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Optical homodyne detection has been widely used in continuous-variable (CV) quantum information process-
ing for measuring field quadrature. In this paper we explore the possibility of operating a conjugate homodyne
detection system in “photon counting” mode to implement discrete-variable (DV) quantum key distribution
(QKD). A conjugate homodyne detection system, which consists of a beam splitter followed by two optical
homodyne detectors, can simultaneously measure a pair of conjugate quadratures X and P of the incoming
quantum state. In classical electrodynamics, X 2 + P2 is proportional to the energy (the photon number) of the
input light. In quantum optics, X and P do not commute and thus the above photon-number measurement
is intrinsically noisy. This implies that a blind application of standard security proofs of QKD could result
in pessimistic performance. We overcome this obstacle by taking advantage of two special features of the
proposed detection scheme. First, the fundamental detection noise associated with vacuum fluctuations cannot
be manipulated by an external adversary. Second, the ability to reconstruct the photon number distribution at
the receiver’s end can place additional constraints on possible attacks from the adversary. As an example, we
study the security of the BB84 QKD using conjugate homodyne detection and evaluate its performance through
numerical simulations. This study may open the door to a family of QKD protocols, complementary to the
well-established DV-QKD based on single-photon detection and CV-QKD based on coherent detection.
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I. INTRODUCTION

Quantum key distribution (QKD) has drawn great atten-
tion for the potential to revolutionize cryptography [1–6].
Presently, the two most well-established families of QKD pro-
tocols are discrete-variable (DV) QKD using single-photon
detection [7,8] and continuous-variable (CV) QKD using co-
herent detection (optical homodyne detection) [9–11]. For
simplicity, in this paper we refer to them as DV-QKD and
CV-QKD correspondingly.

On one hand, DV-QKD protocols, such as the celebrated
BB84 QKD [7], have been demonstrated over longer dis-
tances [12,13], and enjoy the more mature security proofs
especially when system imperfections and finite data size
effects are taken into account. On the other hand, CV-QKD
protocols, especially the ones based on coherent states [14],
have shown their own advantages, such as implementable with
conventional telecommunication components and potential
high key rate at short distances. Note that many distinguishing
features of CV-QKD can be contributed to optical homo-
dyne detection, which can be implemented with low-cost
photodiodes working at room temperature. State-of-the-art
optical homodyne detectors can be operated above tens of
GHz with negligible dead-time and a pathway toward fully
integrated, on-chip, photonic implementation [15]. In addi-
tion, the intrinsic filtering provided by the local oscillator
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in optical homodyne detection can effectively suppress back-
ground photons and enable QKD through conventional dense
wavelength-division-multiplexed fiber networks in the pres-
ence of strong classical traffics [16–18] and through daytime
free-space channels [19]. A natural question follows: Can
we implement DV-QKD using optical homodyne detection?
If possible, such a hybrid approach may inherit certain ad-
vantages from both worlds. In this paper, we address this
question by studying the BB84 QKD using conjugate optical
homodyne detector operated in “photon counting” mode.

A conjugate homodyne detection system, which consists of
a beam splitter followed by two optical homodyne detectors,
can simultaneously measure a pair of conjugate quadratures
X and P of the incoming quantum state by maintaining a 90o

phase offset between the two corresponding local oscillators.
In classical electrodynamics, X 2 + P2 is proportional to the
energy (the photon number) of the input light. In quantum
optics, X and P do not commute and thus cannot be deter-
mined simultaneously and noiselessly due to Heisenberg’s
uncertainty principle. This suggests that the above conjugate
homodyne detection is intrinsically noisy. Intuitively, noisy
detectors would result in poor QKD performance if standard
security proofs are applied. To overcome this hurdle, we
develop a security analysis technique exploring two special
features of the proposed detection scheme. First, the funda-
mental detection noise associated with vacuum fluctuations
cannot be manipulated by an external adversary (Eve), so it is
not necessary to contribute the detector noise to Eve’s attack
when we estimate an upper bound of Eve’s information. This
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FIG. 1. Conjugate optical homodyne detection. BS1−4, sym-
metric beam splitter; BD1−2, balanced photodetector; LO, local
oscillator.

is in line with the trusted detector noise model in CV-QKD
[11,20]. Second, the proposed detection scheme allows the
legitimate receiver to reconstruct the photon number distri-
bution of the received light and thus can place additional
constraints on the possible attacks from Eve. This is similar to
the detector decoy QKD protocol, where the photon number
statistics at the receiver’s end can be used to improve the
performance of QKD [21]. As we will show later, by utilizing
these two features, a tighter bound on Eve’s information can
be obtained and an improved secure-key rate can be achieved.
We remark that unlike CV-QKD based on phase-sensitive
coherent detection, where a sophisticated carrier phase recov-
ery scheme may be required to establish a common phase
reference between the transmitter (Alice) and the receiver
(Bob) [22,23], the detection scheme proposed in this paper
is intrinsically phase insensitive and no phase reference is
required.

