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Experimental demonstration of the advantage of using coherent measurements
for phase estimation in the presence of depolarizing noise
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We report an experimental investigation of the role of measurement in quantum metrology when the states of
the probes are mixed. In particular, we investigate optimized local measurements and general global projective
measurements, involving entangling operations, of noisy Werner states of polarization entangled photons. We
demonstrate experimentally that global measurement presents an advantage in parameter estimation with respect
to the optimized local strategy. Moreover, the global strategy provides unambiguous information about the
parameter of interest even when the amount of noise is not well characterized. This shows that the coherence in
quantum operations, such as the Bell-state projection device used in our protocol, can be used to further boost
the quantum advantage in metrology and play a fundamental role in the design of future quantum measurement
devices.
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I. INTRODUCTION

Quantum metrology is essential to improve the estimation
of unknown physical parameters and, consequently, crucial
for the development of new technologies and fundamental
advances [1–4]. By using quantum resources, such as en-
tangled states and measurement involving entangling gates,
the precision of parameter estimation can surpass the limits
achieved via classical techniques [5,6].

A general protocol for the estimation of a parameter ϕ is
depicted in Fig. 1. A set of quantum systems—or “quantum
meters”—are prepared in a state W and submitted to a process
that alters W , imprinting the information about the param-
eter we want to estimate. The resulting state of the meters
W (ϕ) is measured, and the information about the parameter
is extracted. The precision in the estimation of ϕ depends
on the choice of the meter state W and on the measurement
strategy. Classical theory of parameter estimation predicts that
the mean square error �2ϕ is lower bounded by the classical
Cramér-Rao limit given by �2ϕ � 1/NF (ϕ) [7], where N
is the number of repetitions of the experiment and F (ϕ) is
the Fisher information (FI) [8]. The FI gives the amount of
information about the parameter ϕ that one can extract given
a physical scenario. The larger the FI, the more precision one
expects.

The FI is usually obtained from a parameter-dependent
probability distribution pϕ (x) that, in a quantum mechanical
scenario, relies on the input probe state and the measurement
strategy. In this framework, to maximize the FI, one must
optimize over all the measurement strategies [2,9], obtaining
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the quantum Fisher information (QFI) F and the ultimate
limit on the precision, given by the quantum Cramér-Rao
limit (δϕ)2 � 1/NF [10]. Thus, studying the role of the
measurement for the quantum-precision enhancement is es-
sential to obtain considerable advantages with respect to
classical strategies [2,9].

The authors of Ref. [9] studied several protocols that differ
in the amount of quantum resources present in the state W
and in the way that the measurements are performed. The pre-
cision limit of the protocols involving only separable states,
either be pure or mixed, scales as 1/

√
N independently of the

measurement scheme chosen. When the state W is entangled,
the limit scales as 1/N and doesn’t depend on the measure-
ment strategy when the states are pure.

However, pure states are impossible to produce with real-
world systems. Quantum metrology in realistic scenarios,
such as in the presence of loss, noise, dissipation, or general
interactions between the meter systems and the environment
has been widely studied [11–15]. Different strategies have
been designed to fight the detrimental effects of the envi-
ronment and to protect the fragile quantum enhancement.
For instance, some of us showed recently how the inherent
phase instabilities in single-photon interferometers, used for
the estimation of the tilt angle of an object, can be overcome
by utilizing two-photon interference [16]. The performance of
local and coherent measurement in noisy quantum metrology
scenarios has been investigated in Ref. [17]. Error correction
codes have been proposed to improve the precision and to
counter the effects of the noise [18–21]. In this context, intro-
ducing noiseless ancillary systems, entangled with the meters,
is shown to be beneficial in the estimation when compared
with single systems [22,23]. The measurements performed
in these scenarios are joint projections involving entangling
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FIG. 1. Different measurement strategies for parameter estima-
tion using probes in initial states W that may be entangled or not.
(a) Local adaptive measurement is performed. The state of the upper
system is measured depending on the result obtained for the lower
system, such that the FI is maximized. (b) Coherent measurements
involving entangling operations, such as a Bell-state measurement,
are performed. This scheme can usually saturate the QFI when the
state W is mixed.

gates. However, these kinds of projections are usually hard to
perform in multipartite scenarios and sometimes are not even
realizable. To circumvent such problems, several questions
may be asked. For example, is it possible to perform sim-
pler measurements and reach results close to the metrological
limits? What is the best precision that can be achieved by
implementing local measurements when the meters are in
a mixed state? How can we improve this using entangling
operations or measurements?

