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Relationship between costs for quantum error mitigation and non-Markovian measures
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Quantum error mitigation (QEM) has been proposed as an alternative method of quantum error correction to
compensate errors in quantum systems without qubit overhead. While Markovian gate errors on digital quantum
computers have been mainly considered previously, it is indispensable to discuss a relationship between QEM
and non-Markovian errors because non-Markovian noise effects inevitably exist in most of the solid-state sys-
tems. In this work, we investigate the QEM for non-Markovian noise, and show that there is a clear relationship
between costs for QEM and non-Markovian measures. As examples, we show several non-Markovian noise
models to bridge a gap between our theoretical framework and concrete physical systems. This discovery may
help in designing better QEM strategies for realistic quantum devices with non-Markovian environments.
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I. INTRODUCTION

It is now widely accepted that quantum computing will en-
able us to perform classically intractable tasks such as Shor’s
algorithm for prime factorization [1], quantum simulation for
quantum many-body systems [2], and the Harrow-Hassidim-
Lloyd (HHL) algorithm for solving linear equations [3].
However, the effect of decoherence does impose an inevitable
impact on the reliability and efficiency of quantum computa-
tion, and hence suppressing physical errors is crucial to obtain
reliable results [2,4–7]. Although fault-tolerant quantum com-
puting based on quantum error correction can resolve that
difficulty, it is not likely to happen for a while because of
the large number of physical qubits required per single logical
qubit.

Quantum error mitigation (QEM) methods have been pro-
posed to mitigate errors in digital quantum computing, which
is compatible with near-term quantum computers with the
restricted number of qubits and gate operations as it does
not rely on the encoding required in fault-tolerant quantum
computing [8–12]. For example, probabilistic error cancella-
tion can perfectly cancel the effect of noise if the complete
description of the noise model is given [9,10]. We apply recov-
ery quantum operations ER to invert noise processes of gates
NG such that ER = N−1

G . Since an inverse channel of noisy
processes is generally an unphysical channel, we need to re-
alize this by applying single-qubit operations with a classical
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postprocessing of measurement outcomes. Also, the repetition
of quantum circuits needs to be C2 times greater to achieve
the same accuracy as before QEM, where C is an overhead
factor determined by the noise model and operations used in
the QEM procedure. We refer to this overhead factor as “QEM
costs” throughout this paper. We can write QEM costs of the
error mitigation of the quantum circuit as C = ∏Ng

k=1 ck , where
ck is the QEM cost of the kth noisy gate and Ng is the number
of gates. Therefore, in order to suppress costs of QEM, we
need to investigate the property of ck and optimize it.

Recently, Sun et al. [13,14] proposed a general quantum
error mitigation scheme that can also be applied to continuous
quantum systems such as analog quantum simulators. The
continuous time evolution of a quantum system is described
by

dρN (t )

dt
= −i[H (t ), ρN (t )] + L

[
ρN (t )

]
, (1)

where H (t ) is the Hamiltonian, ρN (t ) denotes a density ma-
trix under noisy dynamics, and L[ρN (t )] is the superoperator
describing the effect of the environment, which should be
mitigated. Even when L consists of local Lindblad operators,
the effects of them easily propagate to the entire system,
resulting in highly correlated noise. Note that Eq. (1) can
be rewritten as ρN (t + δt ) = EN (ρN (t )), where EN denotes a
superoperator of noisy dynamics for a small time interval δt .
Thus, similarly to probabilistic cancellation, denoting EI as
the ideal process, we can apply the recovery channel ER such
that EREN = EI using additional single-qubit operations and
classical postprocessing of measurement results. In Ref. [13],
the stochastic QEM method was introduced to implement
recovery operations in the limit of δt → 0 via Monte Carlo
sampling. Note that QEM costs corresponding to ER(t ) can be
described as c(t ) ≈ 1 + c′(t )δt . Therefore, a QEM cost from
t = 0 to t = T can be described as C(T ) = exp[

∫ T
0 dtc′(t )].
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So far, QEM for Markovian noise has been mainly con-
sidered and non-Markovian noise has not been investigated
well. The development of the QEM for non-Markovian
noise is practically important, because non-Markovian noise
is relevant in most of the solid-state systems such as
superconducting qubits, nitrogen vacancy centers in diamond,
and spin qubits in quantum dots [15–20].