This paper is organized as follows: In Sec. II, we review the
theory of photon counting using conjugate homodyne detec-
tion [24,25], and present two possible ways of applying this
detection scheme in the BB84 QKD. In Sec. III, we develop
a security analysis method taking into account the special
features of the proposed detection scheme, and conduct nu-
merical simulations to evaluate the secure-key rates. Finally,
in Sec. IV we discuss some practical issues.

II. THE BB84 QKD USING CONJUGATE
HOMODYNE DETECTION

A. Conjugate homodyne detection in photon counting mode

Characterizing photon number statistics using conjugate
homodyne detection was investigated in [25] and the relevant
results are summarized in this subsection. The basic setup of a
conjugate homodyne detection system is shown in Fig. 1. An
unknown quantum state is input from port 1 of a symmetric
beam splitter (BS1 in Fig. 1) and a vacuum state is coupled
to the other input port. Two optical homodyne detectors are
employed to measure the field quadratures of the two output
beams of the beam splitter. The phase difference between the
two corresponding local oscillators is fixed at 90o. In this pa-
per, we assume all the optical homodyne detectors are perfect
and the input quantum state is in the same mode as the local
oscillators.

Given the local oscillators are sufficiently strong, the two
detection outputs (X3 and P4) are quadrature components of

FIG. 2. (Simulation results) The probability distributions PZ (z|n)
corresponding to a different input photon number n.

beams 3 and 4 (see Fig. 1). In [25], an observable Z = X 2
3 +

P2
4 is defined. Given the density matrix ρ of the input state, the

probability density function of Z is given by [25]

PZ (z) = e−z
∞∑

n=0

ρnn

n!
zn, (1)

where ρnn are the diagonal terms of ρ in Fock basis and z � 0.
Note that PZ (z) only depends on the diagonal terms of ρ,

as expected from a “phase-insensitive” photon detector. By
repeating the Z measurement on a large ensemble of identical
states, the photon number distribution Pn = ρnn of the input
state can be reconstructed from experimentally determined
PZ (z), as shown in [25]. This feature allows us to improve the
performance of QKD, as we will show in Sec. III.

In the case of single-shot measurement, given the input
state is a Fock state |n〉, the likelihood of a measurement
output of z can be determined from Eq. (1) [25]:

PZ (z|n) = e−z zn

n!
. (2)

In Fig. 2, we present PZ (z|n) for the cases of n = 0, 1, 2, 3.
The overlaps between the probability distributions for dif-
ferent n suggest that the proposed detection scheme is
intrinsically noisy.

In practice, single-photon avalanche diodes are commonly
used in DV-QKD protocols. This type of single photon detec-
tor (SPD) can discriminate the vacuum state from nonvacuum
states but cannot resolve photon numbers. Its performance can
be quantified by single-photon detection efficiency ηD and
dark count probability υD, which are defined as the condi-
tional probabilities that the detector clicks given the input is
single-photon state or vacuum state, correspondingly.

To operate the conjugate homodyne detector in photon
counting mode, we need to map the continuous measurement
result z to one of the two possible detection events (click,
no-click). Here, we adopt the same strategy as in [25]: If z
is larger (smaller) than a pre-defined detection threshold τ ∈
[0,∞), the detector output is assigned as click (no-click). We
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FIG. 3. (Simulation results [25]) Detection efficiency ηD, dark
count probability υD, and the ratio R = ηD/υD.

remark that the above mapping process can be implemented
in the software in the post-processing stage using an optimal
τ adapted to the specific application.

Using Eq. (2), the detection efficiency ηD and the dark
count probability υD can be determined by

ηD =
∫ ∞

τ

PZ (z|1)dz = e−τ (τ + 1), (3)

υD =
∫ ∞

τ

PZ (z|0)dz = e−τ . (4)

In Fig. 3, we present ηD and υD as functions of the de-
tection threshold τ . By choosing an appropriate τ , we could
achieve either a high detection efficiency or a low dark count
probability, but not both at the same time. In Fig. 3, we also
present the ratio R = ηD/υD, which is an important figure
of merit in applications like QKD. From Eqs. (3) and (4),
R = τ + 1, which grows linearly with τ . Unfortunately, ηD

drops much faster when τ increases. As shown in Fig. 3, the
R value of the proposed scheme is less than 10 in the region
where the detection efficiency is not too low. In comparison, a
state-of-the-art SPD can provide a R value as high as 108 [26].

At first sight, the inferior performance of conjugate homo-
dyne detection in photon counting mode seems to limit its
applications in single-photon-based QKD, such as the BB84
protocol. This is probably true if we apply standard security
proofs where all the detection noises are contributed to Eve’s
attack. Such a conservative assumption is necessary when the
origins of the noises cannot be identified. In the proposed
scheme, the measurement uncertainty of the conjugate ho-
modyne detector is due to fundamental quantum noise rather
than technical imperfections. In this case, it is not necessary
to contribute the detector noise to Eve’s attack. In Sec. III, we
present an improved security analysis taking into account the
special features of the proposed detection scheme. Below we
first summarize the BB84 QKD protocol and the assumptions
used in this paper, then discuss two possible ways of using
conjugate homodyne detectors in the BB84 QKD.

