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Free-space channels provide the possibility of establishing continuous-variable quantum key distribution in
global communication networks. However, the fluctuating nature of transmissivity in these channels introduces
an extra noise which reduces the achievable secret key rate. We consider two classical postprocessing strategies,
postselection of high-transmissivity data and data clusterization, to reduce the fluctuation-induced noise of
the channel. We undertake the investigation of such strategies utilizing a composable security proof in a
realistic finite-size regime against both collective and individual attacks. We also present an efficient parameter
estimation approach to estimate the effective Gaussian parameters over the postselected data or the clustered data.
Although the composable finite-size effects become more significant with the postselection and clusterization
both reducing the size of the data, our results show that these strategies are still able to enhance the finite-size
key rate against both individual and collective attacks with a remarkable improvement against collective attacks,
even moving the protocol from an insecure regime to a secure regime under certain conditions.
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I. INTRODUCTION

Quantum key distribution (QKD) [1–3] allows two trusted
parties (traditionally called Alice and Bob) to share a secret
key which is unknown to a potential eavesdropper (tradition-
ally called Eve) by using quantum communication over an
insecure quantum channel and classical communication over
an authenticated classical channel. Quantum key distribution
systems were first proposed for discrete-variable quantum
systems [4,5], where the key information is encoded onto
the degrees of freedom of single photons and detection is
realized by single-photon detectors, and then extended for
continuous-variable (CV) quantum systems [6–9], where the
key information is encoded onto the amplitude and phase
quadratures of the quantized electromagnetic field of light and
detection is realized by (faster and more efficient) homodyne
or heterodyne detectors. Continuous-variable QKD systems
(see [2,10–12] for review) have the potential to achieve higher
secret key rates, as well as the advantage of compatibility with
current telecommunication optical networks.

Quantum key distribution can in general be performed us-
ing two quantum communication technologies, optical fibers
and free-space channels, which are considered as comple-
mentary technologies in the emerging global QKD network.
When an optical fiber exists between two points, we can
perform quantum communication without being affected by
external conditions such as background light, weather con-
ditions, or other environmental obstructions. However, since
optical fiber suffers from optical absorption, the maximum
secure transmission distance is limited to a few hundred
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kilometers [13–17]. On the other hand, free-space channels
offer convenient flexibility in terms of infrastructure establish-
ment, with the possibility of implementing links to moving
objects. Terrestrial free-space channels also limit the secure
distance, due to the curvature of the earth, potential line-of-
sight blockages, and atmospheric absorption and turbulence
[18–23]. In long-distance applications, where there is no di-
rect free-space line of sight between two ground stations,
free-space channels via satellite can be used for quantum com-
munication between satellite and the ground stations [24,25].
In satellite-based quantum communications only a small frac-
tion of the propagation path is through the atmosphere, while
most of the propagation undergoes no absorption and no tur-
bulence.

In free-space channels (in contrast to optical fibers) the
channel suffers from atmospheric turbulence (causing beam
wandering, beam shape deformation, beam broadening, etc.),
which results in a random variation of channel transmissivity
in time. This fluctuation effect can be characterized by a prob-
ability distribution of the channel transmissivity. Depending
on the atmospheric effects, advanced probability distribution
models have been proposed for the channel transmissivity
[26–30], which accurately describe free-space experiments
[18–20].

A free-space channel can be considered as a set of sub-
channels, where the transmissivity of the channel is relatively
stable for each subchannel [18]. In a Gaussian CV QKD
protocol [10,11], Alice prepares Gaussian quantum states,
which are modulated with a Gaussian distribution. Once these
Gaussian states are transmitted over a free-space channel to
Bob, the fluctuating transmissivity of the channel makes the
received state (at Bob’s station) a non-Gaussian mixture of
the Gaussian states obtained for each subchannel [31]. This

2469-9926/2021/103(1)/012605(17) 012605-1 ©2021 American Physical Society

https://orcid.org/0000-0001-6120-577X
https://orcid.org/0000-0003-1204-6009
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.103.012605&domain=pdf&date_stamp=2021-01-20
https://doi.org/10.1103/PhysRevA.103.012605


HOSSEINIDEHAJ, WALK, AND RALPH PHYSICAL REVIEW A 103, 012605 (2021)

non-Gaussian effect introduces an extra noise, which reduces
the key rate [18,32,33]; however, the fluctuating transmissivity
also provides a possibility to recover the key rate through the
postselection of data from subchannels with high transmissiv-
ity [18]. The postselection decreases the amount of channel
fluctuation (i.e., decreases the variance of the transmissivity
distribution), which leads to a postselected state with a more
Gaussian nature (i.e., with less non-Gaussian noise). This
postselection has been shown to be effective for CV QKD
protocols in the asymptotic regime [18,32] against Gaussian
collective attacks.1 The other classical postprocessing strategy
which can also reduce the negative effect of the fluctuation-
induced noise is to partition the recorded data into different
clusters [35,36] and analyze the security for each cluster
separately. Although both of these strategies are effective in
reducing the fluctuation-induced noise, they also reduce the
size of the effective data set used for parameter estimation
and security analysis. Since in practice only a finite number
of signals are exchanged between Alice and Bob, the com-
posable finite-size issues become even more significant when
either postselection or clusterization is applied. Thus, whether
these classical postprocessing strategies are still effective in a
composable finite-size regime remains an open question.

We consider the no-switching [37,38] CV QKD protocol
(based on Gaussian-modulated coherent states and hetero-
dyne detection) over a free-space channel. For the channel
probability distribution we consider the elliptic-beam model
[28], which accounts for the deflection and deformation of a
Gaussian beam caused by turbulence in atmospheric channels.
We analyze the composable finite-size security of the protocol
by using the recent security proof, stating that, according to
the Gaussian de Finetti reduction, for the security analysis of
the no-switching protocol against general attacks, it is suffi-
cient to consider Gaussian collective attacks in the finite-size
composable regime [39,40]. We answer the question whether
the postselection of high-transmissivity subchannels and data
clusterization can improve the performance of the free-space
CV QKD system in a composable finite-size regime against
collective and individual attacks.2

For both postselection and clusterization, the subchannel
transmissivity has to be estimated by publicly revealing a
randomly chosen subset of the data obtained over the stabil-
ity time. There are other proposed methods [42–44] which
utilize classical auxiliary probes or the local oscillator to
estimate the subchannel transmissivity. However, since these
classical signals could likely be manipulated by Eve, the clas-
sical estimation of the channel may compromise the security.
Note that, similar to the transmissivity, the excess noise can
also be estimated for each subchannel realization separately.
However, in practice, only a small number of signals can

1Note that the postselection of transmission bins with high value
has also been shown effective for enhancing the squeezing properties
of light transmitted through the turbulent atmosphere [19,28] and
improving the fidelity of the coherent-state teleportation over the
turbulent atmosphere [34].

2Note that when Eve has a restricted quantum memory, indi-
vidual attacks can become optimal eavesdropping attacks for the
no-switching CV QKD protocol [41].

be transmitted over the stability time of the channel, which
results in pessimistic error bars for the estimated excess
noise, which consequently overestimates Eve’s information
and leads to a pessimistic bound for the key rate. Hence, to
estimate Eve’s information, instead of estimating the excess
noise of each subchannel, we can utilize the data revealed
over all subchannels (which are used for the security analysis)
to estimate the effective excess noise. Our security analysis
shows that the optimized postselection can improve the finite-
size key rate against both individual and collective attacks.
Our previous work on Gaussian postselection [45] showed
a relatively modest improvement in the finite-size collective
attacks in comparison with the improvement predicted by an
asymptotic analysis. Surprisingly, our present work shows that
the postselection of high-transmissivity subchannels provides
a significant improvement against collective attacks in the
composable finite-size regime, comparable to that predicted
asymptotically. Further, we show that the data clusterization
can also significantly improve the composable finite key rates
against collective attacks, provided an optimal clusterization
of subchannels is chosen.

The structure of the remainder of the paper is as follows. In
Sec. II the no-switching CV QKD system is described, with
the security discussed in the composable finite-size regime.
In Sec. III the CV QKD system over free-space channels is
discussed, with the security analyzed in Sec. IV using two
approaches in the composable finite-size regime by introduc-
ing an efficient parameter estimation approach. In Sec. V the
finite-size composable security is analyzed for the system with
postselection of high-transmissivity subchannels and for the
system with data clusterization, and the significant improve-
ment of the composable finite key rates against collective
attacks using these strategies is illustrated. Finally, concluding
remarks are provided in Sec. VI.

II. SYSTEM MODEL

Continuous-variable QKD in general consists of two steps,
quantum communication followed by classical postprocess-
ing [2,10–12]. In the quantum communication step, Alice
prepares a classical random variable a and encodes a onto
quantum states. In Gaussian CV QKD the random variable
is drawn from a Gaussian distribution and quantum states are
either coherent states or squeezed states of light. In Gaussian
encoding the Gaussian quantum states are modulated (i.e.,
displaced) according to the Gaussian random variable a. The
modulated quantum states are transmitted from Alice to Bob
over an insecure quantum channel, which is characterized by
some transmissivity and some excess noise. At the end of
the channel Bob measures the received quantum states with
either homodyne or heterodyne detection to obtain a classical
random variable b, which is correlated to Alice’s variable a.