In addition to the practical motivation for non-Markovian
noise, the concept of quantum non-Markovianity has been
extensively studied from a fundamental interest in the char-
acterization and the quantification of the backflow of the
information from an environment [21,22]. There are some def-
initions of non-Markovianity such as the semigroup definition
[23], the divisibility definition [24,25], and that proposed by
Breuer, Laine, and Piilo [26] (Ref. [21] discusses a hierarchi-
cal relation between these definitions). Throughout this paper,
we adopt divisible maps as Markovian processes and we will
show that precise definition in a later section.

Moreover, there are many applications to utilize non-
Markovianity in a positive way for quantum information
processing, including quantum Zeno effects [27,28], dynam-
ical decoupling [29], Loschmidt echo and criticality [30],
continuous-variable quantum key distribution [31], time-
invariant discord [32], quantum chaos [33], quantum resource
theory [34], and quantum metrology [35,36]. These motivate
researchers to investigate the properties of non-Markovianity.

In this paper, we investigate QEM costs for the case
of non-Markovian noise. The stochastic QEM can be natu-
rally applied to time-dependent non-Markovian noise to fully
compensate for physical errors. We show that QEM costs
reduce in the non-Markovian region. We also find a clear
relationship between costs of QEM and previously reported
non-Markovian measures, decay rate measure [37], and Rivas-
Huelga-Plenio (RHP) measure [25,37]. We calculate QEM
costs for two experimental setups showing non-Markovianity
as examples: One is a controllable open quantum system,
which consists of a long-lived qubit coupled with a short-lived
qubit. This system has been realized in NMR experiments
[38,39]. The other example is a qubit dispersively coupled
with a dissipative resonator [40–42]. This discovery may il-
luminate how to construct efficient QEM procedures.

The rest of this paper is organized as follows. In Sec. II,
we review the stochastic QEM proposed in Ref. [13]. In
Sec. III, we review the definition and the measure of non-
Markovianity. In Sec. IV, we discuss the relation between
QEM costs and the measure of non-Markovianity, and study
QEM costs for specific models. Finally, we summarize and
discuss our results in Sec. V.

II. PRELIMINARIES: STOCHASTIC QUANTUM
ERROR MITIGATION

In this section, we review the stochastic QEM [13]. Sup-
pose that the dynamics of the system of interest can be
described by Eq. (1). Here, we assume that the local noise and
the coupling to the environment is sufficiently weak and the
continuous dynamics of the system can be described by the
time-dependent Lindblad master equation. Now we express
the evolution of the state from t to t + δt as ρ(t + δt ) =
EN (t )(ρ(t )) and ρ(t + δt ) = EI (t )(ρ(t )), corresponding to the

noisy process and the ideal process, respectively. The ideal
process represents the unitary dynamics without any noisy
operators in Eq. (1). We hope to emulate the ideal evolution
EI by mitigating errors of the process, EN . When the evolution
is affected by local noise operators, i.e., L can be decomposed
as a linear combination of local noise operators, by using a
recovery operation EQ(t ), we can efficiently find a decompo-
sition:

EI (t ) = EQ(t )EN (t ), (2)

EQ(t ) =
∑

i

μiRi = c(t )
∑

i

sgn(μi )piRi. (3)

Here, c(t ) = ∑
i |μi|, pi = |μi|/c(t ), and {Ri} is a set of a

polynomial number of physical operations applied for QEM.
Each Ri is a tensor product of single-qubit operations. For
a given decomposition, the ideal process UT from t = 0 to
t = T can be decomposed as

UT ≈
Nd −1∏
n=0

EI (nδt )

= C(T )
∑

�i
p�is�i

Nd −1∏
n=0

RinEN (nδt ) + O(T δt ),

(4)

where Nd = T/δt , �i = (i1, i2, . . . , iNd ), p�i = ∏Nd −1
n=0 pin , s�i =∏Nd −1

n=0 sgn(μin ), and the QEM cost can be described as
C(T ) = ∏Nd −1

n=0 c(nδt ). Supposing that the initial state for the
quantum circuit is ρin, we have