B. The BB84 QKD and assumptions

In this paper, we consider the polarization encoding BB84
QKD protocol [7], which includes a quantum stage and a
classical post-processing stage. In the quantum stage, for each
transmission, Alice prepares a single-photon state with a po-
larization randomly chosen from {H, V, D, A}, and sends it to
Bob through an insecure quantum channel. Here H (V) refers
to the horizontal (vertical) polarization state and represents
bit 0 (1) in the rectilinear basis, while D (A) represents the
45o (135o) polarization state and represents bit 0 (1) in the
diagonal basis. At Bob’s end, he randomly switches between
the two measurement bases using a polarization rotator, mea-
sures the polarization of the incoming photons in the chosen
basis using a polarizing beam splitter and two detectors (D0

and D1), and then determines a bit value based on the de-
tection results. In the classical post-processing stage, Alice
and Bob use data collected in the diagonal basis to estimate
Eve’s information and data collected in the rectilinear basis
for secure-key generation.

We conduct simulations to determine the secure-key rates
for both the proposed scheme and the conventional scheme us-
ing SPDs. For simplicity, we make the following assumptions
throughout this paper:

(1) We consider the asymptotic case and neglect any finite
data size effects.

(2) We adopt the efficient BB84 QKD protocol [27],
where Alice and Bob chose one basis more often than the
other. In the asymptotic case the probability of choosing the
preferred basis (the rectilinear basis) approaches to one.

(3) We assume a perfect single-photon source is employed
by Alice.

(4) We assume Bob’s detectors are perfect. More specifi-
cally, when conventional SPDs are employed, we assume the
detection efficiency is one and the dark count probability is
zero. When the proposed conjugate homodyne detectors are
employed, we assume the quantum efficiency of photodiodes
is one and electrical noises are negligible in comparison to the
vacuum noise.

(5) We assume the perfect error correcting code approach-
ing the Shannon limit is adopted.

Since two conjugate homodyne detectors are required, we
consider two possible ways to determine a bit value from the
measurement results: Independent detection mode and differ-
ential detection mode.

C. Independent detection mode

In this case, D0 and D1 are operated as two independent
photon detectors, with detection efficiency and dark count
probability given by Eqs. (3) and (4). This detection mode
has been discussed previously in QKD using conventional
SPDs [28]. Here we extend the idea to conjugate homodyne
detectors.

Due to the symmetry of the protocol, we assume both
detectors use the same detection threshold τ . There are four
possible detection outputs [28]: Both detectors click (double-
click), only the correct detector clicks, only the wrong detector
clicks, and none of them click. The corresponding probabili-
ties are represented by PD, PC , PW , and PN .
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To give a rough estimation of the potential key rate, we
calculate the mutual information IAB under the assumption
that there is no technical imperfection except the channel loss.
Note IAB is not the secure-key rate, since we do not consider
information could be gained by Eve. Nevertheless, it can serve
as a rough upper bound on the secure-key rate. We will study
lower bounds of the secure-key rate in Sec. III.

Given Alice’s single photon is prepared in an ideal polar-
ization state corresponding to bit 0, the probability that D0

clicks is

P(0)
D0 = ηch

∫ ∞

τ

PZ (z|1)dz + (1 − ηch)
∫ ∞

τ

PZ (z|0)dz

= (ηchτ + 1)e−τ , (5)

where ηch is the channel transmittance.
The probability that D1 clicks is simply the dark count

probability given by Eq. (4),

P(0)
D1 = e−τ . (6)

Since the dark count of D1 is independent of the output
of D0, the probabilities of the four detection events can be
determined from Eqs (5) and (6) as

PN = (
1−P(0)

D0

)(
1 − P(0)

D1

) = [1 − (ηchτ + 1)e−τ ](1−e−τ ),

(7)

PC = P(0)
D0

(
1 − P(0)

D1

) = (ηchτ + 1)e−τ (1 − e−τ ), (8)

PW = (
1 − P(0)

D0

)
P(0)

D1 = [1 − (ηchτ + 1)e−τ ]e−τ , (9)

PD = P(0)
D0 P(0)

D1 = (ηchτ + 1)e−2τ . (10)

We assume that Bob post-selects the single-photon detec-
tion events and throws away no-click and double-click events.
The corresponding gain Q and quantum bit error rate (QBER)
E are given by

Q = PC + PW = (ηchτ + 2)e−τ − 2(ηchτ + 1)e−2τ , (11)

E = PW

Q
= e−τ − (ηchτ + 1)e−2τ

Q
. (12)

The mutual information between Alice and Bob is given by

IAB = Q[1 − H2(E )], (13)

where H2(x) = −xlog2(x) − (1 − x)log2(1 − x) is the Shan-
non entropy.

In this paper we assume the quantum channel is standard
optical fiber with an attenuation coefficient of γ = 0.2dB/km.
The channel transmittance is given by

ηch = 10
−γ L

10 , (14)

where L is the fiber length in kilometers.
Figure 4 (green dashed line) shows the simulation re-

sults of IAB as a function of fiber length. In this simulation,
the detection threshold τ is optimized at each distance by
maximizing IAB.