In this work we consider a Gaussian no-switching CV
QKD protocol [37,38], where Alice prepares Gaussian-
modulated coherent states and Bob uses heterodyne detection.
In a prepare-and-measure scheme Alice generates two random
real variables (aq, ap), drawn from two independent Gaussian
distributions of variance VA. Alice prepares coherent states by
modulating a coherent laser source by amounts of (aq, ap).
The variance of the beam after the modulator is VA + 1 = V
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(where the 1 is for the shot-noise variance); hence an average
output state is thermal of variance V . The prepared coherent
states are transmitted over an insecure quantum channel to
Bob. For each incoming state, Bob uses heterodyne detection
and measures both the q̂ and p̂ quadratures to obtain (bq, bp).
Repeating this procedure many times, Alice and Bob end up
with two sets of correlated data, known as the raw keys. In
this protocol, sifting is not needed, since both of the random
variables generated by Alice are used for the key generation.
When all the incoming quantum states have been measured
by Bob, classical postprocessing (including discretization,
parameter estimation, error correction, and privacy amplifi-
cation) over a public but authenticated classical channel is
commenced to produce a shared secret key.

Each prepare-and-measure (PM) scheme can be repre-
sented by an equivalent entanglement-based (EB) scheme
[10,11]. In a Gaussian EB scheme, Alice generates a two-
mode Gaussian entangled state. She keeps one mode, on
which she applies either homodyne or heterodyne detec-
tion, projecting the second mode onto squeezed states or
coherent states, respectively. In the equivalent EB scheme of
the no-switching protocol, Alice generates a pure two-mode
squeezed vacuum state with the quadrature variance V . Alice
keeps one mode, while sending the second mode to Bob over
the insecure quantum channel. When Alice applies a hetero-
dyne detection to her mode obtaining (xq, xp), she projects the
other mode onto a coherent state. At the output of the channel,
Bob applies a heterodyne detection to the received mode to
obtain (yq, yp). As a result of Alice’s and Bob’s heterodyne
detection on all the shared entangled states, they generate two
sets of correlated data as the raw key, from which they can ex-
tract a shared secret key through the classical postprocessing.
It is convenient to evaluate security using the equivalent EB
scheme even if that actual performed protocol is a PM scheme.

The classical postprocessing starts with discretization [46],
where Alice and Bob encode each measurement outcome with
d bits of precision. The classical channel is assumed to be
authenticated, which means Eve can monitor the classical
channel, but she is not able to change the classical signals.
However, the quantum channel is assumed to be in Eve’s full
control. This is the reason that the channel parameters (i.e.,
transmissivity and excess noise) have to be estimated by Alice
and Bob over the parameter estimation step in order to upper
bound Eve’s information. The parameter estimation is usually
performed by revealing a randomly chosen subset of the raw
data (which should be discarded from the raw key). After
the parameter estimation, error correction is performed, where
Alice and Bob communicate the syndromes of the errors af-
fecting their data. Error correction can be performed in either
direct reconciliation (DR) or reverse reconciliation (RR). In
the DR case Alice is the reference of reconciliation, where she
sends the syndromes to Bob, who corrects his data based on
the received syndrome to have the same data as Alice, while
in the RR scenario Bob is the reference of reconciliation.
As a result, Alice’s and Bob’s raw keys are transformed into
the same string of bits. In the secret key rate calculation the
leakage during the error correction, which is in fact the size
of the syndrome, should be subtracted from the secret key
length. Finally, we have privacy amplification, in which Alice
and Bob generate a smaller but secret key from the raw key by

reducing Eve’s information of the key to a negligible amount.
The amount of data to discard is given by the upper bound on
Eve’s information computed during the parameter estimation.

A. Composable finite-size security analysis

General attacks (or coherent attacks) are known to be the
most powerful eavesdropping attacks on CV QKD protocols.
In a coherent attack Eve prepares a global ancillary quantum
system, interacting collectively with all quantum states trans-
mitted through the channel, with all the output ancillae stored
in a quantum memory. A collective measurement is applied
over the stored ensemble to extract maximum information on
the key. In a collective attack Eve prepares an ensemble of
independent and identical quantum systems, each one inter-
acting individually with a single quantum state sent through
the channel, with the output ancilla stored in a quantum mem-
ory. The entire stored ensemble is collectively measured to
extract the maximum information on the key, upper bounded
by the Holevo information. In an individual attack, Eve in-
teracts individually with each quantum state sent by Alice
and performs an individual measurement on the output ancilla
[10].

In the asymptotic regime collective attacks are as powerful
as coherent attacks [47] and for Gaussian protocols, Gaussian
collective attacks are asymptotically optimal [48–50]. Note
also that for Gaussian protocols, among individual attacks,
Gaussian individual attacks are asymptotically optimal [10].

In the finite-size regime, the no-switching CV QKD pro-
tocol with N coherent states sent by Alice to Bob is ε-secure
against Gaussian collective attacks in a reverse reconciliation
scenario if ε = 2εsm + ε̄ + εPE + εcor [46,51,52] and if the
key length �col is chosen such that [46,51]

�col � N ′[βI (a:b) − χεPE (b:E )] −
√

N ′�AEP − 2 log2

(
1

2ε̄

)
,

(1)

where [46,51]

�AEP = (d + 1)2 + 4(d + 1)
√

log2(2/ε2
sm )

+ 2 log2(2/ε2εsm ) + 4εsmd/ε
√

N ′, (2)

where N ′ = N − k, with k the number of data points Alice and
Bob are required to disclose during the parameter estimation,
d is the discretization parameter (i.e., each symbol is encoded
with d bits of precision), εsm is the smoothing parameter, εcor

and εPE are the maximum failure probabilities for the error
correction and parameter estimation, respectively, I (a:b) is
the classical mutual information shared between Alice and
Bob, and 0 � β � 1 is the reconciliation efficiency. Note
that in the finite-size regime the usual χ (b:E ) (the maximum
mutual information shared between Eve and Bob limited by
the Holevo bound for the collective attack) has to be replaced
by χεPE (b:E ), taking into account the finite precision of the
parameter estimation. In fact, it is now assumed that Eve’s
information is upper bounded by χεPE (b:E ), except with prob-
ability εPE. The final key rate in bits per mode is then given by
�col/N .

Note that for the ε-security analysis of the same protocol
against Gaussian individual attacks we can still use Eq. (1),
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where χεPE (b:E ) must be replaced by the classical mutual
information between Eve and Bob, maximized by IεPE (b:E )
except with probability εPE. Note also that, based on the re-
cent security proof in [39,40], for analyzing the composable
finite-size security of the no-switching CV QKD protocol
against general attacks, the security of the protocol can be first
analyzed against Gaussian collective attacks with a security
parameter ε [46] through the use of Eq. (1) and then, by using
the Gaussian de Finetti reduction [39], the security can be
obtained against general attacks with a polynomially larger
security parameter ε̃ [39]. Note that the security loss due
to the reduction from general attacks to Gaussian collective
attacks scales like O(N ′4) [39]. More precisely, according to
[39], ε-security against Gaussian collective attacks implies
ε̃-security against general attacks, where ε̃/ε = K4/50, with
K ∼ N ′.

III. FREE-SPACE CV QKD SYSTEMS

In free-space channels the atmospheric effects will cause
the transmitted beam to experience fading. Hence, in contrast
to a fiber link with a fixed transmissivity, the transmissivity
η of a free-space channel fluctuates in time. Such fading
channels can be characterized by a probability distribution
p(η) [18,53]. In fact, a fading channel can be decomposed
into a set of subchannels. Each subchannel ηi is defined as a
set of events for which the transmissivity is relatively stable,
meaning that the fluctuations of the transmissivity are negli-
gible. Each subchannel ηi occurs with probability pi so that∑

i pi = 1 or
∫ ηmax

0 p(η)dη = 1 for a continuous probability
distribution, where ηmax is the maximum realizable value of
transmissivity of the fading channel. Thus, the Wigner func-
tion of the output state is the sum of the Wigner functions
of the states after subchannels weighted by subchannel prob-
abilities [53]. Hence, the input Gaussian state ρin remains
Gaussian after passing through each subchannel; however,
the resulting state at the output of the channel ρout = ∑

i piρi

(with ρi the Gaussian state resulted from the transmission of
the input Gaussian state ρin through the subchannel ηi) is a
non-Gaussian state [53].

In the equivalent entanglement-based scheme of the no-
switching CV QKD protocol, the initial pure two-mode
Gaussian entangled state ρAB0 with the quadrature variance V
is completely described by its first moment, which is zero, and
its covariance matrix

MAB0 =
[

V I
√

V 2 − 1Z√
V 2 − 1Z V I

]
, (3)

with I a 2×2 identity matrix and Z = diag(1,−1). Alice
keeps mode A and sends mode B0 through an insecure free-
space channel. After transmission of mode B0 through a
quantum subchannel with transmissivity η and excess noise
ξη (relative to the input of the subchannel with transmissivity
η), the covariance matrix of the Gaussian state ρAB1,η at the
output of the subchannel is given by

MAB1,η =
[

V I
√

η
√

V 2 − 1Z
√

η
√

V 2 − 1Z [η(V − 1) + ηξη + 1]I

]
. (4)

The ensemble-average state at the output of a free-space
channel ρAB1 is a non-Gaussian mixture of Gaussian states ob-
tained from individual subchannels ρAB1,η. Thus, the Wigner
function of the output state WAB1 is the sum of the Wigner
functions of the states obtained from individual subchan-
nels WAB1,η weighted by subchannel probabilities pi, i.e., we
have WAB1 (q, p) = ∑

i piWAB1,η(q, p), where q = (qA, qB1 )
and p = (pA, pB1 ) indicate the vectors of amplitude and phase
quadrature variables. Having the Wigner function WAB1 , we
can calculate the second moments of the quadratures through
integration as

〈X̂Ŷ 〉 =
∫

dqAdqB1 d pAd pB1 xyWAB1 (qA, qB1 , pA, pB1 )

=
∑

i

pi

∫
dqAdqB1 d pAd pB1 xyWAB1,η(qA, qB1 , pA, pB1 ),

(5)

where X̂ , Ŷ = q̂A, q̂B1 , p̂A, p̂B1 . Thus, the elements of the co-
variance matrix of the ensemble-average state ρAB1 are given
by the convex sum of the moments of state ρAB1,η, as we have
〈X̂Ŷ 〉 = ∑

i pi〈X̂Ŷ 〉η, or
∫ ηmax

0 〈X̂Ŷ 〉η p(η)dη for a continuous
probability distribution. The covariance matrix of the non-
Gaussian state ρAB1 is then given by

MAB1 =
[

V I 〈√η〉√V 2 − 1Z

〈√η〉√V 2 − 1Z [〈η〉(V − 1) + 〈ηξη〉 + 1]I

]
,

(6)
where 〈·〉 denotes the mean value over the subchannels (or
over all possible values of η), i.e.,

〈η〉 =
∫ ηmax

0
ηp(η)dη,

〈√η〉 =
∫ ηmax

0

√
ηp(η)dη,

〈ηξη〉 =
∫ ηmax

0
ηξη p(η)dη.