ρI (T ) = C(T )
∑

�i
p�is�iρ�i + O(T δt ), (5)

where ρI (T ) is the density operator after the ideal process
ρI (T ) = UT (ρin) and ρ�i = (

∏Nd −1
n=0 RinEN (nδt ))(ρin). When

measuring an observable M, since the expectation value for
the state ρ is equal to 〈M〉ρ = Tr[ρM], we obtain

〈M〉ρI
= C(T )

∑
�i

p�is�i 〈M〉ρ�i
+ O(T δt ). (6)

We can obtain 〈M〉ρI
of Eq. (6) from the actual experiment

as follows: First, we generate the recovery operation Ri with a
probability pi with a time interval δt until time T , and measure
the observable M, and we record the measurement outcome
after multiplying the factor of s�i. Second, we repeat the same
procedure to reduce the statistical uncertainty. Finally, we es-
timate the value of C(T )

∑
�i p�is�i 〈M〉ρ�i

from the measurement
results, and this approximates the error-free expectation value.

Since EN ≈ EI for a small δt and the recovery operation
becomes an identity operation in almost all the cases, we
can use the Monte Carlo method to stochastically realize
continuous recovery operations Ri corresponding to δt → +0
to eliminate a discretization error O(T δt ). This procedure is
similar to the one employed in the simulation of the stochastic
Schrödinger equation (refer to Ref. [13] for details). Letting
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c(t ) = 1 + c′(t )δt , the QEM cost becomes

C(T ) = lim
δt→+0

T/δt−1∏
n=0

(1 + c′(nδt )δt )

= exp

( ∫ T

0
dtc′(t )

)
. (7)

III. PROPERTIES OF NON-MARKOVIANITY

In this section, we review typical properties of non-
Markovianity [21,22].

A. Definition of non-Markovianity

There are some definitions of Markovianity in quantum
dynamics, but throughout this paper, we adopt a definition
introduced in Refs. [24,25]. Here, a Markovian map is defined
as a CP-divisible map: a dynamical map E(t,0) from 0 to t is
CP divisible if the map E(t,s) (0 � s � t) defined by

E(t,s) = E(t,0)E−1
(s,0) (8)

is completely positive for all time s. Otherwise, dynamical
maps are non-Markovian.

Particularly when the inverse of dynamical maps E(t,0)

exists, even if the dynamical maps are non-Markovian, the
equations of the dynamics can be written in the canonical form
of the time-local master equation [37,43]

dρ(t )

dt
= − i[H (t ), ρ(t )] +

∑
k

γk (t )
[
Lk (t )ρ(t )L†

k (t )

− 1

2

{
L†

k (t )Lk (t ), ρ(t )
}]

, (9)

where γk (t ) is a decay rate and Lk (t ) is a time-
dependent decoherence operator satisfying Tr[Lk (t )] = 0 and
Tr[L†

k (t )Lk (t )] = 1. Here, {A, B} = AB + BA denotes anti-
commutator. It is worth mentioning that Eq. (9) has a similar
form to the time-dependent Lindblad Markovian master equa-
tion, except that the decay rate γk (t ) can be negative in
some time interval. In fact, if and only if all the decay
rates γk (t ) are non-negative for all the time t , the dynamical
maps are CP divisible [37]. In other words, the sign of γk (t )
characterizes whether the dynamical maps are Markovian or
non-Markovian. Compared with the Lindblad master equa-
tion, the time-local master equation in Eq. (9) is a general
equation that can describe many cases of non-Markovian
noise and the cases of strong coupling between the system and
the environments, which cannot be described by the Lindblad
master equation under the assumptions of the weak coupling
limit.

