
PHYSICAL REVIEW A 103, 012601 (2021)

Resilient quantum gates on periodically driven Rydberg atoms
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Fault-tolerant implementation of quantum gates is one of preconditions for realizing quantum computation.
The platform of Rydberg atoms is one of the most promising candidates for achieving quantum computation. We
propose to implement a controlled-Z gate on Rydberg atoms where an amplitude-modulated field is employed
to induce Rydberg antiblockade. Gate robustness against the fluctuations in the Rydberg-Rydberg interaction
can be largely enhanced by adjusting amplitude-modulated field. Furthermore, we introduce a Landau-Zener-
Stückelberg transition on the target atom so as to improve the gate resilience to the deviation in the gate time and
the drift in the pulse amplitude. With feasible experimental parameters, one can achieve the gate with low fidelity
errors caused by atomic decay, interatomic dipole-dipole force, and Doppler effects. Finally, we generalize the
gate scheme into multiqubit cases, where resilient multiqubit phase gates can be obtained in one step with an
unchanged gate time as the number of qubits increases.
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I. INTRODUCTION

As one of the most promising candidates of implement-
ing quantum computation and simulating many-body physics
[1–4], Rydberg atoms have been paid increasing attention due
to the long lifetime of internal states and the state-dependent
interaction properties [5]. The powerful Rydberg-Rydberg in-
teraction (RRI) allows at most one of atoms in a small volume
excited to a Rydberg state, i.e., a “Rydberg blockade” [5,6].
This feature can be used to form a Rydberg superatom and
enable the quantum information processing in a mesoscopic
scale by storing quantum information in collective states of
atomic ensembles [6]. Furthermore, the Rydberg antiblock-
ade (RAB) is also an important regime where two or more
atoms can be excited simultaneously, and it has applications
for gaining the quantitative strength information of the RRI
[7], constructing quantum gates [1,8], and creating steady
entangled states [9,10].

Pulse schemes for fast and robust implementations of quan-
tum gates are required for fault-tolerant quantum computation
[11]. For Rydberg-blockade gates, the square-wave-based
schemes can be fast [12,13], but they usually have multistep
operations that are sensitive to control errors, which will
cause multiple accumulation of decoherence and errors, es-
pecially for the compositions of multiqubit gates. Adiabatic
one- [14,15] and multistep [16,17] schemes may be robust
but they are slow inevitably. In recent years, there also are
interesting works done for quantum gates by using RAB
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regime, especially for one-step quantum gates [18–24]. Under
the RAB regime, however, the quantum gates are usually
sensitive to the fluctuations in the RRI strength. On the one
hand, the doubly excited state |rr〉 attends in evolution [1,25],
and the gradient of the RRI potential will cause a strong
interatomic dipole-dipole force (DDF) to induce mechanical
motion and decoherence of the atoms [26]. On the other hand,
the emergence of the RAB usually demands the strict condi-
tions among the RRI strength, the atomic transition detuning,
and Rabi frequency [18–21]. In addition, the RAB regime is
usually based on the second- or higher-order dynamics which
is typically slow [22–24].

For coherent control of quantum dynamics, a wealth of
quantum phenomena can be found in periodically driven
Rydberg atoms [27–31]. In this work, with a periodical
amplitude-modulated field on a control atom, we propose
to implement a controlled-Z (CZ) gate. The CZ gate is
based on the RAB regime that is realized through offsetting
the RRI with the amplitude modulation of the field on the
control atom. By adjusting the maximum amplitude of the
amplitude-modulated field, the doubly excited states |rr〉 can
be suppressed so as to enhance the gate robustness against
fluctuations in the RRI strength and decoherence caused by
interatomic DDF. Furthermore, when a frequency modulation
is introduced for the field on the target atom to induce a
Landau-Zener-Stückelberg (LZS) transition [32,33], the gate
scheme will be of resilience to the deviation in the gate time
and the drift in the pulse amplitude. Even if atomic decay,
interatomic DDF, and Doppler effect are taken into account,
low gate errors can be accessible using feasible experimental
parameters. In addition, we show the generalization of the
gate scheme. Resilient high-fidelity multiqubit phase gates
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FIG. 1. (a) Sketch of two Rydberg atoms interacting with each other, atomic level structures, and field-driven transitions. For Atom 1 called
the control atom, the transition between the ground state |1〉 and the Rydberg state |r〉 is driven resonantly by a periodical amplitude-modulated
field with a Rabi frequency �1 = �m cos(ωt ). For Atom 2, the target atom, the transition |1〉 ↔ |r〉 is driven by a constant-amplitude field
with a Rabi frequency �2. (b) Transition dynamics of each initial state. |00〉 and |10〉 remain unchanged. |01〉 and |11〉 obey a Rabi transition
and a Raman transition, respectively. (c) Schematic diagram for the two-photon Rydberg excitation in two 87Rb atoms.