(7)

Note that, unlike the previous theoretical works on free-space
CV QKD [18,32,33,54–57] with the assumption of fixed ex-
cess noise, here we have assumed that the channel excess
noise can also randomly vary in time, where the value of
the excess noise depends on the the value of the channel
transmissivity.

From the covariance matrix of the non-Gaussian ensemble-
average state in Eq. (6), it is evident that the fluctuating
channel can be considered as a nonfluctuating channel with
the effective transmissivity η f and effective excess noise ξ f ,
so the covariance matrix of the ensemble-average state can be
rewritten as

MAB1 =
[

V I √
η f

√
V 2 − 1Z

√
η f

√
V 2 − 1Z [η f (V − 1) + η f ξ f + 1]I

]
,

(8)
where η f = 〈√η〉2 and η f ξ f = Var(

√
η)(V − 1) + 〈ηξη〉,

with Var(
√

η) = 〈η〉 − 〈√η〉2. According to Eq. (8), the extra
non-Gaussian noise, caused by the fluctuating nature of the
channel, depends on the variance of the transmissivity fluctu-
ations Var(

√
η) and the modulation variance VA = V − 1.
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IV. COMPOSABLE FINITE-SIZE SECURITY ANALYSIS
FOR FREE-SPACE CV QKD SYTEMS

Here we analyze the composable finite-size security of the
no-switching CV QKD protocol implemented over free-space
channels using two approaches, first by analyzing the security
over all data and second by analyzing the security for each
subchannel separately. We also analyze the security against
both general attacks (i.e., memory-assisted attacks) and indi-
vidual attacks (i.e., nonmemory attacks).

A. Security analysis over all data

1. General attacks

Based on the leftover hash lemma [58,59], the number of
approximately secure bits � that can be extracted from the raw
key should be slightly smaller than the smooth min-entropy
of Bob’s string b conditioned on Eve’s system E ′ (which
characterizes Eve’s quantum state E , as well as the public
classical variable C leaked during the QKD protocol), de-
noted by H εsm

min(bN ′ |E ′) [58], i.e., we have � � H εsm
min(bN ′ |E ′) −

2 log2( 1
2ε̄

), where ε̄ comes from the leftover hash lemma. Note
that N ′ indicates the length of Bob’s string b after the param-
eter estimation. The chain rule for the smooth min-entropy
[46] gives H εsm

min(bN ′ |E ′) = H εsm
min(bN ′ |EC) � H εsm

min(bN ′ |E ) −
log2 |C|, where log2 |C| = lEC, with lEC the size of data
leakage during the error correction. Note that the leakage
during the error correction can be given by lEC = N ′[H (b) −
βI (a:b)] [46,51,60], where H (b) is Bob’s Shannon entropy.
In order to calculate the length � of the final key which is
ε-secure (ε = 2εsm + ε̄ + εPE + εcor [46,51]), the conditional
smooth min-entropy H εsm

min(bN ′ |E ) has to be lower bounded
when the protocol did not abort. Under the assumption
of independent and identically distributed attacks such as
collective or individual attacks, where every signal trans-
mitted is attacked with the same quantum operation, the
asymptotic equipartition property [46,61,62] can be utilized
to lower bound the conditional smooth min-entropy with
the conditional von Neumann entropy. Explicitly, we have
H εsm

min(bN ′ |E ) � N ′S (b|E ) − √
N ′�AEP [46,51], where S (b|E )

is the conditional von Neumann entropy. The conditional
von Neumann entropy S (b|E ) is given by S (b|E ) = H (b) −
H εPE (b:E ), where Eve’s information on Bob’s string b is upper
bounded by H εPE (b:E ), except with probability εPE for a given
attack [for collective attacks we have H εPE (b:E ) = χεPE (b:E )
and for individual attacks we have H εPE (b:E ) = IεPE (b:E )].

In our finite-size security analysis the assumption of
collective attacks to lower bound the conditional smooth min-
entropy comes with no loss of generality because, based on the
Gaussian de Finetti reduction, for the security analysis of the
no-switching protocol against general attacks, it is sufficient
to consider Gaussian collective attacks in the composable
finite-size security proof [39,40].

The covariance matrix of the non-Gaussian ensemble-
average state MAB1 can be described by the effective Gaussian
parameters η f and ξ f . Therefore, a fading-channel attack can
be effectively considered as a Gaussian attack with the pa-
rameters η f and ξ f . For the security analysis over the whole
data set we can consider an optimal Gaussian collective attack
with the parameters η f and ξ f to minimize the key rate. In this

optimal attack Eve interacts individually with each transmit-
ted signal through an optimal entangling cloner attack [63]
with the parameters η f and ξ f , with her output ancillae stored
in her quantum memory to be collectively measured later.
Since this attack is independent and identically distributed
over all subchannels, the conditional smooth min-entropy can
be lower bounded by the conditional von Neumann entropy.
Thus, the lower bound on the total finite-size key rate with
security parameter ε against Gaussian collective attacks is
given by

KRcol = N ′

N
[βI (a:b) − χεPE (b:E )]

−
√

N ′

N
�AEP − 2

N
log2

(
1

2ε̄

)
. (9)

Note that we assume that Ns is the number of signals transmit-
ted over each subchannel, from which ks signals are revealed
for the parameter estimation and N ′

s = Ns − ks signals are
used for the key generation. In total, a number of N signal
states are transmitted, from which k signals are revealed over
all subchannels for the parameter estimation and N ′ = N − k
signals are used for the key generation. Note that in Eq. (9),
I (a:b) is calculated based on the effective parameters η f and
ξ f and Eve’s information from a collective attack χεPE (b:E )
is calculated based on the covariance matrix MAB1 of the
ensemble-average state. For this covariance matrix, the effec-
tive excess noise ξ f can be estimated based on a relatively
large number of signals k (where k � ks) revealed over all
subchannels (see Sec. IV C). Note that for the no-switching
protocol, proving the security against Gaussian collective at-
tacks with security parameter ε results in the security of the
same protocol against general attacks with security parame-
ter ε̃ � ε, where we have ε̃/ε = K4/50. Note that K ∼ N ′′,
where N ′′ = N ′ − m, with m the number of signals used for
the energy test [39]. Thus, the lower bound on the total finite-
size key rate with security parameter ε̃ against general attacks
is given by

KRgen = N ′′

N
[βI (a:b) − χεPE (b:E )]

−
√

N ′′

N
�AEP − 2

N
log2

(
1

2ε̄

)
− 2

N
log2

(
K + 4

4

)
, (10)

where �AEP is calculated using Eq. (2) with N ′ being replaced
by N ′′.

2. Individual attacks

Considering the fact that in reality Eve has access to a re-
stricted quantum memory with limited coherence time, where
each state stored in her quantum memory undergoes a spe-
cific amount of decoherence over the storage time, individual
attacks might be more beneficial for Eve than collective at-
tacks [41]. In terms of the interaction with the transmitted
signals, an individual attack is the same as a collective attack,
while in terms of the measurement Eve performs an individual
measurement instead of a collective measurement. Among
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individual attacks, Gaussian attacks are also known to be
optimal for the Gaussian CV QKD protocols.

For the security analysis over all data against Gaussian
individual attacks, we can also consider an optimal Gaussian
individual attack with the parameters η f and ξ f . In this attack
Eve interacts individually with each signal sent from Alice to
Bob with the effective parameters η f and ξ f ,3 with an individ-
ual measurement on her output ancillary state as soon as she
obtains it. Note that in the no-switching CV QKD protocol
Eve does not need a quantum memory to perform the individ-
ual measurement, since there is no basis information withheld
in this protocol. This individual attack is also independent
and identically distributed over all subchannels, which means
the conditional smooth min-entropy can be lower bounded
by the conditional von Neumann entropy. Thus, the lower
bound on the total finite-size key rate with security param-
eter ε against Gaussian individual attacks can also be given
by Eq. (9), where χεPE (b:E ) must be replaced by IεPE (b:E ).
Note that IεPE (b:E ) has to be calculated based on the effective
parameters of the channel, i.e., η f and ξ f .