B. Measure of non-Markovianity

There are several non-Markovian measures proposed in
previous studies (for example, see review papers [21,22]). In
this paper, to quantify non-Markovianity, we adopt the decay
rate measure [37]:

F (t ′, t ) =
∑

k

∫ t ′

t
ds

|γk (s)| − γk (s)

2
. (10)

Since Markovian dynamical maps give F (t, t ′) = 0, this
measure can be interpreted as the total amount of non-
Markovianity. Moreover, it is shown that this measure is
equivalent to the RHP measure [25,37] except for a constant
factor, which quantifies the degree of non-complete posi-
tiveness of the map E(t,s) based on the Choi-Jamiołkowski
isomorphism [44,45].

IV. RELATION BETWEEN QEM COSTS AND THE
MEASURE FOR NON-MARKOVIANITY

We derive QEM costs for non-Markovian dynamics and
discuss the direct relation between costs and the measure
of non-Markovianity. Note that, since the time-local mas-
ter equation [Eq. (9)] is derived from a given Hamiltonian,
modifications of the Hamiltonian for applying recovery oper-
ations could affect the form of the time-local master equation.
However, to derive a relation between QEM costs and non-
Markovian measures, we assume that recovery operations do
not change Eq. (9).

A. General form of QEM costs

Here, we derive the general form of QEM costs for the
time-local quantum master equation Eq. (9). The key idea is
to represent the decoherence operators Lk (t ) using the process
matrix form [46]

Lk (t ) =
d2−1∑
i=1

1

d2
Tr[Lk (t )Gi]Gi, (11)

where the operators Gi satisfy the conditions G0 = I⊗N , Gi =
G†

i , Tr[GiGj] = d × δi j , and (Gi )2 = I⊗N , and d = 2N is the
dimension of the state vector of N qubits. An example of
{Gi}i is a set of Pauli products, i.e., Gi ∈ {I, X,Y, Z}⊗N . Then,
Eq. (9) can be rewritten as

d

dt
ρN (t ) =

d2−1∑
i, j=0

Mi j (t )GiρN (t )Gj, (12)

where M(t ) is a d2 × d2 Hermitian matrix defined by

Mi j (t )

=

⎧⎪⎪⎨
⎪⎪⎩

1
d4

∑
k γk (t )Tr[Lk (t )Gi]Tr[L†

k (t )Gj] (i, j � 1)
− 1

2d2

∑
k γk (t )Tr[L†

k (t )Lk (t )Gi] (i � 1, j = 0)
− 1

2d2

∑
k γk (t )Tr[L†

k (t )Lk (t )Gj] (i = 0, j � 1)
−∑

k γk (t ) (i = j = 0)

and M(t ) can be diagonalized using a unitary matrix u:

Mi j (t ) =
d2−1∑
l=0

uil (t )ql (t )u∗
jl (t ). (13)

Therefore, we obtain

d

dt
ρN (t ) =

d2−1∑
l=0

ql (t )Bl (t )ρN (t )B†
l (t ), (14)

where Bl (t ) is an operator Bl (t ) = ∑d2−1
i=0 uil (t )Gi.
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Using Eq. (14), we can derive the QEM cost. By choosing
the recovery operation at time t ,

EQ(t ) = c(t )

(
p0(t )I −

∑
l�1

sgn(ql (t ))pl (t )Bl (t )

)
, (15)

where c(t ) = 1 + [−q0(t ) + ∑
l�1 |ql (t )|]δt , pl (t ) =

|ql (t )|δt (l � 1), p0(t ) = 1 − ∑
l�1 pl (t ), and Bl (t )ρ =

Bl (t )ρB†
l (t ). Hence, the general form of the QEM cost is

given by

C(T ) = exp

[∫ T

0

(
−q0(t ) +

∑
l�1

|ql (t )|
)

dt

]
. (16)

B. The effect of non-Markovianity on QEM costs

We further assume L†
k (t )Lk (t ) = Lk (t )L†

k (t ) = I⊗N for all
k in Eq. (9), such as Pauli products. In this case, the matrix
M can be easily diagonalized because Mi0 = 0 and M0i = 0
for all i (i � 1) and the unitary matrix u is determined by
uik = 1

d2 Tr[Lk (t )Gi] (i, k � 1), ui0 = u0l = 0 (i, l � 1), and
u00 = 1, and the eigenvalues of M are qk = γk (t ) (k � 1) and
q0 = −∑

k�1 γk (t ), and the recovery operations are Bk (t )ρ =
Lk (t )ρL†

k (t ) (k � 1). We can derive the QEM cost as

C(T ) = exp

[∑
k

∫ T

0

(
|γk (t )| + γk (t )