I A
B

FIG. 4. The mutual information IAB in three different cases: Per-
fect SPDs, independent detection mode, and differential detection
mode. We assume the quantum channel is standard telecom fiber with
an attenuation coefficient of γ = 0.2dB/km.

D. Differential detection mode

In this case, instead of mapping the continuous outputs
z0 and z1 of D0 and D1 into binary detection events inde-
pendently, we use them jointly to determine the bit value.
More specifically, Bob assigns the bit value to 0 (1) if z0 > z1

(z1 > z0). Here, we assume that the probability of z0 = z1 is
negligible. Note in this detection mode, there in no need to
apply a detection threshold τ . Furthermore, Bob acquires a bit
value for every transmission regardless the channel loss, so
the gain Q is one.

Given Alice sends bit 0 and the channel transmittance
is ηch, with a probability of 1 − ηch, both detectors receive
the vacuum state. In this case, the error probability (i.e.,
the probability that z0 < z1) is simply 1/2. With a prob-
ability of ηch, D0 receives one photon and D1 receives
vacuum. In this case, the error probability is given by∫ ∞

0 P(z0|1){∫ ∞
z0

PZ (z1|0)dz1}dz0 = 1/4, so the average error
rate is

E = ηch
1

4
+ (1 − ηch)

1

2
= 1

2
− ηch

4
. (15)

Again, IAB can be calculated from Eq. (13) and the result
is shown in Fig. 4 (red solid line). As a comparison, in Fig. 4
(blue dash-dotted line), we also present the case when perfect
SPDs are employed. In this case, Q = ηch and E = 0, so
IAB = ηch.

As shown in Fig. 4, IAB determined from the two detection
modes are very close to each other. At short distances, both
of them are about one order of magnitude below the one
achievable with perfect SPDs. Furthermore, schemes using
the conjugate homodyne detector scale poorer with channel
loss than the one using conventional SPDs. While this may
look pessimistic at first sight, we remark that an optical ho-
modyne detector could be operated at a much higher detection
rate than an SPD. So our proposed scheme could still be a
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FIG. 5. Secure-key rates using the standard security proof [29].
Green dashed line, independent detection mode; blue solid line,
perfect SPDs.

viable solution at short distances. We will discuss this issue
more in Sec. IV.

III. SECURITY ANALYSIS

A. Standard security analysis

We first calculate the secure-key rate using the standard
security proof of the efficient BB84 QKD implemented with a
perfect single-photon source. The asymptotic secure-key rate
is given by [29]

R = Q[1 − 2H2(E )], (16)

where we assume that the QBERs in the two bases are the
same.

From Eq. (16), to achieve a positive key rate, E should
be less than 11%. This suggests that the differential detection
mode cannot give a positive key rate, since the minimum error
rate is 25% according to Eq. (15). So we only consider the
independent detection mode in this subsection.

Note Eq. (16) is based on the assumption that the quantum
state received by Bob is either the vacuum or single-photon
state. However, in practice Eve may intercept Alice’s photons
and send an arbitrary quantum state to Bob, so Eq. (16) may
not be applied. Fortunately, a detector squashing model exists
in the BB84 QKD [30], which states that as long as the
double-click events are kept and assigned with random bit
values, Eq. (16) is still applicable. In this case, Q and E can
be determined from Eqs. (7)–(10) as

Q = 1 − PN = (ηchτ + 2)e−τ − (ηchτ + 1)e−2τ , (17)

E = PW + 0.5PD

Q
= e−τ − 0.5(ηchτ + 1)e−2τ

Q
. (18)

We conduct numerical simulations and the asymptotic secure-
key rates are shown in Fig. 5 (green dashed line). In this
simulation, the detection threshold τ is optimized at each

distance by maximizing the secure-key rate. As a comparison,
we also present the secure-key rate for the efficient BB84
using perfect SPDs, which is simply R = ηch. As shown in
Fig. 5, both the secure-key rate and the QKD distance of the
new scheme are very limited. To improve the QKD perfor-
mance, we develop a security analysis below.

B. Improved security analysis

We improve the secure-key rate by taking advantages of
two special features of the proposed detection scheme: The
quantum origin of the detection noise and the ability of recon-
structing the photon number distribution.

We define the joint probability that Alice transmits m pho-
tons and Bob receives n photons as Pm,n, where m and n are
nonnegative integers. The corresponding yield (conditional
detection probability) and QBER are defined as Ym,n and
Em,n. Since we assume that a perfect single-photon source
is employed, the only nonzero terms are P1,n, Y1,n, and E1,n.
As we have shown in [25], given a large sample size, the
photon number distribution of the received quantum state can
be reconstructed from the outputs of the detectors. In the
asymptotic case, Bob can determine P1,n precisely from his
measurement results.

We define the gain of the n-photon state as

Q1,n = P1,nY1,n, (19)

where the n-photon state is defined at Bob’s end. Note this is
different from the definition in the decoy state QKD [31–33],
where the n-photon state is commonly defined at Alice’s end.