In this work, we answer these questions for the particular
example of meters in a Werner state. We study the precision in
the estimation in the presence of noise for separable measure-
ments and measurements that include entangling operations.
We follow the approach in Ref. [17], where mixed states are
considered and precision for local and global measurements
is investigated. We experimentally study the estimation of a
parameter creating pairs of entangled photons in a mixed state
using spontaneous parametric down conversion, and imple-
menting local projective measurements as well as a global
Bell-state projection using linear optics devices. We observe
improvement in precision for the global strategy when com-
pared to the local one. Moreover, we note that the global
strategy is capable of providing unambiguous information
about the parameter even when the amount of noise is not well
characterized.

The paper is organized as follows. In Sec. II we introduce
the quantum metrology framework, defining the FI and QFI.
In Sec. III we discuss the ultimate limits when local and
entangling measurement have been performed in the case that
the state of the probes is a Werner state. We also calculate
the FI when the state of the photons is projected onto a Bell
state and find the values of ϕ in which this FI saturates the
QFI. In Sec. IV we describe our experimental setup and show

the experimentally reconstructed Werner states. In Sec. V we
report and discuss the experimental results for global and local
measurements. We first measure the probabilities as a function
of the parameter ϕ and then calculate the FI for both cases,
global and local strategies.

II. QUANTUM AND CLASSICAL PARAMETER
ESTIMATION

The FI is one of the most important mathematical tools in
the framework of quantum metrology. It is defined as follows
[8]:

F =
∑

x

pϕ (x){∂ϕ ln[pϕ (x)]}2, (1)

where pϕ (x) is the parameter-dependent probability that gov-
erns the distribution of M values of x obtained from some set
of measurements. The FI measures the amount of information
that a certain observable can extract from a physical system
about a parameter ϕ.

In the quantum scenario, one collects information about the
parameter by performing quantum measurements, described
generally by a positive operator valued measurement (POVM)
{Mx}, with

∫
x Mx = I, on the state W (ϕ). The theoretical prob-

abilities are related to these measurement operators via

pϕ (x) = Tr(MxW (ϕ) ), (2)

and can be estimated experimentally from the frequency of the
different measurement outcomes. The QFI F , is obtained after
a hard optimization over all possible POVMs, finding the mea-
surement scheme that maximize the precision. This illustrates
how the role of the measurement is crucial to improve the
precision in parameter estimation. Moreover, there is always
a measurement set that maximizes Eq. (1), giving rise to F
[10]. In the special case when the parameter is imprinted in
the state via a unitary operation U , it can be expressed as

F = 2
∑

i j

(λi − λ j )2

λi + λ j
|〈ψi|H |ψ j〉|2, (3)

where {λi} and {|ψi〉} are the eigenvalues and eigenvectors of
the state W , respectively, H is the Hamiltonian generator of
the transformation U = exp(iHϕ) that imprints the informa-
tion of the parameter into the state as W (ϕ) = UWU †.

III. ENTANGLING MEASUREMENT VERSUS BEST
LOCAL MEASUREMENT

Let us now analyze the role of measurement for a particular
example where two probes (N = 2) are in Werner state given
by

W = (1 − η)
I

4
+ η|B00〉〈B00|, (4)

where |B00〉 is one of the four maximally entangled Bell states,
defined as

|Bk j〉 = 1/
√

2(|0, j〉 + (−1)k|1, 1 ⊕ j〉), (5)

with integers k, j taking values 0 or 1. The noise parameter
η varies between 0 and 1. This state W is obtained when a
pair of qubits, initialized in the state |B00〉, is submitted to
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a depolarizing channel. We note that any mixed state can be
transformed into a state of the form (4) using random bilateral
rotations [24]. For this state, it is well known that the best
(worst) parameter estimation is obtained for η = 1 (η = 0),
when quantum correlations are maximum (minimum). We
consider that the Hamiltonian in Eq. (3) is a sum of local
Hamiltonians given by H = ⊕iHi, where Hi = |1〉〈1|. Thus,
the phase ϕ is imprinted only when probes are in state |1〉,
leaving the probes in state |0〉 unchanged. The resulting state
after the interaction can be written as