)
dt

]
. (17)

Here, we define the quantity D(t ′, t ) = ∑
k

∫ t ′

t ds|γk (s)|,
which is equivalent to the QEM cost eD(t ′,t ) for the Markovian
case with decay rates |γk (t )|. By using D(t ′, t ) and F (t ′, t ),
we can rewrite the QEM cost as

C(T ) = exp
[
2
(

D(T, 0) − F (T, 0)
)]

. (18)

From this equation, we can understand that as the amount of
non-Markovianity in Eq. (10) increases, the QEM cost are
reduced. More specifically, in a time region with γk (t ) < 0
for all k, the QEM cost does do not increase at all.

C. Study of specific models

Here, we study the QEM cost for specific models. Al-
though the implementation of recovery operations could
change the form of the time-local master equation, we discuss
the case in which it is invariant; i.e., recovery operations
commute with both the unitary dynamics of the system Hamil-
tonian and the noise operators. In this case, since we can
perform the recovery operations at the end of the dynamics,
the time-local master equation is not affected by recovery
processes.

We consider a two-qubit system where a long-lived qubit is
coupled with a short-lived qubit. (Another example of a qubit
dispersively coupled with a dissipative resonator is illustrated
in the Appendix.) Importantly, this system has been realized
with nuclear magnetic resonance, and the non-Markovian
noise has been controlled by implementation of the pulse

[38,39]. The equation of the two-qubit model is given by

dρ
(1+2)
N (t )

dt
=i

[
ρ

(1+2)
N (t ),

J

4
Z ⊗ Z

]
+ L

[
ρ

(1+2)
N (t )

]
,

L
[
ρ
] =

2∑
k=1

γk

4

(
2LkρL†

k − {L†
k Lk, ρ}

)
, (19)

where ρ
(1+2)
N denotes the density operator of the two-qubit

system, J denotes a coupling strength between the qubits,
γ1 = 2γ s denotes an energy relaxation rate associated with
a Lindblad operator L1 = I ⊗ σ+, γ2 = 2γ (1 − s) denotes an
energy relaxation rate associated with a Lindblad operator
L2 = I ⊗ σ−, σ+ = (X + iY )/2 [σ− = (X − iY )/2] denotes a
raising (lowering) operator, and s denotes a control parameter
determined by the environmental temperature (0 � s � 1/2).
Only the second qubit is directly coupled to the Markovian en-
vironment and the first qubit is influenced by the environment
through the second qubit. Here, 1/J denotes a time scale of
the exchange of the information between the first qubit and the
second qubit, while 1/γ denotes the decoherence time for the
second qubit. In the regime of J/γ > 1 where the information
exchange between qubits occurs in a faster time scale than the
environmental decoherence of the second qubit, the dynamics
of the reduced density operator of the first qubit could be
non-Markovian. This means that the first qubit receives the
backflow of the information from the second qubit before
losing the coherent information to the environment.

Here, we choose an initial state as ρ
(1+2)
N (0) = |+〉 〈+| ⊗

ρGibbs, where |+〉 = (|0〉 + |1〉)/2 is the superposition of the
computational basis |0〉 and |1〉, and ρGibbs = s |0〉 〈0| + (1 −
s) |1〉 〈1| is the Gibbs state corresponding to the Lindbladian
in Eq. (19). In this case, the equation of its dynamics is given
by

dρ
(1)
N (t )

dt
= i

[
ρ

(1)
N (t ),

S(t )

2
Z

]

+γ (t )

2

(
Zρ

(1)
N (t )Z − ρ

(1)
N (t )

)
, (20)

where ρ
(1)
N (t ) is the reduced density operator of the first qubit

and Z is a Pauli Z matrix. In this case, the decay rate γ (t ) and
S(t ) are given by

