within the synchrotron plane,
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FIG. 2. The Stokes parameters of the scattered radiation P1 f and P2 f depending on the scattering angle θ , for different degrees of linear
polarization of the incoming radiation Pl,i and different azimuthal angles ϕ for scattering of 145 keV x rays off a lead atom (Pb, Z = 82). The
results of P1 f (ϕ = 45◦) and P2 f (ϕ = 0◦) for different initial depolarizations coincide as predicted by Eqs. (17) and (18).

ϕ = 0◦, but also at the azimuthal angle ϕ = 45◦. For the latter
case, Eqs. (14) and (15) can be written as

P1 f (ϕ = 45◦) = |S|2 − 1

|S|2 + 1
, (18)

P2 f (ϕ = 45◦) = 2 Re (S)(1 − δi )

|S|2 + 1
. (19)

As seen from these expressions, the Stokes parameter P1 f (ϕ =
45◦) is independent of the polarization of incident light and
is defined just by the amplitude ratio S. We can therefore
combine Eqs. (16) and (18) in order to exclude the ratio S
and determine the depolarization:

δi = 1 − P1 f (ϕ = 0◦) − P1 f (ϕ = 45◦)

1 − P1 f (ϕ = 0◦)P1 f (ϕ = 45◦)
. (20)

This expression clearly shows that the parameter δi can be
obtained without any need for theoretical data, if the scat-
tered photons are observed by polarization-sensitive detectors
within the synchrotron plane and under the angle 45◦ for
the same target, photon energy, and polar scattering angle.
Furthermore, Eq. (20) is obtained based on Eq. (10), which
is in general independent of P3i, and hence the precision in
the determination of δi by measuring the polarization of the
scattered light at the angles ϕ = 0◦ and ϕ = 45◦ is not affected
by circular polarization of the incident photon.

To discuss the feasibility of the polarization analysis based
on Eq. (20), we present results for a typical synchrotron ex-
periment in Fig. 2. The calculations have been performed for
145 keV photons scattered off lead atoms and the summation
in Eq. (13) was restricted to the K , L, M, and N shells. The
contributions of the O and P shells were not included in our
analysis because they are known to affect the polarization
properties only for very small scattering angles θ � 5◦ [10],
which are not available for experimental observation. We note
that our results for the scattering amplitudes are in perfect
agreement with Ref. [3].

In our calculations, we assume that the incident light is
either completely linearly polarized or slightly depolarized
with the parameter δi = 0.01, 0.05, 0.1. As seen from Fig. 2,
a high sensitivity to this depolarization is exhibited by the
Stokes parameter P1 f , when measured within the synchrotron
plane, i.e., ϕ = 0◦. These results are consistent with previous
theoretical and experimental data and, moreover, indicate that
the depolarization effect is most pronounced for the polar
scattering angles close to θ ≈ 90◦ [10,11]. For example, the
parameter P1 f (ϕ = 0◦, θ ≈ 90◦) decreases from 1 to 0.7, if
the polarization of incident light is reduced only slightly from
100% to 99%. One would conclude that the analysis of the po-
larization purity of synchrotron radiation, based on Eq. (20),
can be performed most conveniently for θ ≈ 90◦. These an-
gles also favor the measurement of the Stokes parameter
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FIG. 3. Initial depolarization δi = 0.02 determined through the-
oretical calculations of P1 f (ϕ = 0◦) and P1 f (ϕ = 45◦) with initial
photon energy of 145 keV scattered by a lead atom. The gray, red,
and blue shadowed areas show the angular-dependent uncertainty in
the determination of δi for a relative uncertainty of 1%, 3%, and 5%
in the measurements of P1 f .