B. Security analysis for each subchannel separately

For the security analysis against collective attacks with
the security parameter ε (ε = 2εsm + ε̄ + εPE + εcor), one
could also write H εsm

min(bN ′ |E ) = ∑
i H εsm,i

min (bN ′
s |E ), where

H εsm,i
min (bN ′

s |E ) is the conditional smooth min-entropy for the
subchannel i with the parameters ηi and ξηi , occurring with
probability pi, and we have εsm,i = piεsm and N ′

s = piN ′. By
considering an optimal Gaussian collective attack with the
parameters ηi and ξηi over the subchannel, one can lower
bound H εsm,i

min (bN ′
s |E ) by the conditional von Neumann entropy

since the attack is independent and identically distributed
over the subchannel (note that this attack is not indepen-
dent and identically distributed over all subchannels). More
explicitly, one can analyze the security for each subchannel
separately, i.e., calculate the composable finite-size key length
for each subchannel with the security parameter εi (where
εi = piε) as �col

i = N ′
s[βIi(a:b) − χ

εPE,i
i (b:E )] − √

N ′
s�AEP −

2 log2( 1
2ε̄i

). Note that Ii(a:b) is the classical mutual informa-

tion between Alice and Bob for the subchannel and χ
εPE,i
i (b:E )

is Eve’s information from the collective attack over the sub-
channel, which is calculated based on the covariance matrix
MAB1,η with the parameter εPE,i = piεPE. Then the lower
bound on the total finite-size key rate with the security pa-
rameter ε against Gaussian collective attacks is obtained by
averaging over all subchannels as 1

N

∑
i �

col
i . Note that in a

realistic finite-size regime this approach might result in pes-
simistic key rates. This is due to the fact that in practice
only a small number of signal states are transmitted over
each subchannel, which results in a very pessimistic finite key
length for each subchannel, due to pessimistic error bars and
the finite-size correction � term. Note that Eve’s information

3Note that different schemes have been proposed for a Gaussian
interaction in an optimal individual attack against the no-switching
CV QKD protocol, with the entangling cloner being one of them
[64,65].

χ
εPE,i
i (b:E ), which should be estimated based on a small num-

ber of signals ks (where ks = pik), might be overestimated
(because when the block size is reduced, the error bar on the
estimators of channel parameters increases, which results in
estimating higher information for Eve). Note that this type of
security analysis can also be used against individual attacks;
however, as discussed above, the resulting key rate is expected
to be pessimistic.

Note that, in practice, it would be more practical to esti-
mate the average signal-to-noise ratio (SNR) of the free-space
channel based on the whole revealed data and then choose
an error-correction code rate based on this average SNR for
the error correction of all the remaining data. This means the
mutual information should be calculated theoretically based
on the effective parameters of the channel, i.e., η f and ξ f .
Alternatively and also ideally, it could be possible to estimate
the SNR for each subchannel separately and then choose an
error-correction code rate based on the subchannel SNR for
the error correction of the subchannel data, which means
the mutual information should be calculated theoretically by
averaging over the mutual information obtained from each
subchannel as

∑
i piIi(a:b). However, estimation of the SNR

for each subchannel based on a small number of signals re-
vealed for each subchannel does not give a good estimation of
the SNR. Note that in our numerical simulations we calculate
the mutual information based on the effective parameters η f

and ξ f , which is a lower bound on
∑

i piIi(a:b).

C. Parameter estimation for free-space CV QKD systems

Alice and Bob are able to estimate the channel transmis-
sivity and check its stability during the transmission of data
[35,66]. This is experimentally feasible, as the typical rate
of free-space channel fluctuations is of the order of kilo-
hertz, while the modulation and detection rate is typically
of the order of several megahertz, i.e., at least thousands of
signal states can be transmitted during the stability time of
the free-space channel [18]. The proper subchannel estima-
tion requires a large number of states to be sent through the
channel during its stability. Then some of the states for each
subchannel occurrence are randomly chosen for the parameter
estimation.

For instance, let us consider the free-space channel fluc-
tuation rate of 1 kHz. Then we can assume that within each
millisecond the channel is relatively stable and can be mod-
eled with a fixed-transmissivity subchannel of transmissivity
η. Let us also consider the transmission and detection rate
of 100 MHz. Hence, Ns = 105 signal states can be trans-
mitted and detected at the receiver during the stability time
of the channel. A fraction of these signals (ks = cNs) can
be randomly chosen to be revealed for parameter estima-
tion, with the remaining data contributing to the secret key.
Finally, for instance, for 100 seconds of data transmission
we will have transmitted N = 1010 signal states (with 105

signal states being transmitted during each stability time of the
channel), with a fraction of which, k = cN , revealed over all
subchannels for the parameter estimation. Then a number of
N ′ = N − k = (1 − c)N signals will contribute to the shared
secret key. Note that the security is not analyzed for each
subchannel occurrence separately as it results in pessimistic
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key rates (see Sec. IV B); instead the security is shown for the
ensemble-average state, being obtained from the set of data of
size N − k upon all subchannels.

For the security analysis over all data it is sufficient to
estimate the effective parameters η f and ξ f of an optimal
Gaussian attack. Note that for both subchannel postselection
and subchannel clusterization techniques, which we discuss in
the following sections, Alice and Bob are required to have a
prior estimation of the transmissivity of each subchannel. We
can utilize the parameter estimation method introduced for a
fixed-transmissivity quantum channel in [67,68] to estimate
the transmissivity of each subchannel using the data of size
ks revealed for the subchannel. For a no-switching CV QKD
protocol with Bob’s heterodyne detector efficiency ηB and
electronic noise νB, for a subchannel with transmissivity η,
we can consider a normal linear model for Alice’s and Bob’s
correlated variables xA and xB, respectively,

xB = tsxA + xn,s, (11)

where ts =
√

ηBη

2 and xn,s follows a centered normal distri-

bution whose variance is determined from the observed data
as σ 2

s = 1 + νB + ηB

2 ηξη (note that Alice’s variable xA has
the variance VA). Using the revealed data of size ks for the
subchannel, the maximum-likelihood estimators for the sub-
channel parameters ts and σ 2

s are given by [67,68]

t̂s =
∑ks

i=1 AiBi∑ks
i=1 A2

i

,

σ̂ 2
s = 1

ks

ks∑
i=1

(Bi − t̂sAi )
2
, (12)

where Ai and Bi are the realizations of xA and xB for the sub-
channel, respectively. The confidence interval for ts is given
by ts ∈ [t̂s − �(ts), t̂s + �(ts)], where

�(ts) = zεPE/2

√
σ̂ 2

s

ksVA
. (13)

The estimator of the square root of subchannel transmissivity
and its error bar are then given by

√̂
η =

√
2t̂s√
η̂B

,

�(
√

η) = √̂
η

√∣∣∣∣�(ts)

t̂s

∣∣∣∣2

+
∣∣∣∣�(ηB)

2η̂B

∣∣∣∣2

, (14)

where η̂B is the estimator of Bob’s detector efficiency with
uncertainty �(ηB). Having the estimation of

√̂
η for each

subchannel, the estimation of the effective transmissivity is

given by averaging
√̂

η over all subchannels as η̂ f = 〈√̂η〉2
.

The estimator of the subchannel transmissivity and its error
bar are also given by

η̂ = 2t̂2
s

η̂B
,

�(η) = η̂

√∣∣∣∣2�(ts)

t̂s

∣∣∣∣2

+
∣∣∣∣�(ηB)

η̂B

∣∣∣∣2

, (15)

Having the estimations of
√̂

η and η̂ for each subchannel,
the estimation of the variance of transmissivity is given by
̂Var(

√
η) = 〈η̂〉 − 〈√̂η〉2

.
The next step is to estimate the effective excess noise ξ f ,

which according to Eq. (8) requires the estimation of both
Var(

√
η) and 〈ηξη〉. Here we generalize the above-discussed

parameter estimation method to the data of size k revealed
over all subchannels to estimate 〈ηξη〉. Considering Eq. (11)
over all subchannels, we can still have a normal linear model
for Alice’s and Bob’s correlated variables as

xB = txA + xn, (16)

where t =
√

ηB

2

√〈η〉 and xn follows a centered normal distri-

bution whose variance is determined from the observed data
as σ 2 = 1 + νB + ηB

2 〈ηξη〉. Using the total data revealed over
all subchannels of size k, we can calculate the maximum-
likelihood estimators for t and σ 2, which are given by

t̂ =
∑k

i=1 AiBi∑k
i=1 A2

i

,

σ̂ 2 = 1

k

k∑
i=1

(Bi − t̂Ai )
2
. (17)

The confidence intervals for these parameters are given by t ∈
[t̂ − �(t ), t̂ + �(t )] and σ 2 ∈ [σ̂ 2 − �(σ 2), σ̂ 2 + �(σ 2)],
where

�(t ) = zεPE/2

√
σ̂ 2

kVA
,

�(σ 2) = zεPE/2
σ̂ 2

√
2√

k
. (18)

Note that when no signal is exchanged, Bob’s variable with
realization B0i follows a centered normal distribution whose
variance is determined from the observed data as σ 2

0 =
1 + νB, which is Bob’s shot-noise variance. The maximum-
likelihood estimator for σ 2

0 is given by σ̂ 2
0 = 1

N

∑N
i=1 B2

0i. The
confidence interval for this parameter is given by σ 2

0 ∈ [σ̂ 2
0 −

�(σ 2
0 ), σ̂ 2

0 + �(σ 2
0 )], where �(σ 2

0 ) = zεPE/2
σ̂ 2

0

√
2√

N
.4 Now we

can estimate 〈η〉 and 〈ηξη〉, which are given by

〈̂η〉 = 2t̂2

η̂B
,

�(〈η〉) = 〈̂η〉
√∣∣∣∣2�(t )

t̂

∣∣∣∣2

+
∣∣∣∣�(ηB)

η̂B

∣∣∣∣2

,

̂〈ηξη〉 = 2
σ̂ 2 − σ̂ 2

0

η̂B
,

�(〈ηξη〉) = ̂〈ηξη〉
√∣∣∣∣ �(σ 2)

σ̂ 2 − σ̂ 2
0

∣∣∣∣2

+
∣∣∣∣ �(σ 2

0 )

σ̂ 2 − σ̂ 2
0

∣∣∣∣2

+
∣∣∣∣�(ηB)

η̂B

∣∣∣∣2

.