W (ϕ) = (1 − η)
I

4

+ η

2
(|00〉 + ei2ϕ |11〉)(〈00| + e−i2ϕ〈11|). (6)

For the general case, which includes coherent measurements,
F can be calculated using Eq. (3), giving [17]

F co(W ) = 8η2

1 + η
, (7)

which corresponds to the ultimate precision in the parameter
estimation. The superscript co means coherent measurements
that could involve entangling operations.

We turn now to study the precision limits when projective
measurements onto the maximally entangled Bell basis are
performed. Using Eqs. (5) and (6), the associated probabilities
are

PB00 = 1 + η

4
+ η cos(2ϕ)

2
,

PB10 = 1 + η

4
− η cos(2ϕ)

2
, (8)

PB01 = PB11 = 1 − η

4
,

where PBk j is the probability when a projective measurement
onto |Bk j〉 have been performed. One can see that probabilities
of having photons in the state |B11〉 and |B01〉 are independent
of the parameter ϕ. Thus, these states do not contribute to
the estimation of the parameter ϕ. Using the probabilities in
Eq. (2) and the formula for the FI (1), we obtain

F Bell(W ) = 8η2(1 + η) sin2 (2ϕ)

(1 + η)2 − 4η2 cos (2ϕ)
, (9)

which saturates the quantum Fisher information F en when
the reference value of the parameter is ϕ = π/4. Given that
derivative of F Bell at ϕ = π/4 is zero, there is a small interval
of values of ϕ, close to π/4, where F Bell is very close to the
QFI in Eq. (7).

To compare the global strategy to the best local one, let
us consider a different tactic in which we have access only
to local measurements. The question is: “What is the best
measurement that can be performed such that a minimum
uncertainty ϕ is obtained?” This question was addressed in
Ref. [17]. The authors assumed that the measurements on
both probes can be performed adaptively, such that the sec-
ond measurement can be chosen depending on the result of
the first one, thus maximizing the precision of the parameter
estimation. By projecting one of the probes onto an arbitrary
qubit state 〈m| = m0〈0| + m1〈1|, the conditional state of the

other probe is

W (ϕ)
c = (1 − η)

I

2
+ η

2
(m0|0〉

+ ei2ϕm1|1〉)(m∗
0〈0| + e−i2ϕm∗

1〈1|). (10)

Notice that there is no information of the phase ϕ coming from
the first measurement. By calculating the quantum Fisher in-
formation using Eq. (3) of the single system that was not yet
measured, we obtain [17]

F adp(Wc) = 16|m0m1|2η2, (11)

where F adp is the quantum Fisher information calculated for
the remaining state of Eq. (11), which is maximized when
|m0| = |m1| = 1/

√
2. Note that this QFI corresponds to the

single system, being in general smaller than the QFI deduced
in (7). The maximum value of F adp is obtained by projec-
tions onto the equator of the Bloch sphere. For instance,
for projection onto the four separable states |±±〉, where
|±〉 = 1/

√
(|0〉 ± |1〉) are the diagonal states, the associated

probabilities can be written as

P++ = 1 + η cos(2ϕ)

4
= P−−,

P+− = 1 − η cos(2ϕ)

4
= P−+, (12)

where for example P++ is the probability of projecting the
state of the photons onto |++〉. The FI for measurements in
this basis is

F± = 4η2 sin2(2ϕ)

1 − η2 cos2(2ϕ)
. (13)

F± saturates the QFI (11) for the local adaptive strategy when
ϕ is near π/4. We note that in this scheme the measurements
are not adaptive in the sense that one measurements depend
upon the results of the other. Rather, it is simply necessary to
combine the measurement results (one-way classical commu-
nication) in order to determine the joint probabilities (12).