can be attained with the gate time being independent of the
number of qubits. The peculiarities of the present work can
be concluded as following. First, the previous RAB regimes
are realized usually by using the second- [9,10,18–22,24] or
higher-order [23,34,35] perturbation theory. The present RAB
regime has the first-order dynamics, so it has great potential
of applications for highly efficient Rydberg pumping and fast
multiqubit gates. Second, the RAB gates are suffering from
common issues, extreme sensitivity to the fluctuations in the
RRI strength [18,20–23,25,34] and fragile robustness against
decoherence caused by interatomic DDF [26], which cause
a great challenge for experimental implementations of high-
fidelity quantum gates. In this work, these common issues are
avoided. Besides, the LZS transition in the target atom makes
the CZ gate more robust against error in the pulse area than
other schemes based on fixed-area pulses [12,13]. Third, com-
pared with the standard three-step Rydberg-blockade-based
gate [1] and its various variants [16,17,28,36–39] where an
atom is excited before and de-excited after the excitation
of the other atom, the present CZ gate can be implemented
through just a Rabi cycle of only one two-atom computational
product state, so it holds a transient shelving duration for
Rydberg excitation, and suffers from less errors caused by
atomic decay and Doppler dephasing due to atomic thermal
motion. In addition, different from the one-step adiabatic
Rydberg-blockade-based gate [1] and its variants [40,41] that
are relatively slow because of the limitation of the adiabatic
criterion, the present CZ gate can be fast and thus experi-
ences less accumulation of decoherence. Finally, multiqubit
gates can be achieved in one step, and the gate time does
not increase with the number of qubits, different from re-
cent Rydberg-blockade schemes of multiqubit gates that are
achieved in multiple steps [42,43] and RAB schemes where
the gate time increases exponentially as the number of qubits
increases [34,35].

II. RYDBERG ANTIBLOCKADE OF TWO ATOMS

As shown in Fig. 1(a), we consider that two neutral atoms
are confined in two separated microscopic dipole traps, and
interact with each other through the van der Waals interaction

with a strength V = C6/d6 or the dipole-dipole interaction
with V = C3/d3, depending on the interatomic distance d
and Rydberg states [2,5]. C6 and C3 are the van der Waals
and dipole-dipole interaction coefficients, respectively. In the
interaction picture with the rotating-wave approximation, the
Hamiltonian of the two-atom system is written as (h̄ = 1)

ĤI =
( ∑

j=1,2

� j

2
|1〉 j〈r| + H.c.

)
+ V |rr〉〈rr|. (1)

The amplitude-modulated Rabi frequency �1 on Atom 1 (the
control atom) is chosen as �1 = �m cos(ωt ), where �m is
the maximum amplitude and ω the modulation frequency.
Such an amplitude-modulated field can be operated by an
acousto-optic modulator with the help of an arbitrary wave-
form generator [44].

In order to illustrate the RAB effect, we consider first the
two atoms prepared both initially in |1〉, then the two-atom
Hamiltonian is

Ĥ11 = 1
2 [�m cos(ωt )(|11〉〈r1| + |1r〉〈rr|) + �2(|11〉〈1r|
+ |r1〉〈rr|) + H.c.] + V |rr〉〈rr|. (2)

We define a rotating frame with a unitary operator exp(iĥ0t )
and ĥ0 ≡ ω|rr〉〈rr|, so the Hamiltonian (2) becomes

Ĥ11 =
[

�m

4
(eiωt + e−iωt )|11〉〈r1| + �m

4
(1 + e−2iωt )

× |1r〉〈rr| + �2

2
(|11〉〈1r| + e−iωt |r1〉〈rr|) + H.c.