P1 f (ϕ = 45◦), whose absolute values reach their maximum
for the photons emitted perpendicularly to the incident-beam
axis. However, this expectation about the advantage of the
scattering angles θ ≈ 90◦ for the polarization purity analysis
did not take into account measurement uncertainties. For in-
stance, in the recent experiment performed for 175 keV x rays
scattered off gold atoms, the polarization was determined with
an uncertainty in the range from 3% to 12% depending on the
polar scattering angle [11]. To study how such uncertainties
may affect the accuracy of the polarization purity analysis
(20), we derived the absolute error in the determination of δi:

�δi =
{[

∂δi

∂P1 f (ϕ = 0◦)

]2

�P2
1 f (ϕ = 0◦)

+
[

∂δi

∂P1 f (ϕ = 45◦)

]2

�P2
1 f (ϕ = 45◦)

} 1
2

. (21)

In this expression, �P1 f are the polarization measurement
uncertainties. The partial derivatives of δi can be obtained with
Eq. (20):

∂δi

∂P1 f (ϕ = 0◦)
= P2

1 f (ϕ = 45◦) − 1

[P1 f (ϕ = 0◦)P1 f (ϕ = 45◦) − 1]2 , (22)

∂δi

∂P1 f (ϕ = 45◦)
= 1 − P2

1 f (ϕ = 0◦)

[P1 f (ϕ = 0◦)P1 f (ϕ = 45◦) − 1]2 . (23)

By making use of these expressions, we can analyze the fea-
sibility of the polarimetry scheme for the determination of the
polarization purity of synchrotron radiation. We performed
calculations of 145 keV photons with initial depolariza-
tion δi = 0.02, scattered off lead atoms, assuming different
uncertainties for the Stokes parameters P1 f . In Fig. 3, we
show the uncertainty in the determination of δi. We have

assumed that the Stokes parameters of scattered photons
are measured with a relative uncertainty of �P1 f /P1 f =
1%, 3%, 5%. These experimental uncertainties are displayed
by gray, red, and blue shaded areas, respectively. As seen from
this figure, �δi is very sensitive to the polar scattering angle
and reaches its maximum at θ ≈ 90◦. We conclude, therefore,
that despite of the high polarization sensitivity of P1 f (ϕ =
0◦, θ ≈ 90◦) and of large values of P1 f (ϕ = 45◦, θ ≈ 90◦),
the implementation of the scheme, based on Eq. (20), for the
photons emitted perpendicularly to the incident-beam direc-
tion, is impractical. In contrast, as one can conclude from
Figs. 2 and 3, the scattering angles 70◦ and 105◦ can be
very convenient for the polarization measurements. For these
angles P1 f (ϕ = 0) and P1 f (ϕ = 45◦) are still large and can be
easily measured, and, moreover, �δi is small. For example,
our calculations indicate that Eqs. (20) and (21), if applied
for θ = 70◦, predict δi = 0.020 ± 0.001 for the experimental
uncertainty of 1% and δi = 0.020 ± 0.006 for �P1 f = 4%.
We note that the relative experimental uncertainty of 4% has
already been realized experimentally at the polar scattering
angle θ = 65◦ [11].

So far, we have discussed the feasibility of simultaneous
measurements of the scattered photons at the azimuthal angles
ϕ = 0◦ and ϕ = 45◦ for the polarization purity diagnostics
of synchrotron radiation for the particular case of 145 keV
photons interacting with a lead target. To explore whether
Eq. (20) can be applied for other energies and targets we have
performed detailed calculations for x rays in the region of
100 to 500 keV and for various heavy atoms. The results of
these calculations have shown that the qualitative behavior of
P1 f (ϕ = 0) and P1 f (ϕ = 45◦), as well as of the uncertainty
�δi is rather insensitive to the photon energy and the nuclear
target and resemble the results displayed in Figs. 2 and 3.
For the sake of brevity, these results are not displayed in this
article.

VI. SUMMARY

In summary, we re-investigated the Rayleigh scattering of
x rays by closed-shell atoms. We found general formulas for
the Stokes parameters of the scattered photons, depending on
the initial Stokes parameters and the second-order scattering
amplitudes. We suggest using these formulas to investigate
the polarization purity of synchrotron radiation. In contrast
with previous works, our proposal does not rely on theoretical
calculations of the second-order many-electron amplitudes.
Taking into account measurement uncertainties, we propose
a polarimetry scheme, where P1 f (ϕ = 0◦) and P1 f (ϕ = 45◦)
measured at the scattering angle 70◦ or 105◦. For this scenario,
we predict the least uncertainty in the determination of the
initial depolarization. This Rayleigh polarimetry is likely to
be realized soon at the PETRA III facility at DESY. We
expect a deeper insight into the polarization of synchrotron
radiation.
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