Let us point out an advantage to the Bell-state measure-
ment, in relation to the local adaptive strategy. For the local
measurements, we can see from the probabilities (12) as well
as the FI (13) that the available information about ϕ is limited
by our knowledge of η. That is, if η is unknown or varying in
time, it can be difficult or even impossible to obtain a reliable
estimate for ϕ. We can see that an experimentalist monitoring
only the probabilities (12) cannot reliably distinguish between
a change in η and a change in ϕ unless some a priori knowl-
edge of η is available. This has been widely discussed in
multiparameter estimation scenarios [25,26]. We note that a
similar situation can also occur for almost any interferometric
measurement [16,27]. For the Bell-state measurement, on the
other hand, we can see from probabilities (8) that two results
return information on η alone, while the other two depend on
both η and ϕ. Thus, from the single set of measurement results
one can first determine an estimate for η and then use this to
obtain a reliable estimate of ϕ. We will employ this advantage
in Sec. V.

In summary, following Ref. [17], we have found measure-
ment strategies that can saturate the QFI for both entangling
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FIG. 2. Experimental setup: Photon pairs emerge from the BBO
crystal in a state that can be entangled or not depending on the con-
figuration of HWPp. To obtain Werner states, QWPp and HWPs are
varied during the measurement time. The parameter to be estimated
is the phase ϕ between the horizontal and vertical polarizations,
which is altered by tilting the plates HWPϕ . We can toggle between
global and local projective measurements by inserting or removing
PBSc. Projection onto different local polarization states is realized
using PBSi and HWPi, with i equal to a or b. Photons are coupled
into single-mode fibers and detected by single-photon detectors.

measurements as well as optimized local (adaptive) mea-
surements. In the following sections, we implement these
strategies for photons using linear optical devices.

IV. EXPERIMENT

Both parameter estimation strategies described above
were investigated experimentally using entangled photons
produced from spontaneous parametric down conversion
(SPDC). The experimental setup is shown in Fig. 2. A
continuous-wave laser, centered at 405 nm, pumps two cross-
axis beta-barium-borate (BBO) crystals, producing pairs of
photons at 810 nm from type I phasematched SPDC [28]. To
obtain entangled states in the polarization degree of freedom,
two birefringent quartz crystals were located in the path of
the laser to compensate longitudinal polarization walk-off in
the crystals [29]. HWPp is set to produce a state |
θ 〉 =

1√
2
[|00〉 + eiθ |11〉], where |0〉 and |1〉 stand for the horizontal

and vertical polarization, respectively. The phase θ is con-
trolled by tilting the angle of the QWPp. With this, the four
different Bell states (5) can be obtained with different config-
urations of QWPp and HWPs [28]. This allows us to generate
the Werner state (4), since it can be written as a convex sum
of Bell states as

W = (1 − η)

4
(|B10〉〈B10| + |B01〉〈B01| + |B11〉〈B11|)

+ (1 + 3η)

4
|B00〉〈B00|. (14)

To generate this state experimentally, we change configura-
tions of QWPp and HWPs during measurement acquisition
time. For instance, to obtain W with η = 0.5 we set QWPp
and HWPs to produce |B00〉 during 5/8 of the total acqui-
sition time, while the remaining 3/8 of the time is equally
divided among the other three Bell states, and the wave plates
are set accordingly. With PBSc removed from the setup, we
can use the sets of wave plates HWPi, QWPi (not included
in the figure), and PBSi, where i can be either a or b, to

FIG. 3. Real (left panels) and imaginary (right panels) parts of
the reconstructed density matrices of the Werner states for different
values of η.

perform local projective polarization measurements on each
photon [30]. Photons are detected using ∼60% efficiency
single-photon avalanche diodes and coincidence counts are
registered with ∼3% overall detection efficiency, including
collection efficiency into single mode fibers. Figure 3 shows
the tomographically reconstructed density matrices for dif-
ferent values of η. The fidelities F =

√√
Wρ

√
W of the

produced states ρ with respect to the states in Eq. (4) are above
93% for ϕ = 0.