The overall gain Q and the overall QBER E are defined as

Q =
∞∑

n=0

Q1,n, (20)

E =
∑∞

n=0 Q1,nE1,n

Q
. (21)

Note that in Eqs. (20) and (21), the sum of n goes from zero
to infinite, even though Alice transmits only one photon (m =
1) to Bob. This is because the quantum channel is controlled
by Eve, who may send an arbitrary quantum state to Bob. So
Bob may receive more than one photon.

To determine the secure-key rate, we consider the re-
verse reconciliation in the classical post-processing stage [11],
where Bob sends correction information to Alice, who cor-
rects her raw key to have the same values as Bob’s. There are
three different cases based on the photon number received by
Bob.

Case one: Bob receives a vacuum state.
In this case, both Alice and Eve have no information about

Bob’s detection results. No secure key can be generated and
there is no need to perform privacy amplification.

Case two: Bob receives one photon.
In this case, to facilitate the security analysis, we introduce

a virtual detection model, as shown in Fig. 6. In this model,
a pair of ideal nondemolition SPDs (S0 and S1), which can
determine the photon number without destroying the photons,
are placed in front of the real detectors (D0 and D1). We denote
the bit values detected by S0 and S1 as {B(V )

i , i = 1, 2, ...} and
the bit values detected by D0 and D1 as {Bi, i = 1, 2, ...}.
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FIG. 6. A schematic diagram of the virtual detection model.
Mod, polarization modulator for basis selection; PBS, polarizing
beam splitter; S0 and S1, virtual ideal nondemolition SPDs; D0 and
D1, real noisy detectors used by Bob. One key idea is to use the real
detectors’ outputs {Bi} to estimate the quantum bit error rate of the
virtual detectors’ outputs {B(V )

i }.

If Bob could access {B(V )
i }, then he could generate a secure

key from them, and the standard security proof can be applied
directly. More specially, the QBER in the rectilinear basis
can be used to quantify the cost of error correction, while
the QBER in the diagonal basis can be used to upper bound
Eve’s information thus the cost for privacy amplification. Here
we use E (X,V )

1,1 to represent the QBER in the diagonal basis
that could be acquired using the virtual detectors, given Alice
sends one photon and Bob receives one photon. Note there is
no need to summon to the detector squashing model since Bob
receives a qubit.

In the real protocol, Bob can only access {Bi} measured by
the noisy detector D0 and D1. One important observation is
that the detector noise associated with vacuum fluctuations is
quantum in nature and cannot be manipulated by Eve. Due
to the detector noise, both Alice and Eve’s information on
{Bi} will be no more than their information on {B(V )

i }. On
one hand, the mutual information between Alice and Bob IAB

(thus the cost for error correction) can be properly quantified
by using the actual QBER measured with the real detectors.
On the other hand, as a conservative approach, we can use
E (X,V )

1,1 to quantify Eve’s information on {Bi} (thus the cost of
privacy amplification). We remark that by further quantifying
the decrease of Eve’s information due to the detector noise,
the secure-key rate could be further improved, as we show in
Appendix.

Case three: Bob receives more than one photon.
The detector’s response to multiphoton signals could be

complicated and Eve might be able to introduce basis-
dependent detection efficiency by sending tailored multipho-
ton signals. For simplicity, we assume all the multiphoton
signals received by Bob are not secure and cannot be used for
secure-key generation. Again we remark that by developing a
more sophisticated detector model, the secure-key rate could
be further improved.

Combining the above three cases, the secure-key rate is
given by [34]

R = Q1,0 + Q1,1
[
1 − H2

(
E (U,X,V )

1,1

)] − f QH2(E ), (22)

where Q1,0 represents the contribution from vacuum state,
E (U,X,V )

1,1 represents an upper bound of E (X,V )
1,1 , and f is the

error correction efficiency which is assumed to be one in
this paper. Below we estimate secure-key rates for the two
detection modes.

Secure-key rate: Independent detection mode
To apply Eq. (22) to calculate the secure-key rate, we need

to determine five parameters: Q1,0, Q1,1, E (U,X,V )
1,1 , Q, and E .

Since Q and E can be determined from experimental data
directly, below we discuss how to determine the rest.

From Eq. (19), Q1,0 = P1,0Y1,0 and Q1,1 = P1,1Y1,1. As we
noted early, the photon number distribution P1,n can be recon-
structed from Bob’s detection results. Furthermore, we do not
need to call for the detector squashing model and can simply
throw away all the no-click and double-click events. Using
Eq. (2), we have

Y1,0 = 2
∫ τ

0
PZ (z0|0)dz0 ×

∫ ∞

τ

PZ (z1|0)dz1

= 2(1 − e−τ )e−τ . (23)

The corresponding QBER is

E1,0 = 0.5. (24)

Similarly, under the assumption that the two detectors D0

and D1 are identical, Y1,1 is independent of the polarization
state of the received photon, and can be determined by

Y1,1 =
∫ τ

0
PZ (z0|1)dz0 ×

∫ ∞

τ

PZ (z1|0)dz1

+
∫ ∞

τ

PZ (z0|1)dz0 ×
∫ τ

0
PZ (z1|0)dz1

= (τ + 2)e−τ − 2(τ + 1)e−2τ . (25)