γ (t ) − iS(t ) = − 1

f (t )

d

dt
f (t ), (21)

where f (t ) = iJ (2s−1)
2

eλ+t −eλ−t

λ+−λ−
− λ−eλ+t −λ+eλ−t

λ+−λ−
and λ± are the

two solutions of an equation λ2 + γ λ + [2iJγ (1 − 2s) +
J2]/4 = 0. From Eq. (17), the QEM cost C(T ) can be derived
as

C(T ) = exp

(∫ T

0
dt

|γ (t )| + γ (t )

2

)
(22)

by choosing the recovery operation EQ(t ) =
(1 + δt γ (t )+|γ (t )|

2 )[(1 − δt |γ (t )|
2 )I − sgn(γ (t ))δt |γ (t )|

2 Z],
where Z is the operation Zρ = ZρZ . Figure 1 shows
the results of γ (t ) and C(t ) at time t with experimental
parameters in Ref. [38]. In Fig. 1, γ (t ) becomes negative in
some time interval and therefore the dynamics is actually
non-Markovian. Moreover, the area where γ (t ) � 0 holds
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FIG. 1. The dashed blue line shows the decay rate γ (t ) s−1 in
Eq. (21) and the solid red line shows the QEM cost C(t ) in Eq. (22)
at time t s. We choose the parameters as J = 2π × 215 rad s−1,
γ = 6.5 ms with experimental parameters in Ref. [38], and moreover
the parameter of the finite-temperature effect as s = 0.3. The vertical
lines represent the solutions satisfying γ (t ) = 0.

only contributes to the QEM cost C(t ), as shown in Fig. 1.
In other words, the QEM cost C(t ) does not increase at all in
the region satisfying γ (t ) < 0, and the area of its region is
equivalent to the non-Markovian measure in Eq. (10).

To conclude this section, we note the limit of the applica-
tion of the time-local master equation in Eq. (9) by using this
specific model. We set the temperature of the environment to
infinity (s = 1/2). In this case, we cannot write the dynam-
ics as a time-local form because γ (t ) diverges at a specific
time point. However, this is an artificial effect because the
temperature of the realistic system is finite. We can exclude
this artificial case, which is not an interesting case in practice.

V. DISCUSSIONS

In this work, we discuss a relationship between the QEM
and non-Markovian measures. Non-Markovianity is charac-
terized by a negative decay rate of the dissipator. Interestingly,
the QEM cost does not increase at all when all decay rates
are negative. This demonstrates that non-Markovianity can

FIG. 2. The decay rate γ (κt ) in Eq. (A6) at κt . We choose the
parameters as |α|2 = 1, χ/κ = 3 (solid red line) and |α|2 = 1/4,
χ/κ = 12 (dashed blue line).

FIG. 3. The QEM cost C(κt ) at κt . All the parameters are the
same as those in Fig. 2.

contribute to reduce the QEM cost. We show specific physical
systems as examples that support our theoretical analysis.

We provide an intuitive explanation for this below: QEM
mitigates physical errors which can be attributed to quantum
information escaping to the environment, and in the case of
Markovian dynamics, such information never comes back
to the system. Therefore, the QEM cost monotonously in-
creases. However, in the case of non-Markovian dynamics, the
quantum information can return to the system from the envi-
ronment, which contributes to the reduction of the sampling
cost of QEM.

Furthermore, we mention the difference between QEM for
non-Markovian cases and dynamical decoupling. Dynamical
decoupling is a method to cancel the interaction between the
system and the environment for non-Markovian cases, and
we can in principle obtain a noiseless state. On the other
hand, QEM is the method to obtain just an expectation value
of a noiseless state. Importantly, QEM does not recover the
quantum state itself, which is a significant difference from the
dynamical decoupling.