(19)

4Note that zεPE/2 is such that 1 − erf (
zεPE/2√

2
)/2 = εPE/2, where erf is

the error function.
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Note that in order to maximize Eve’s information from col-
lective and individual attacks, the worst-case estimators of
the effective parameters η f and ξ f should be used to evaluate
Eve’s information. Now, having Eqs. (14), (15), and (19), the
worst-case estimators of the effective parameters η f and ξ f

are given by

η̂ f = 〈min[
√

η]〉2 = 〈√̂η − �(
√

η)〉2,

η̂ f ξ f = max[Var(
√

η)]VA + max[〈ηξη〉]
= [〈η̂ + �(η)〉 − 〈√̂η − �(

√
η)〉2]VA

+ ̂〈ηξη〉 + �(〈ηξη〉). (20)

V. CLASSICAL POSTPROCESSING STRATEGIES TO
IMPROVE FREE-SPACE CV QKD SYSTEMS

If we compare a fluctuating channel with an equivalent
fixed-transmissivity channel with transmissivity η f = 〈√η〉2

and excess noise 〈ηξη〉, the fluctuating channel has an extra
non-Gaussian noise of Var(

√
η)(V − 1) [see Eq. (8)], which

reduces the key rate. Although fluctuating transmissivity of a
free-space channel reduces the key rate, it also provides the
possibility to improve or even recover it through the posts-
election of subchannels with high transmissivity [18] or the
clusterization of subchannels [35,36].

In the postselection technique as introduced in [18], the
data collected for each subchannel is kept, conditioned on
the estimated subchannel transmissivity being larger than a
postselection threshold ηth, and discarded otherwise. In this
technique, the security should be analyzed over the postse-
lected data. With such a postselection, the postselected data
become more Gaussian and more strongly correlated, since
the postselection reduces the fluctuation variance of the chan-
nel, while increases the average transmissivity of the channel.

In the clusterization technique as introduced in [35], for
the classical postprocessing, Alice and Bob partition their data
into n different clusters and perform classical postprocessing
(including reconciliation and privacy amplification) over each
cluster separately. The clusterization we consider here is such
that the jth cluster ( j = 1, 2, . . . , n) corresponds to the jth
channel transmissivity bin ( j − 1)δ < η < jδ, with the bin
size δ = ηmax

n . Note that the clusterization we consider here is
the uniform binning of the probability distribution; however,
in principle, the width of each cluster can be optimized de-
pending on the probability distribution. With such a technique,
the data within each cluster become more Gaussian, since
the fluctuation variance of the channel is reduced within each
cluster.

The postselection has been shown to improve the free-
space CV QKD performance in terms of the key rate in the
asymptotic regime against Gaussian collective attacks [18,32]
and the clusterization has been shown to improve the key
rate in the asymptotic and finite-size regime against Gaussian
collective attacks [35,36], but none of them has been analyzed
in a composable finite-size security regime. However, both
postselection and clusterization reduce the size of the data set
used for the security analysis and the size of the data set used
for the parameter estimation. Hence, the composable finite-
size effects become more significant in these scenarios. In

the following sections we investigate the effectiveness of the
postselection and clusterization in the composable finite-size
regime against both individual and collective attacks (where
the security against general attacks can be obtained by the
security against collective attacks with a larger security pa-
rameter).

A. Composable finite-size security analysis for the postselection

In the finite-size regime, the size of the postselected data
set is Nps = PsN , where Ps is the postselection success proba-
bility, i.e., the total probability for the channel transmissivity
to fall within the postselected region η � ηth, and is given
by Ps = ∫ ηmax

ηth
p(η)dη. Note that since in the postselection

protocol Eve’s information should be estimated based on the
postselected data, Alice and Bob can only use the revealed
data over the postselected subchannels to estimate the covari-
ance matrix of the postselected ensemble-average state, which
means a data set of size kps = Psk is used for the parameter
estimation. Recall that k is the amount of revealed data over
all subchannels. Hence, the data set of size N ′

ps = Nps − kps

contributes to the postselected key. Explicitly, the finite-size
key length of the postselection protocol which is ε-secure
against Gaussian collective attacks in the reverse reconcilia-
tion scenario is given by

�col
ps � N ′

ps[βIps(a:b) − χεPE
ps (b:E )]

−
√

N ′
ps�AEP − 2 log2

(
1

2ε̄

)
. (21)

Eve’s information from the Gaussian collective attack in the
postselection protocol is calculated based on the covariance
matrix of the postselected ensemble-average state ρ

ps
AB1

, which
is given by

Mps
AB1

=
⎡⎣V I

√
η

ps
f

√
V 2−1Z√

η
ps
f

√
V 2 − 1Z

[
η

ps
f (V − 1)+η

ps
f ξ

ps
f +1

]
I

⎤⎦,

η
ps
f =〈√η〉2

ps,

η
ps
f ξ

ps
f =Varps(

√
η)(V − 1) + 〈ηξη〉ps,

Varps(
√

η)=〈η〉ps − 〈√η〉2
ps, (22)

where 〈·〉ps denotes the mean value over the postselected sub-
channels, i.e.,

〈η〉ps = 1

Ps

∫ ηmax

ηth

ηp(η)dη,

〈√η〉ps = 1

Ps

∫ ηmax

ηth

√
ηp(η)dη,

〈ηξη〉ps = 1

Ps

∫ ηmax

ηth

ηξη p(η)dη. (23)

Similarly, the finite-size key length of the postselection pro-
tocol which is ε-secure against Gaussian individual attacks in
the reverse reconciliation scenario is given by

�ind
ps � N ′

ps[βIps(a:b) − IεPE
ps (b:E )]

−
√

N ′
ps�AEP − 2 log2

(
1

2ε̄

)
, (24)
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FIG. 1. Postselected key rate (in bits per mode) in the asymptotic (dashed lines) and composable finite-size (solid and dotted lines) regime
as a function of the postselection threshold ηth, secure against individual (blue top lines), collective (red middle lines), and general (black
dotted bottom lines) attacks. Note that in the asymptotic regime collective attacks are as powerful as general attacks. Note also that for the
free-space channels in the two right plots the protocol is not secure against general attacks in the composable finite-size regime. The numerical
values for the finite-size regime are the security parameter ε = 10−9 (ε̃ = 10−9 for general attacks) and the discretization parameter d = 5. The
other parameters are chosen from the most recent CV QKD experiment [17] as follows. Bob’s detector has efficiency ηB = 0.6 and electronic
noise νB = 0.25. The reconciliation efficiency is considered to be β = 0.98. The expected excess noise of each subchannel is assumed to
be fixed as ξ = 0.01. (Note that, although in our numerical simulations we have assumed a fixed excess noise for each subchannel, our
parameter estimation presented in Sec. IV C also works for the case of fluctuating excess noise.) The block size is chosen to be N = 1010,
half of which (i.e., k = 0.5N) is used in total for parameter estimation with εPE = 10−10 (εPE = 10−50 for general attacks). Note that we also
use a subset of data of size m = 0.1N for the energy test required for security analysis against general attacks. Since the non-Gaussian noise
[i.e., the term Var(

√
η)(V − 1) in Eq. (8)] depends on the modulation variance, the modulation variance is optimized for each postselection

threshold to maximize the key rate against a given attack. We consider a probability distribution for the free-space channel given by the elliptic-
beam model (see Appendix C for more details on the model). From left to right we have the average 〈η〉 = 0.32, 0.19, 0.12, 0.08, 〈√η〉 =
0.56, 0.43, 0.34, 0.27, the variance Var(

√
η) = 0.005, 0.004, 0.003, 0.002, and the maximum transmissivity ηmax = 0.46, 0.30, 0.20, 0.13 [see

Fig. 3 in Appendix C for the corresponding probability distributions p(η)].

where Eve’s information from the Gaussian individual attack
in the postselection protocol has to also be calculated based
on the effective parameters η

ps
f and ξ

ps
f . Note that Eve’s in-

formation χεPE
ps (b:E ) and IεPE

ps (b:E ) should be calculated based
on the worst-case estimators of the effective parameters η

ps
f

and ξ
ps
f . These worst-case estimators can be calculated using

Eq. (20), where the average has to be taken over the postse-
lected subchannels and the estimations in Eqs. (17) and (18)
have to be calculated based on the revealed data over the post-
selected subchannels of size kps. Note also that the classical
mutual information between Alice and Bob obtained from
the postselection Ips(a:b) is calculated based on the effective
parameters η

ps
f and ξ

ps
f , and �AEP is calculated using Eq. (2)

with N ′ being replaced by N ′
ps. Finally, the finite-size key

rate of the postselection protocol is given by �col
ps /N against

collective attacks and by �ind
ps /N against individual attacks. See

Appendix A for the detailed calculation of Eve’s information
and Alice and Bob’s mutual information.

Note that the postselection of high-transmissivity subchan-
nels has two different effects on the finite-size key rate. On the
positive side the postselection makes the ensemble-average
state more Gaussian and more strongly correlated, while on
the negative side the postselection reduces the key block size
and also makes the error bars larger in the parameter estima-
tion.

As discussed earlier in Sec. IV C, Alice and Bob can es-
timate the transmissivity of each subchannel by revealing a
fraction of the data allocated to each subchannel. In the post-
selection protocol, based on such an estimation of subchannel
transmissivity, they decide to keep or discard the subchannel
data. Note that the subchannel transmissivity can be esti-
mated using different schemes, e.g., by transmitting auxiliary
coherent (classical) light probe signals that are intertwined
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with the quantum information [42,43] or by monitoring the
local oscillator at the receiver, where the signal and the local
oscillator have been sent in two orthogonally polarized modes
through the free-space channel [44]. However, in all these
scenarios Eve can manipulate the classical probe signal or the
local oscillator in such a way as to gain an advantage. For
instance, Eve can make Alice and Bob think the transmis-
sivity is good and within the postselection region, when it is
actually bad and not in the postselection region. In fact, Eve
can make Alice and Bob postselect a particular subchannel
which is not actually within their postselection region. Such
a likely manipulation by Eve can result in underestimating
Eve’s information and overestimating the secret key rate.