The corresponding QBER is

E1,1 = (
1 − E (V )

1,1

)∫ τ

0 PZ (z0|1)dz0 × ∫ ∞
τ

PZ (z1|0)dz1

Y1,1

+ E (V )
1,1

∫ τ

0 PZ (z0|0)dz0 × ∫ ∞
τ

PZ (z1|1)dz1

Y1,1

=
(
E (V )

1,1 τ + 1
)
e−τ − (τ + 1)e−2τ

Y1,1
, (26)

where E (V )
1,1 is the expected QBER from the virtual ideal non-

demolition SPDs.
Using Eq. (21), we have

QE = Q1,0E1,0 + Q1,1E1,1 +
∞∑

n=2

Q1,nE1,n

� Q1,0E1,0 + Q1,1E1,1, (27)

which leads to an upper bound of E1,1,

E1,1 � E (U )
1,1 = QE − Q1,0E1,0

Q1,1
. (28)

Note Eqs. (23)–(28) can be applied in both bases. Once an
upper bound of E1,1 in the diagonal basis has been obtained
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Ed=0

Ed=0.001

Ed=0.01

Ed=0.05

Perfect SPD

FIG. 7. Secure-key rates using the improved security analysis
(independent detection mode). Ed , error probability due to polariza-
tion misalignment. As a comparison, the secure-key rate of the BB84
QKD implemented with perfect SPDs at Ed = 0 is also presented.

from Eq. (28), an upper bound of E (X,V )
1,1 can be determined by

using Eq. (26). By now, all the parameters needed in Eq. (22)
have been derived.

To evaluate the QKD performance, we calculate the secure-
key rate under normal operating conditions without Eve’s
attack. Since we assume a perfect single photon source is
employed, for a pure loss channel, Bob either receives a
vacuum state or a single-photon state, with the corresponding
probabilities of P1,0 = 1 − ηch and P1,1 = ηch. All the other
probabilities P1,n = 0 for n � 2. We further assume that the
QBER due to polarization misalignment is Ed . Using the
above photon number distribution, it is easy to show that
Q1,0 = (1 − ηch)Y1,0, Q1,1 = ηchY1,1, Q = Q1,0 + Q1,1, E =
0.5Q1,0+Q1,1E1,1

Q , and E (U,X,V )
1,1 = Ed , where Y1,0, Y1,1, and E1,1 are

given in Eqs. (23), (25), and (26).
The simulation results are shown in Fig. 7. As a compar-

ison, we also present the secure-key rate of the BB84 QKD
implemented with perfect SPDs and no polarization misalign-
ment (Ed = 0). Comparing with the results shown in Fig. 5,
the QKD performance has been greatly improved. Again we
optimize the detection threshold τ at each distance by maxi-
mizing the secure-key rate. The corresponding optimal values
of τ are shown in Fig. 8. Note that in the case of Ed = 0.05,
there is a jump of the optimal τ in Fig. 8 around 8.2 km, which
leads to the nondifferentiability on the corresponding curve
in Fig. 7. We investigate this phenomenon by calculating the
secure-key rate as a function of τ at fixed distances. In the
case of Ed = 0.05, there are two local optimal values of τ . As
the distance increases, the global optimal τ switches from the
first local optimum to the second one at the distance around
8.2 km, which results in a jump of τ .

Secure-key rate: Differential detection mode
The analysis in the differential detection mode is similar

to that in the independent detection mode but with a few
modifications.

Ed=0

Ed=0.001

Ed=0.01

Ed=0.05

FIG. 8. Optimal detection threshold τ . Note there is a jump of τ

around 8.2 km when Ed = 0.05 (see discussion in the main text).

First, in this mode, Bob’s detectors work in a deterministic
fashion, meaning for each transmission Bob’s detectors will
output either bit 0 or bit 1. This suggests that Y1,n = 1 for any
n. So Q1,n = P1,n and Q = 1.

Second, E1,0 is still 0.5, but E1,1 is given by

E1,1 = (
1 − E (V )

1,1

) ∫ ∞

0
PZ (z0|1)

{∫ ∞

z0

PZ (z1|0)dz1

}
dz0

+ E (V )
1,1

∫ ∞

0
PZ (z0|0)

{ ∫ ∞

z0

PZ (z1|1)dz1

}
dz0

= 1

4
+ E (V )

1,1

2
. (29)

Again, once an upper bound of E1,1 in the diagonal basis
has been obtained from Eq. (28), an upper bound of E (X,V )

1,1 can
be determined from Eq. (29).

The simulation results are shown in Fig. 9. Note no secure
key can be generated when Ed = 0.05. Comparing with the
results shown in Fig. 7, while both detection modes yield sim-
ilar key rates when Ed = 0, the independent detection mode
can tolerate higher polarization misalignment.