To estimate the parameter using the global strategy, we
need to implement a Bell-state projection using linear optics
devices [31]. This is done by placing PBSc in the path of
the photons and adjusting the path length of both photons to
be equal, obtaining Hong-Ou-Mandel interference [32]. The
interference visibility was V = 0.96(2). When the outputs of
PBSc are projected onto |±±〉, a global projection onto Bell
states |B00〉 or |B10〉 is realized when the signs are the same
or different, respectively. In order to project onto the other
two Bell states, HWPe is introduced in the setup transforming
|0〉 → |1〉, and thus mapping |Bk0〉 onto |Bk1〉 [33].

The parameter ϕ to be estimated is a phase between the
horizontal and vertical polarization introduced by two iden-
tical HWPϕ . Different values of ϕ are obtained by changing
the tilt angle of these plates. The parameter estimation using
the adaptive local strategy was realized using the set PBSi and
HWPi utilized before for state tomography. We set the angles
of HWPi to perform projection of the photons onto states in
the equator of the Bloch sphere.
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FIG. 4. Experimental probabilities as function of ϕ for different
values of η. The upper three plots correspond to the probabilities
P+ = P++ + P−− and P− = P+− + P−+ for the local strategy, while
the lower plots are probabilities for the global strategy. The lines are
fittings obtained from Eqs. (12) and (8) multiplying the cosine terms
by a factor V. See main text for more details.

V. RESULTS

We measure the probability of finding photon pairs in each
projection, local and global, while ϕ is varied. The results are
shown in Fig. 4. Given that for the local projection in Eq. (12)
the probabilities P++ and P−− (P+− and P−+) have the same
behavior, we plot P+ = P++ + P−− and P− = P+− + P−+. For
the global projection, one can see that PB11 and PB01 are inde-
pendent of the values of ϕ. A discrepancy between experiment
and theory is observed when trying to fit the experimental
data with the expressions in Eqs. (12) and (8). For example,
for η = 1 unit visibility curves are expected, which is not ob-
served experimentally. This is mostly related to experimental
imperfections, such as the production of nonunit purity Bell
states and small mismatching of the photons at PBSc, which
generate a small distinguishability of the photons, reducing
the visibility of the HOM interference required for projection
onto Bell states. To account for this experimental issue, we
added the visibility parameter V = 0.96(2) multiplying the
cosine terms in Eqs. (12) and (8), which allowed for excellent
agreement between theory and experiment for both strategies.
We can observe that the visibilities of the oscillations in
Fig. 4 increase while η increases, in agreement with what is
expected. In Figs. 4 and 5, error bars were calculated by error
propagation using the Poissonian coincidence count statistics.

As discussed near the end of Sec. III, there can be ambi-
guity concerning the value of η for the local strategy. This
ambiguity can be removed in the global approach. As such,
the parameter η is estimated differently for local and global
strategies. For the former, we determine η by the relations of
measurement time in each configuration of QWPp and HWPs

as was done in the tomographic measurements, as discussed
in Sec. IV. For the global case, η is estimated from the prob-
abilities PB01 and PB11 , which do not depend on the parameter
ϕ. For both strategies, ϕ was estimated using a Likelihood
method, where the probabilities predicted by the model are
in Eqs. (12) and (8) and the frequencies are the number of
coincidences obtained in each case.

FIG. 5. Fisher information for local and global strategies as a
function of η for ϕ = π/4. Orange and blue dots correspond to
experimental values of F for local and global, respectively. The
theoretical predictions, given by Eqs. (11) and (7), are shown with
solid orange and blue lines, respectively. Experimental data coincide
with the theoretical curves within the error bars.

Using the curve fits p′(ϕ, η) obtained from the probability
curves in Fig. 4, we applied Eq. (1) to obtain an experimental
estimate of the Fisher information for both local and global
strategies. The results are shown in Fig. 5 as a function of
η. A small discrepancy between the theory and experiment
is observed for η close to 1, due to the fact that the HOM
interference visibility never reaches unity. However, the net
effect of this is smaller than the error bars. One can observe
that the experimental F for the global strategy is larger than F
for the local strategy for all values of η except for η = 0 and
η = 1, where they coincide. This is because there is no local
measurement that reaches the QFI (7) when the input state is
a Werner state. This result is general when the states of the
probes are mixed [17,34]. For probes in a pure states, both
kinds of measurements give the same precision [9].