Figure 1 shows the postselected key rate in both the asymp-
totic and composable finite-size regimes as a function of the
postselection threshold ηth, where the security is analyzed
against individual, collective, and general attacks. Note that
the black dotted lines in Fig. 1 show the finite-size key rate se-
cure against general attacks. In fact, for the black dotted lines
we have analyzed the security against collective attacks with
the security parameter ε = 10−49 and block size N = 1010,
which according to [39] leads to the security of the proto-
col against general attacks with ε̃ = 10−9. In this case, for
the parameter estimation we use εPE = 10−50, which makes
zεPE/2 → ∞. Because of this divergence, for general attacks
we use the parameter estimation discussed in Appendix B.
Note that for the free-space channels with 〈η〉 = 0.12, 0.08
(the two right plots of Fig. 1) the protocol is not secure against
general attacks in the composable finite-size regime even with
a strong postselection. As can be seen for both asymptotic and
finite-size regimes, the key rate resulting from all types of at-
tacks first improves up to an optimized value, as the threshold
value increases, and then the key rate decreases. As the thresh-
old value increases, the variance of the channel fluctuations
Var(

√
η) decreases, while the effective channel transmission

coefficient 〈√η〉 increases. As a result, the postselected state
becomes more Gaussian (i.e., with less non-Gaussian noise)
and more strongly correlated, which increases the mutual
information between Alice and Bob. However, this increase
in the mutual information happens at the cost of lower suc-
cess probability Ps and larger error bars for the estimated
parameters. Hence, there is an optimal threshold value which
maximizes the postselected key rate. As can be seen, from left
to right, the postselection becomes more effective. In fact, this
type of postselection is more useful for recovering the key rate
in cases where it was strongly diminished by the free-space
channel. Figure 1 also shows the significant improvement of
the finite-size key rate from collective attacks due to the post-
selection compared to the asymptotic regime. While without
the postselection positive finite key rates cannot be generated
against collective attacks (general attacks) for 〈η〉 = 0.08 (for
〈η〉 = 0.19), by performing the postselection beyond ηth =
0.04 (ηth = 0.11), Alice and Bob are able to move from an
insecure regime to a secure regime and generate nontrivial
positive finite key rates.

B. Composable finite-size security analysis for the clusterization

For the clusterization technique, in order to com-
pute the key rate with security parameter ε (where ε =

2εsm + ε̄ + εPE + εcor), the conditional smooth min-entropy
H εsm

min(bN ′ |E ) can be written as the sum of the conditional
smooth min-entropy of n different clusters of data, i.e.,
H εsm

min(bN ′ |E ) = ∑n
j=1 H εsm, j

min (bN ′
j |E ), where N ′

j = PjN ′, with

Pj = ∫ jηmax
n

( j−1)ηmax
n

p(η)dη the probability for the channel transmis-

sivity to fall within the jth cluster, and εsm, j = Pjεsm. Note
that for each cluster Eve’s optimal attack can be considered
as an independent and identically distributed Gaussian attack
with the effective parameters η

j
f and ξ

j
f given by

η
j
f = 〈√η〉2

j ,

η
j
f ξ

j
f = Var j (

√
η)(V − 1) + 〈ηξη〉 j,

Var j (
√

η) = 〈η〉 j − 〈√η〉2
j , (25)

where 〈·〉 j denotes the mean value over all subchannels within
the jth cluster, i.e.,

〈η〉 j = 1

Pj

∫ jηmax
n

( j−1)ηmax
n

ηp(η)dη,

〈√η〉 j = 1

Pj

∫ jηmax
n

( j−1)ηmax
n

√
ηp(η)dη,

〈ηξη〉 j = 1

Pj

∫ jηmax
n

( j−1)ηmax
n

ηξη p(η)dη. (26)

Since the attack can be considered independent and
identically distributed over each cluster, we can lower bound
H εsm, j

min (bN ′
j |E ) with the conditional von Neumann entropy and

compute the key length with security parameter ε j = Pjε for
the jth cluster as �col

j = PjN ′[βI j (a:b) − χ
εPE, j
j (b:E )] −√

PjN ′�AEP − 2 log2( 1
2ε̄ j

) against collective attacks

and �ind
j = PjN ′[βI j (a:b) − IεPE, j

j (b:E )] − √
PjN ′�AEP −

2 log2( 1
2ε̄ j

) against individual attacks, where I j (a:b) is the
classical mutual information between Alice and Bob for the
jth cluster calculated based on the effective parameters η

j
f

and ξ
j
f ; χ

εPE, j
j (b:E ) is Eve’s information from the collective

attack over the jth cluster, which is calculated based on the
covariance matrix M j

AB1
,

M j
AB1

=
⎡⎣V I

√
η

j
f

√
V 2 − 1Z√

η
j
f

√
V 2 − 1Z

[
η

j
f (V − 1) + η

j
f ξ

j
f + 1

]
I

⎤⎦;

(27)
and IεPE, j

j (b:E ) is Eve’s information from individual attack
over the jth cluster, which is calculated based on the effective
parameters η

j
f and ξ

j
f . Note that Eve’s information χ

εPE, j
j (b:E )

and IεPE, j
j (b:E ) is now estimated based on the worst-case esti-

mators of the effective parameters η
j
f and ξ

j
f . These worst-case

estimators can be calculated using Eq. (20), where the average
has to be taken over the subchannels within cluster j and
the estimations in Eqs. (17) and (18) have to be calculated
based on the revealed data over cluster j of size Pjk, with
the maximum failure probability εPE, j = PjεPE. Note also that
�AEP is calculated using Eq. (2) with N ′ being replaced by
PjN ′, and �AEP is now calculated based on the parameters ε j ,
εsm, j , and ε̄ j = Pj ε̄. The total key rate with security parameter
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FIG. 2. Key rate (in bits per mode) in the asymptotic regime (circular points on dotted lines) secure against individual (blue top lines)
and collective (red bottom lines) attacks and composable finite-size regime (circular points on solid lines) secure against individual (blue top
lines) and collective (red bottom lines) attacks, as a function of the number of clusters n. The numerical values are the same as in Fig. 1. From
left to right we have the average 〈η〉 = 0.12, 0.08, 〈√η〉 = 0.34, 0.27, the variance Var(

√
η) = 0.003, 0.002, and the maximum transmissivity

ηmax = 0.20, 0.13.

ε is then given by 1
N

∑n
j=1 �col

j against collective attacks and

by 1
N

∑n
j=1 �ind

j against individual attacks.
Figure 2 shows the key rate in both the asymptotic and

composable finite-size regimes secure against collective and
individual attacks as a function of the number of clusters
n. Note that n = 1 indicates no clusterization, where secu-
rity is analyzed over all data. As can be seen, clusterization
always increases the asymptotic key rate against collective
and individual attacks. However, by considering composable
finite-size effects in the security analysis, there is an optimal
number of clusters which maximizes the key rate. In fact,
as the number of clusters increases, the variance of channel
fluctuation within each cluster decreases. As a result, the
non-Gaussian noise becomes smaller for each cluster, which
makes the state obtained over each cluster more Gaussian.
However, as the number of clusters increases, the number of
signals for each cluster decreases. As a result, the composable
finite-size effects (i.e., the effect of the � term and the effect
of parameter estimation, which is now performed based on
Pjk signals with εPE, j) become more significant, which re-
duces the key rate. Figure 2 shows that while for 〈η〉 = 0.08,
without clusterization (i.e., n = 1), the protocol is not secure
against collective attacks in the composable finite-size regime,
if Alice and Bob perform clusterization as described above,
the protocol becomes secure against collective attacks and the
finite key rate is maximized for n = 2. Note that when the
number of clusters n becomes sufficiently large, the security
analysis is performed as if the security is analyzed over each
subchannel separately (as described in Sec. IV B).

Note that the postselection (or clusterization) is performed
based on the estimated subchannel transmissivity η̂, given
in Eq. (15), not the true value of transmissivity. Crucially,

however, once the data are postselected (or partitioned), the
key rate is calculated based upon a worst-case value of
the subchannel transmissivity, as presented in the first of
Eqs. (20), which takes into account the possibility that the true
transmissivity is below the estimated transmissivity except
with some probability εPE.

VI. CONCLUSION

We have analyzed the security of the no-switching CV
QKD protocol over free-space channels with fluctuating trans-
missivity in the composable finite-size regime against both
collective and individual attacks. We introduced a parameter
estimation approach, where Alice and Bob can efficiently
estimate the effective excess noise of an optimal Gaussian
attack using the data revealed over all subchannels used for the
security analysis. We analyzed two classical postprocessing
strategies, the postselection of high-transmissivity subchan-
nels and partitioning subchannels into different clusters, in the
composable finite-size regime, showing that these strategies
can improve the finite-size key rate against both individual
and collective attacks. The most remarkable improvement is
for the finite-size collective attacks, which are the most prac-
tically relevant, where we see these classical postprocessing
allow significant key rates in situations that would otherwise
be completely insecure.
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APPENDIX A: KEY RATE CALCULATION

1. Eve’s information from a collective attack

At the output of the channel Bob applies heterodyne detec-
tion to mode B1. Bob’s heterodyne detector with efficiency ηB

and electronic noise variance of νB can be modeled by placing
a beam splitter of transmissivity ηB before an ideal heterodyne
detector [69,70]. The heterodyne detector’s electronic noise
can be modeled by a two-mode squeezed vacuum state ρF0G

of quadrature variance υ, where υ = 1 + 2νB/(1 − ηB). One
input port of the beam splitter is the received mode B1, and
the second input port is fed by one half of the entangled state
ρF0G, mode F0, while the output ports are mode B2 (which is
measured by the ideal heterodyne detector) and mode F .