IV. DISCUSSION

In this paper, we present a hybrid QKD protocol by imple-
menting the BB84 QKD using optical homodyne detectors.
Can it be a useful solution in practice? Below we discuss
two potential advantages of the proposed scheme, together
with detector side-channel attacks and other implementation
issues.

a. High secure-key rate over short distances. The secure-
key rates shown in Figs. 7 and 9 are given in bits per
transmission. In practice, secure-key rates quantified in bits
per second are more relevant. Limited by its dead-time, the
maximum detection rate of a practical SPD is typically be-
low 100 MHz. This places a constraint on the achievable
secure-key rate of the BB84 QKD implemented with SPDs:
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Ed=0
Ed=0.001

Ed=0.01

Perfect SPD

FIG. 9. Secure-key rates using the improved security analysis
(differential detection mode). No secure key can be generated when
Ed = 0.05. As a comparison, the secure-key rates of the BB84 QKD
implemented with perfect SPDs at Ed = 0 are also presented.

Regardless of how high the transmission rate is, the final
secure-key rate cannot be larger than the detection rate. On
the contrary, state-of-the-art optical homodyne detectors in
classical optical coherent communications can be operated
above tens of GHz with negligible dead-time. By further re-
ducing electrical noise, those detectors could be used in the
proposed QKD. In fact, the key part of a high-speed optical
homodyne detector, shot-noise limited balanced photodiodes
with a bandwidth of 5 GHz, is commercially available [35].
Equipped with the above high-speed detectors, the new QKD
scheme could provide higher secure-key rates (in bits per
second) than the conventional scheme over short distances.

b. Robust against broadband background photons. The
proposed detection scheme can be implemented with highly
efficient photodiodes working at room temperature and is
highly integrable. More importantly, the intrinsic filtering pro-
vided by the local oscillator in optical homodyne detection
can effectively suppress background photons and enable QKD
through conventional dense wavelength-division-multiplexed
fiber networks in the presence of strong classical traffics
[16–18] and through daytime free-space channels [19]. By
removing the requirement of establishing a phase reference
between Alice and Bob, the proposed “phase insensitive”
detection scheme is easier to implement than the “phase sen-
sitive” coherent detection scheme used in CV-QKD. To detect
Alice’s photon efficiently, Bob’s local oscillators should be
in the same mode as Alice’s photon. This requirement is
equivalent to generate indistinguishable photons from two
isolated lasers, which has been routinely demonstrated with
commercial off-the-shelf lasers in the so-called measurement-
device-independent (MDI) QKD [36].

c. Detector side-channel attacks. QKD protocols are
unconditionally secure in theory. However, their real-life im-
plementations can never be perfect. This opens the door to
various side-channel attacks. Especially, SPDs in the conven-

tional DV-QKD protocols are regarded as the most vulnerable
part for two reasons. First, the quantum channel is controlled
by Eve, who can send arbitrary quantum states to Bob’s de-
tectors. It is difficult to predict the detector’s response to an
unknown input state. Second, the extremely high sensitivity
of an SPD is a double-edged sword: On one hand, it allows
Bob to detect a single photon efficiently. On the other hand, it
makes the detector more vulnerable to external attacks. Since
an optical homodyne detector is designed to work with both
quantum and classical signals, we expect our QKD scheme is
more robust against detector side-channel attacks.

One illustrative example is the detector-blinding attack on
SPDs. In one implementation [37], Eve first shines bright
light on Bob’s detectors to convert them from threshold SPDs
to classical linear detectors, then introduces basis-dependent
detection efficiency by sending tailored faked states, and gains
some information of the secure key. With an optical homo-
dyne detector, it could be more difficult to introduce such
a dramatic change of the detector property without being
detected. In fact, in our detection scheme, Bob is able to
reconstruct the photon number distribution of the received sig-
nal, and all the multiphoton signals are assumed to be insecure
(see Sec. III B). The bright light from Eve may result in a high
QBER and expose her presence. Similar argument could also
be applied to the saturation attack in CV-QKD [38], where
Eve displaces the quantum signals to the saturation region of
the detector.

There are also more subtle attacks exploring certain asym-
metry of Bob’s detection system. For example, in time-shift
attack [39], Eve takes advantage of the efficiency mismatch
between different SPDs in time domain and gains partial
information of Bob’s detection results by manipulating the
arrival time of the quantum signal at Bob’s detectors. Simi-
larly, in wavelength attack [40], Eve explores the wavelength
dependence of Bob’s system and launches the attack by send-
ing lights with carefully chosen wavelengths. The proposed
detection scheme could be more resilient to the above attacks,
thanks to the intrinsic filtering provided by the local oscillator.
By generating the local oscillators for different optical ho-
modyne detectors from a common light source, the detection
efficiency of different detectors can be well matched in both
the time and spectral domains. Since all the local oscillators
are generated locally by Bob, the proposed scheme is also
immune to many side-channel attacks in CV-QKD using the
transmitted local oscillator, where Eve launches her attack by
manipulating both the quantum signal and the local oscillator
[41–43].