We note that the linear-optics-based global measurement
device used here is capable of demonstrating a quantum ad-
vantage, even though it is impossible to project onto all four
Bell states using linear optics [35,36]. This is due to the fact
that here it is necessary only to distinguish the three groups
{B00}, {B10}, and {B01,B11}. This can be done completely
in a single measurement device using photon-number sensi-
tive detectors [31]. To avoid this requirement for the sake of
investigation, we have employed the measurement strategy
above, detecting two Bell states at a time. Our scheme can
be employed directly in a static configuration by using four
single-photon detectors and accepting a 50% efficiency in de-
tection of group {B01,B11} (losing events where two photons
go to the same detector), which provides information only
on η. Similarly, we could detect the three groups above with
100% efficiency (in theory) with single-photon detectors by
altering the spatial profile of the pump laser [37].

It is also important to notice that the depolarizing chan-
nel and the imprinting of a relative phase do not commute
in general. However, when the initial state of the meters is
|B00〉, imprinting a relative phase and then passing through
a depolarization channel gives the same result as imprinting
a phase on the depolarized state. This opens the possibility
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of some practical applications where the information of the
parameter can be encoded before, after, or in the midst of
depolarizing noise. For a very relevant practical example, let
us consider that we want to estimate a phase between the
polarization components, introduced by a birefringent ma-
terial, for example, placed along some long-distance optical
channel. The channel could be realized by either optical fibers
or a free-space propagation. It is known that the transmission
in optical fibers depolarizes the input state of the photons
(time averaged), i.e., different polarization components travel
with distinct group velocity (birenfringence), as well as de-
polarization noise produced by Raman scattering. Thus, if
we prepare the photons in a superposition of horizontal and
vertical polarizations, after their propagation through the fiber,
they arrive at the measurement station in a state with a certain
degree of mixture (time averaged). When entangled photons
are being used to improve the estimation of this phase, the
photons would arrive at the measurement station in a Werner
state similar to those of Eq. (4). The situation is not differ-
ent when photons travel through a free-space channel. For
this kind of channel, the photons have to be collected with
large aperture telescope, which collects not only the light of
interest but also a depolarized background of ambient light,
thus degrading the polarization state. In both these practical
scenarios, performing a Bell-state projection, instead of local
measurements, should both be beneficial, as has been shown
in Fig. 5. Moreover, our setup allows one to characterize the
amount of depolarization.

Let us mention that in Ref. [23] precise estimation of
the phase introduced by a HWP has also been studied using
quantum metrology protocols. In this work, the state of the
photons evolve after passing through different noisy chan-
nels. The results show that the parameter estimation is better
when noiseless ancillas entangled with the probe are used
instead of a single system, demonstrating advantages in the
entanglement-assisted protocols of quantum metrology. Our

result is conceptually different. We show that a realistic global
measurement can be used to surpass the best known local
strategy for the case of two noisy entangled probes.

VI. CONCLUSIONS

Quantum metrology is at the heart of the important ad-
vances in applied and fundamental science as well as benefits
to industry. It is of fundamental importance to understand
how to boost the precision of quantum metrology using more
involved, global measurements, as well as to define the limi-
tations of simple local measurements in real scenarios. Here
we show experimentally that global measurements, such as
projection onto entangled Bell states, can outperform the best
local strategies when the input state is a mixed Werner state
with arbitrary noise parameter η. This is important to limit
the precision in cases where only local measurements are
accessible. Our Bell-state analyzer operates with linear optics
devices based on two-photon interference at a beam splitter. It
is capable of saturating the quantum Fisher information even
though it does not perform a complete projection onto the
Bell basis. In addition, we identify an advantage of our global
measurement strategy in that it is capable of simultaneously
providing an estimate for the amount of noise as well as the
parameter of interest. This can be advantageous when the
noise is not well characterized or when it is time varying.
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