In a collective attack, Eve’s information χ (b:E ) is given
by χ (b:E ) = S (ρE ) − S (ρE |B), where S (ρ) is the von Neu-
mann entropy of the state ρ. Here we assume Bob’s detection
noise is not accessible to Eve. In this case S (ρE ) = S (ρAB1 ),
where the entropy S (ρAB1 ) can be calculated through the
symplectic eigenvalues ν1,2 of covariance matrix5 MAB1 in
Eq. (8). The second entropy we require in order to de-
termine χ (b:E ) can be written as S (ρE |B) = S (ρE |B2 ) =
S (ρAFG|B2 ). The covariance matrix of the conditional state
ρAFG|B2 is given by MAFG|B2 = MAFG − σAFG,B2 Hhetσ

T
AFG,B2

,
where Hhet = (MB2 + I)−1, with MB2 = VB2I, where

VB2 = ηB[η f (V − 1) + η f ξ f + 1] + (1 − ηB)υ. (A1)

Note that the matrices MAFG, σAFG,B2 , and MB2 can be derived
from the decomposition of the covariance matrix

MAFGB2 =
[

MAFG σAFG,B2

σT
AFG,B2

MB2

]
. (A2)

Note that the covariance matrix MAFGB2 is given by MAFGB2 =
(IA⊕Sbs⊕IG)T [MAB1⊕MF0G](IA⊕Sbs⊕IG), where Sbs is the
matrix for the beam-splitter transformation (applied on modes
B1 and F0), given by

Sbs =
[√

ηBI
√

1 − ηBI

−√
1 − ηBI

√
ηBI

]
, (A3)

and the covariance matrix of the entangled state ρF0G is given
by

MF0G =
[
υI

√
υ2 − 1Z√

υ2 − 1Z υI

]
. (A4)

Note that in the finite-size regime, χεPE (b:E ) should be calcu-
lated based on the worst-case estimators of η f and ξ f . Note

5The von Neumann entropy of an n-mode Gaussian state ρ with
the covariance matrix M is given by S(ρ ) = ∑n

i=1 G( νi−1
2 ), where

νi are the symplectic eigenvalues of the covariance matrix M and
G(x) = (x + 1)log2(x + 1) − x log2(x).

also that for the postselection protocol, the parameters η f and
ξ f have to be replaced by the postselection parameters η

ps
f and

ξ
ps
f from Eq. (22), and for the clusterization, the parameters η f

and ξ f have to be replaced by the cluster parameters η
j
f and ξ

j
f

from Eq. (25).

2. Eve’s information from an individual attack

Considering a free-space channel with effective param-
eters η f and ξ f , defined in Eq. (8), in the individual
attack, Eve’s information I (b:E ) is given by I (b:E ) =
log2

VBhet
2

VB2
het |E

[64,65], where VBhet
2

is the variance of heterodyne-

detected mode B2 and is given by VBhet
2

= (VB2 + 1)/2, where
VB2 is given in Eq. (A1). Note that VBhet

2 |E in the case
of Bob’s detection noise not being accessible to Eve is
given by VB2

het |E = ηB[V xE +1
V +xE

+ χhet]/2, where xE = η f (2 −
ξ f )2/(

√
2 − 2η f + η f ξ f + √

ξ f )2 + 1 and χhet = [1 + (1 −
ηB) + 2νB]/ηB. Note that in the finite-size regime, IεPE (b:E )
should be calculated based on the worst-case estimators of η f

and ξ f . Note also that the parameters η f and ξ f have to be
replaced by the parameters η

ps
f and ξ

ps
f from Eq. (22) for the

postselection protocol and by the parameters η
j
f and ξ

j
f from

Eq. (25) for cluster j.

3. Mutual information between Alice and Bob

The classical mutual information between Alice and Bob
is given by I (a:b) = log2

VBhet
2

VB2
het |Ahet

. The conditional variance

VB2
het |Ahet is the variance of heterodyne-detected mode B2 con-

ditioned on Alice’s heterodyne detection of mode A, which
is given by VB2

het |Ahet = ηBη f (1 + χtot )/2, where χtot = χline +
χhet

η f
, with χline = ξ f − 1 + 1

η f
. Note that for the postselected

protocol, the parameters η f and ξ f have to be replaced by
the postselection parameters η

ps
f and ξ

ps
f , and for the cluster-

ization, the parameters η f and ξ f have to be replaced by the
cluster parameters η

j
f and ξ

j
f .

APPENDIX B: PARAMETER ESTIMATION FOR THE
SECURITY ANALYSIS AGAINST GENERAL ATTACKS

The distributions of independent estimators t̂s and σ̂ 2
s in

Eq. (12) are

t̂s ∼ N
(

ts,
σ 2

s∑ks
i=1 A2

i

)
,

ksσ̂
2
s

σ 2
s

∼ χ2(ks − 1). (B1)

Now let us consider Ts = ηB

2 η. Having the variance of xA as
VA, the estimator of Ts is given by

T̂s = (ĈAB)2

V 2
A

, (B2)

where we use the maximum-likelihood estimator of ĈAB =
1
ks

∑ks
i=1 AiBi. The variance of this estimator is given by

Var(ĈAB) = TsV 2
A

ks
(2 + σ 2

s
TsVA

) (proof in Appendix A of [71]). The

next step is to calculate the variance of the estimator T̂s.
For this reason we write (ĈAB)2 = Vcov

(ĈAB )2

Vcov
, where Vcov =

Var(ĈAB). Since (ĈAB )2

Vcov
has a noncentral χ2 distribution of
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(ĈAB )2

Vcov
∼ χ2(1,

C2
AB

Vcov
), the mean value and the variance of the

estimator T̂s is given by [71]

E(T̂s) = C2
AB

V 2
A

+ Vcov

V 2
A

= Ts + O(1/ks),

Var(T̂s) = 2V 2
cov

V 4
A

(
1 + 2

C2
AB

Vcov

)
= 4T 2

s

ks

(
2 + σ 2

s

TsVA

)
+ O

(
1/k2

s

)
. (B3)

According to Lemma 8 in the Appendix of [72], we have a
tail bound for a noncentral χ2 random variable X ∼ χ2(d, ν)
with d degrees of freedom and noncentrality parameter ν as,
for all x > 0,

Prob[X � (d + ν) − 2
√

(d + 2ν)x] � e−x. (B4)

Based on Eq. (B4), for the noncentral χ2 variable (ĈAB )2

Vcov
∼

χ2(1,
C2

AB
Vcov

) we have

Prob

[
(ĈAB)2

Vcov
�

(
1 + C2

AB

Vcov

)
− 2

√(
1 + 2

C2
AB

Vcov

)
x

]
� e−x.

(B5)
Using Eq. (B2), we can rewrite Eq. (B5) as

Prob

[
T̂s �

(
Vcov

V 2
A

+ C2
AB

V 2
A

)
−2

Vcov

V 2
A

√(
1 + 2

C2
AB

Vcov

)
x

]
� e−x.

(B6)
Now using Eq. (B3) and assuming sufficiently large ks, we can
rewrite Eq. (B6) as

Prob[T̂s � Ts −
√

Var(T̂s)
√

2x] � e−x. (B7)

Setting e−x = εPE, we have

Prob

[
Ts � T̂s +

√
Var(T̂s)

√
2 ln

(
1

εPE

)]
� εPE. (B8)

Thus, the confidence interval for Ts is given by

�(Ts) =
√

2 ln

(
1

εPE

)√
4T 2

s

ks

(
2 + σ 2

s

TsVA

)
. (B9)

The estimator of the square root of subchannel transmissivity
and its error bar are then given by

√̂
η =

√
2
√

T̂s√
η̂B

,

�(
√

η) = √̂
η

√∣∣∣∣�(Ts)

2T̂s

∣∣∣∣2

+
∣∣∣∣�(ηB)

2η̂B

∣∣∣∣2

. (B10)

The estimation of the effective transmissivity is then given

by averaging
√̂

η over all subchannels as η̂ f = 〈√̂η〉2
. The

estimator of the subchannel transmissivity and its error bar
are also given by

η̂ = 2T̂s

η̂B
,

�(η) = η̂

√∣∣∣∣�(Ts)

T̂s

∣∣∣∣2

+
∣∣∣∣�(ηB)

η̂B

∣∣∣∣2

. (B11)

The estimation of the variance of transmissivity is then given

by ̂Var(
√

η) = 〈η̂〉 − 〈√̂η〉2
.