While the proposed detection scheme may be more
resilient against detector side-channel attacks than the con-
ventional SPD, it is impossible to eliminate all the side
channels. In practice, it is still important to investigate poten-
tial loopholes and develop corresponding countermeasures.
We remark that one appealing solution to all detector side-
channel attacks is MDI-QKD [36], where both Alice and Bob
transmit quantum signals to an untrusted measurement device,
which could be fully controlled by Eve. Unfortunately, the
proposed detection scheme may not be applicable in MDI-
QKD. This is because in our security analysis, we explicitly
assume that the detector noise is trusted and cannot be ac-
cessed by Eve.
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Ed=0

Ed=0.001

Ed=0.01

Ed=0.05

FIG. 10. Secure-key rates using the tighter bound in Appendix
(independent detection mode).

d. Other implementation issues. To apply the proposed
scheme in practice, there are several challenges to be ad-
dressed. First, in the present study we assume a perfect
single-photon source is employed. In practice, most of the
BB84 QKD implementations are based on phase-randomized
weak laser sources, which can generate more than one photon
occasionally and are susceptible to photon-number splitting
attack [44]. Fortunately, this problem has been solved in
conventional BB84 QKD by introducing the so-called de-
coy state protocols [31–33], where by randomly modulating
the intensity of weak laser pulses, the detection statistics of
single-photon states can be acquired. It could be an interesting
research topic to incorporate the decoy state idea into our
scheme. Second, the technical imperfections of optical homo-
dyne detectors, including the nonunity quantum efficiency and

Ed=0
Ed=0.001

Ed=0.01
Ed=0.05

FIG. 11. Secure-key rates using the tighter bound in Appendix
(differential detection mode).

electrical noise, are ignored in this study. Those imperfections
need to be quantified and taken into account in the security
analysis. Finally, in this paper we only consider asymptotic
cases where all the QKD parameters can be determined pre-
cisely. It is important to further investigate the case with finite
data size.

In summary, we explore the possibility of operating optical
homodyne detectors in photon counting mode to implement
DV-QKD protocols. By developing a security analysis based
on the special features of the detector, we show that reasonable
secure-key rates could be achieved. This study may open the
door to a family of QKD protocols, complementary to the
well-established DV-QKD based on single-photon detection
and CV-QKD based on coherent detection.
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APPENDIX: A TIGHTER BOUND
ON EVE’S INFORMATION

In Sec. III B, we quantify Eve’s information on Bob’s raw
key {Bi} using H2(E (U,X,V )

1,1 ), where E (U,X,V )
1,1 is an upper bound

of the QBER in the diagonal basis that would be acquired
using the perfect virtual detectors, given Alice sends one
photon and Bob receives one photon [see Eq. (22) in the
main text]. This is a conservative approach, since H2(E (U,X,V )

1,1 )

upper bounds Eve’s information on {B(V )
i } (the outputs of the

virtual detectors). Due to the detector noise, Eve’s information
on {Bi} will be less than her information on {B(V )

i }. In this Ap-
pendix, we derive a tighter bound on Eve’s information using
classical probability theory. This result may be applicable to
individual attacks. We leave the case of general attacks for
future study.

Below we present the details for the case of the inde-
pendent detection mode. The analysis for the differential
detection mode is similar. We denote Eve’s estimations of
{B(V )

i } as {Ei}. The corresponding bit error rate E (V )
EB is

defined as

E (V )
EB = P

(
B(V )

i = 1
∣∣Ei = 0

)
, (A1)

where we assume P(B(V )
i = 1|Ei = 0) = P(B(V )

i = 0|Ei = 1).
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Since Eve’s information on {B(V )
i } is upper bounded by H2(E (U,X,V )

1,1 ), we have

I (V )
EB = 1 − H2

(
E (V )

EB

)
� H2

(
E (U,X,V )

1,1

)
. (A2)

Similar to Eq. (26) in the main text, the bit error rate between {Bi} and {Ei} can be determined by

EEB = P(Bi = 1|Ei = 0)

= P
(
Bi = 1

∣∣B(V )
i = 0

) × P(B(V )
i = 0|Ei = 0) + P(Bi = 1|B(V )

i = 1) × P
(
B(V )

i = 1
∣∣Ei = 0

)

=
∫ τ

0 PZ (z0|1)dz0
∫ ∞
τ

PZ (z1|0)dz1

Y1,1

(
1 − E (V )

EB

) +
∫ τ

0 PZ (z0|0)dz0
∫ ∞
τ

PZ (z1|1)dz1

Y1,1
E (V )

EB

=
(
E (V )

EB τ + 1
)
e−τ − (τ + 1)e−2τ

Y1,1
, (A3)

where Y1,1 is given by Eq. (25) in the main text.
Once E (U,X,V )

1,1 has been determined following the steps in the main text, a lower bound of E (V )
EB can be determined from

Eq. (A2). Consequentially, a lower bound of EEB can be determined from Eq. (A3). We further use 1 − H2(EEB) as an estimation
of Eve’s information on {Bi} and calculate the secure-key rate by replacing the H2(E (U,X,V )

1,1 ) term in Eq. (22) with 1 − H2(EEB).
The simulation results for the independent detection mode and the differential detection mode are shown in Figs. 10 and 11

correspondingly. Comparing with the results shown in Figs. 7 and 9, the QKD performance has been improved for the cases
of Ed �= 0.
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