We focus on the case where the decoherence operators
can be described by a set of orthogonal operators such as
Pauli operators, and leave more general cases for a future
work. Moreover, the intentional introduction of the non-
Markovianity might contribute to the QEM. For this purpose,
we need to control not the system but the environment. Ac-
tually, there are some theoretical proposals and experimental
demonstrations about the control of the non-Markovianity
[39,47,48], which might lead to the potential use of the
non-Markovianity to improve the efficiency of the QEM.
It is worth noting that the intentional introduction of the
non-Markovianity is different from dynamical decoupling,
because dynamical decoupling is not a control of the en-
vironment but a control of the system. Our work helps in
understanding the properties of QEM and may lead to sophis-
ticated construction of QEM for realistic quantum systems
with non-Markovian noise.
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APPENDIX: A QUBIT DISPERSIVELY COUPLED WITH A
DISSIPATIVE RESONATOR

Here, we also consider a qubit-resonator system where
a qubit is dispersively coupled with a lossy resonator. The
qubit is affected by a dephasing induced from the interaction
with the resonator, and this dynamics has been studied in
Refs. [40–42]. When the frequency of the qubit is significantly
detuned from that of the resonator, the Hamiltonian is given by

Hq+r =χZa†a, (A1)

where χ/π is the dispersive frequency shift of the qubit per
photon and a† (a) is the creation (annihilation) operator of the
photon in the resonator. For simplicity, we assume that we
are in a rotating frame, and we only consider the interaction
Hamiltonian in Eq. (A1). The dynamics of the system can be
described by the Lindblad master equation

dρ
(q+r)
N (t )

dt
= i

[
ρ

(q+r)
N (t ), Hq+r

]
+κ

2

(
2aρ

(q+r)
N (t )a† − {a†a, ρ

(q+r)
N (t )}

)
, (A2)

where κ is a decay rate. We set the initial state to |+〉 ⊗
|α〉, where |α〉 is a coherent state for α ∈ C. This equa-
tion can be easily solved as ρ

(q+r)
N (t ) = ∑1

i, j=0 ci j (t ) |i〉 〈 j| ⊗
|αi(t )〉 〈α j (t )|, where c00(t ) = c11(t ) = 1

2 and c10(t ) = c01(t )∗
and

c01(t ) = c01(0)

〈α1(t )|α0(t )〉 exp

[
−|α|2 1 − e(2iχ−κ )t

1 − iκ/2χ

]
. (A3)

Here, α0(t ) = e(iχ−κ/2)tα and α1(t ) = e(−iχ−κ/2)tα. The re-
duced density operator of the qubit is given by ρ

(q)
N (t ) =∑1

i, j=0 c′
i j (t ) |i〉 〈 j|, where c′

00(t ) = c′
11(t ) = 1

2 and c′
10(t ) =

c′
01(t )∗ and c′

01(t ) = c01(t ) × e(2iχ−κ )t = 1
2 e−|α|2(x+iy). From

this, the time-local master equation can be derived as

dρ
(q)
N (t )

dt
= i

[
ρ

(q)
N (t ),

S(t )

2
Z

]

+γ (t )

2

(
Zρ

(q)
N (t )Z − ρ

(q)
N (t )

)
, (A4)

where S(t ) = |α|2 dx
dt and the decay rate of the qubit, γ (t ) =

|α|2 dy
dt , are given by

S(t ) = |α|2e−κt (κ (1 − cos 2χt ) − 2χ sin 2χt )

+ |α|2e−κt

1 + (κ/2χ )2

[
2κ cos 2χt +

(
2χ − κ2

2χ

)
sin 2χt

]
,

(A5)

γ (t ) = |α|2κe−κt

1 + (κ/2χ )2

[
κ

χ
cos 2χt +

(
1 −

(
κ

2χ

)2)
sin 2χt

]
.

(A6)

From Eq. (A6), γ (t ) behaves as a damped oscillation with the
time constant κ and the angular frequency 2χ . The QEM cost
C(T ) is the same form as that in Sec. IV C and therefore C(T )
can decrease in the case of κ < χ . In Figs. 2 and 3, we show
the numerical results of γ (κt ) and C(κt ). As is the same in
Sec. IV C, the dynamics is actually non-Markovian because
of some negative regions of γ (κt ) in Fig. 2, and the QEM
cost C(κt ) do not increase at all for those regions.
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