We now generalize the above-discussed parameter estima-
tion method to the data of size k revealed over all subchannels
to estimate 〈ηξη〉. The distributions of independent estimators
t̂ and σ̂ 2 in Eq. (16) are

t̂ ∼ N
(

t,
σ 2∑k
i=1 A2

i

)
,

kσ̂ 2

σ 2
∼ χ2(k − 1). (B12)

According to Lemma 6 in the Appendix of [72], we have a
tail bound for a central χ2 random variable Y ∼ χ2(d ) with d
degrees of freedom as, for all x � 0,

Prob[Y � d − 2
√

dx] � e−x. (B13)

Based on Eq. (B13), for the central χ2 variable kσ̂ 2

σ 2 ∼ χ2(k −
1) we have

Prob

[
kσ̂ 2

σ 2
� (k − 1) − 2

√
(k − 1)x

]
� e−x. (B14)

For sufficiently large k, we can rewrite Eq. (B14) as

Prob

[
σ̂ 2 � σ 2 −

√
2σ 2

√
k

√
2x

]
� e−x. (B15)

Having Var(σ̂ 2) = 2σ 4

k and setting e−x = εPE, we can rewrite
Eq. (B15) as

Prob

[
σ 2 � σ̂ 2 +

√
Var(σ̂ 2)

√
2 ln

(
1

εPE

)]
� εPE. (B16)

Thus, the confidence interval for σ 2 is given by

�(σ 2) =
√

2 ln

(
1

εPE

)√
2σ 2

√
k

. (B17)

Note that the above-mentioned method of calculating error
bars for the output noise has been used in [73]. When no signal
is exchanged, Bob’s variable with realization B0i follows a
centered normal distribution whose variance is determined
from the observed data as σ 2

0 = 1 + νB, which is Bob’s shot-
noise variance. The maximum-likelihood estimator for σ 2

0 is
given by σ̂ 2

0 = 1
N

∑N
i=1 B2

0i. For σ̂ 2
0 we have the distribution of

N σ̂ 2
0

σ 2
0

∼ χ2(N − 1). The confidence interval for this parameter

is given by �(σ 2
0 ) =

√
2 ln ( 1

εPE
)
√

2σ 2
0√

N
. Now we can estimate

〈ηξη〉, which is given by

̂〈ηξη〉 = 2
σ̂ 2 − σ̂ 2

0

η̂B
,

�(〈ηξη〉) = ̂〈ηξη〉
√∣∣∣∣ �(σ 2)

σ̂ 2 − σ̂ 2
0

∣∣∣∣2

+
∣∣∣∣ �(σ 2

0 )

σ̂ 2 − σ̂ 2
0

∣∣∣∣2

+
∣∣∣∣�(ηB)

η̂B

∣∣∣∣2

.

(B18)

In order to maximize Eve’s information from general attacks,
the worst-case estimators of the effective parameters η f and
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ξ f [through the use of Eq. (20)] should be utilized to evaluate
Eve’s information. Note that for security analysis against gen-
eral attacks with security parameter ε̃ = 10−9 for a block size
of N = 1010, we need to analyze security against collective
attacks with security parameters ε = 10−49 and εPE = 10−50.
For this very small εPE, we cannot use the parameter esti-
mation method in Sec. IV C because zεPE/2 diverges. Instead
we use the parameter estimation method discussed in this

Appendix where
√

2 ln ( 1
εPE

) = 15.1743.

APPENDIX C: ELLIPTIC-BEAM MODEL

We have considered a free-space channel where the prob-
ability distribution for the channel transmissivity is given by
the elliptic-beam model [28]. This model can be used for an
atmospheric channel including beam wandering, beam broad-
ening, and beam shape deformation [28]. However, for this
model, referred to as the elliptic-beam approximation, there is
not an explicit form for the probability distribution. Here we
briefly discuss how to apply the model of the elliptic-beam
approximation for calculation of the key rate. Further details
on the model can be found in [28]. Within this model, it
is assumed that turbulent disturbances along the propagation
path result in beam wandering and deformation of the Gaus-
sian beam profile into an elliptic form. The elliptic beam
at the aperture plane is characterized by the beam-centroid
position r0 = (x0, y0)T = (r0 cos ψ0, r0 sin ψ0)T and W1 and
W2 as semiaxes of the elliptic spot, where the semiaxis W1

has an angle ψ ∈ [0, π/2) relative to the x axis. Defining
φ = ψ − ψ0, the aperture transmissivity ηa is a function of
real parameters [x0, y0,�1,�2, φ] [29], which are randomly
changed by the atmosphere. Note that �1 and �2 are related
to the semiaxes, as W 2

j = W 2
0 exp(� j ) [28] for j = 1, 2 with

W0 the initial beam-spot radius. Note also that random fluc-
tuations of the beam-centroid position r0, i.e., the parameters
x0 and y0, cause the effect of beam wandering. For the pa-
rameters [x0, y0,�1,�2], we can assume a four-dimensional
Gaussian distribution, and for the parameter φ, by assuming
isotropic turbulence, we can assume a uniform distribution in
the interval [0, π/2] [29]. Under the assumption of isotropic
turbulence, there is no correlation between φ with other
linear parameters [28]. We also assume that 〈r0〉 = 0, i.e.,
beam wandering fluctuations are placed around the reference-
frame origin. Under this assumption, correlations between
x0, y0, and � j vanish [28]. Hence, we first generate n in-
dependent Gaussian random vectors vi = (x0i, y0i,�1i,�2i ),
i = 1, . . . , n, and n random uniformly distributed angles φi ∈
[0, π/2). The Gaussian random parameters (x0i, y0i,�1i,�2i )
can be characterized by the covariance matrix

M =

⎛⎜⎜⎝
〈
�x2

0

〉
0 0 0

0
〈
�y2

0

〉
0 0

0 0
〈
��2

1

〉 〈
��1��2

〉
0 0

〈
��1��2

〉 〈
��2

2

〉
⎞⎟⎟⎠ (C1)

and the mean value (0, 0, 〈�1〉, 〈�2〉). The elements of the
covariance matrix and the mean values for weak turbulence
are given by [28]

〈
�x2

0

〉 = 〈
�y2

0

〉 = 0.33W 2
0 σ 2

R�−7/6,

〈
��2

1

〉 = ln

[
1 + 1.2σ 2

R�5/6(
1 + 2.96σ 2

R�5/6
)2

]
,

〈��1��2〉 = ln

[
1 − 0.8σ 2

R�5/6

(1 + 2.96σ 2
R�5/6)2

]
,

〈�1〉 = 〈�2〉 = ln

⎡⎣ (
1 + 2.96σ 2

R�5/6
)2

�2
√(

1 + 2.96σ 2
R�5/6

)2 + 1.2σ 2
R�5/6

⎤⎦, (C2)

where σ 2
R is the Rytov parameter, � = kW 2

0
2L is the Fresnel parameter, k is the wave number, and L is the propagation distance.

After generating n random vectors vi = (x0i, y0i,�1i,�2i ) and n random angles φi ∈ [0, π/2), we can generate n random
transmissivity ηa,i = ηa(vi, φi ) as [28]

ηa(v, φ) = η0 exp

{
−

[
r0/a

R
(

2
Weff (φ)

)]λ[2/Weff (φ)]}
, (C3)

where r0 =
√

x2
0 + y2

0 is the distance between the beam and the aperture center and a is the radius of the circular receiver aperture.
The transmissivity for the centered beam, i.e., for r0 = 0, is given by [28]

η0 = 1 − I0

(
a2

[
1

W 2
1

− 1

W 2
2

])
exp

{
−a2

[
1

W 2
1

+ 1

W 2
2

]}
− 2

(
1 − exp

{
−a2

2

[
1

W1
− 1

W2

]2})

× exp

⎧⎪⎨⎪⎩−
⎡⎣ (W1+W2 )2

|W 2
1 −W 2

2 |
R

(
1

W1
− 1

W2

)
⎤⎦λ(1/W1−1/W2 )

⎫⎪⎬⎪⎭. (C4)
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FIG. 3. Probability distribution function p(η) obtained for the generated sampled data ηi, n = 104. For the sample generations the
parameters are chosen based on an experimentally implemented free-space experiment [18]. The elliptic-beam model [28] shows good
agreement with the experimental distribution of the transmissivity [28]. The following parameter values are used: the wavelength λ = 809 nm,
the initial beam-spot radius W0 = 20 mm, the deterministic attenuation 1.25 dB, and the radius of the receiver aperture a = 40 mm. The Rytov
parameter is given by σ 2

R = 1.23C2
n k7/6L11/6, where we choose C2

n = 1.5 × 10−14 m−2/3, and the propagation distance L = 2, 2.5, 3, 3.5 km
from left to right.

The additional parameters, that is, the effective squared spot radius W 2
eff (φ) and the scale R(ζ ) and shape λ(ζ ) functions, are

given by [28]

W 2
eff (φ) = 4a2

[
W

(
4a2

W1W2
exp

{
a2

W 2
1

(1 + 2cos2φ)

}
exp

{
a2

W 2
2

(1 + 2sin2φ)

})]−1

,

R(ζ ) =
(

ln

[
2

1 − exp{− 1
2 a2ζ 2}

1 − exp{−a2ζ 2}I0(a2ζ 2)

])−1/λ(ζ )

,

λ(ζ ) = 2a2ζ 2 exp{−a2ζ 2}I1(a2ζ 2)

1 − exp{−a2ζ 2}I0(a2ζ 2)

(
ln

[
2

1 − exp{− 1
2 a2ζ 2}

1 − exp{−a2ζ 2}I0(a2ζ 2)

])−1

, (C5)

where W (ζ ) is the Lambert W function and I j (ζ ) is the modified Bessel function of the jth order.
We also consider a deterministic (constant) transmissivity ηm ∈ [0, 1], which means the total transmissivity of the channel

would be ηi = ηmηa,i. Note that ηm can be considered as the extinction factor of the atmospheric channel describing the
absorption and scattering losses [29]. Based on the generated sampling data, one can estimate the mean value of any function of
the transmissivity f (η) as 〈 f (η)〉 = 1

n

∑n
i=1 f (ηi ). For instance, Eq. (7) can be modified as

〈η〉 = 1

n

n∑
i=1

ηi, 〈√η〉 = 1

n

n∑
i=1

√
ηi, 〈ηξη〉 = 1

n

n∑
i=1

ηiξηi . (C6)

In our numerical analysis we have first fitted a probability distribution to the generated sampled data ηi (shown in Fig. 3), which
gives us a numerical form for p(ηi ). Note that since no closed-form solution for p(η) could be used, the integrals required to be
computed for the security analysis [provided in Eqs. (23) and (26)] should be numerically evaluated.
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