]

+ (V − ω)|rr〉〈rr|. (3)

Through neglecting highly frequent oscillations and higher-
order couplings under the condition ω � �m,�2, there exists
the first-order dynamics with a three-state transition process
|11〉 ↔ |1r〉 ↔ |rr〉 described by an effective Hamiltonian

Ĥeff = �2

2
|11〉〈1r| + �m

4
|1r〉〈rr| + H.c., (4)

for which the RAB condition V = ω has been used.

012601-2



RESILIENT QUANTUM GATES ON PERIODICALLY … PHYSICAL REVIEW A 103, 012601 (2021)

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0 (b)(a)

FIG. 2. (a) Population evolutions of the four computational states and the gate fidelity evolution. (b) Phase evolutions of the four
computational states. �m = 2

√
3�2 and V = ω = 500�2.

The Hamiltonian (4) can enable the two-atom evolu-
tion from the initial state |11〉 to the doubly excited state
|rr〉 through a stimulated Raman process with the condition
|�m| = 2|�2|. It exhibits an unconventional RAB regime,
where the amplitude modulation of the field on the control
atom plays a crucial role for offsetting the Rydberg blockade
effect caused by the powerful RRI. This RAB regime can pro-
vide the first-order dynamics, different from the conventional
ones that are based on the second- or higher-order dynamics
[18–24,34,35]. In the following, based on this RAB regime
we show fast and resilient implementations of quantum gates,
including two- and multiqubit phase gates.

III. CZ GATES ON TWO RYDBERG ATOMS

A. CZ gate combining cyclic Rabi and Raman transitions

When the two-atom initial state is among computational
states |00〉, |01〉 and |10〉, the RRI will not work. Because |0〉 is
decoupled to the drive field there is no evolution for the initial
state |00〉. For the initial state |01〉, the two-atom evolution is
governed by the Hamiltonian

Ĥ01 = �2

2
|01〉〈0r| + H.c., (5)

which describes a conditional Rabi oscillation of the Atom
2 with the condition that the Atom 1 is in |0〉. When
the two atoms are in the initial state |10〉, the government
Hamiltonian is

Ĥ10 = �m

2
cos(ωt )|10〉〈r0| + H.c., (6)

which results in an evolutionary state |ψ〉 = cos θ (t )|10〉 −
i sin θ (t )|r0〉 with θ (t ) ≡ �m sin(ωt )/2ω, according to
Schrödinger equation i∂|ψ〉/∂t = Ĥ10|ψ〉. Under the
condition ω � �m, yielding θ (t ) � 0, the two atoms are
frozen in |10〉. The transition dynamics of each initial state is
visualized in Fig. 1(b).

Given that the computational states |00〉 and |10〉
remain unchanged during the evolution, to realize a
CZ gate ÛCZ = |00〉〈00| − |01〉〈01| + |10〉〈10| + |11〉〈11|,
transformations |11〉 	→ |11〉 and |01〉 	→ −|01〉 should be

accomplished synchronously. Dominated by the Hamiltonians
(4) and (5), the time-dependent probability amplitudes of ini-
tial states |11〉 and |01〉 can be calculated out, respectively, as

C11(t ) =
�2

m + 4�2
2 cos

(
t
4

√
�2

m + 4�2
2

)
�2

m + 4�2
2

(7)

and

C01(t ) = cos(t�2/2).

Therefore, the synchronous transformations |11〉 	→ |11〉 and
|01〉 	→ −|01〉 can be realized by performing a Rabi cycle
concerning |01〉 and a cyclic Raman process concerning |11〉,
respectively. The gate time is chosen as T = 2π/�2, and the
parameters are controlled with �m = 2

√
3�2.

For illustrating the performance of the CZ gate, based on
the full Hamiltonian (1) we simulate the population evolu-
tions of the four computational states and the gate fidelity
in Fig. 2(a) by choosing a superposition |ψ0〉 = √

0.4|00〉 +√
0.3|01〉 + √

0.2|10〉 + √
0.1|11〉 as the initial state here and

later for all discussions about the two-qubit CZ gates, where
the gate fidelity is defined as F = |〈�(t )|ÛCZ|ψ0〉| with |�(t )〉
being the solution of the Schrödinger equation i∂|�(t )〉/∂t =
ĤI |�(t )〉. Also, we plot the phase evolutions of the four
computational states in Fig. 2(b). Figure 2 indicates that |00〉
and |10〉 are not changed, and with T = 2π/�2, |01〉 and
|11〉 evolve back to themselves but |01〉 gets a π phase.
Correspondingly, the gate fidelity reaches unity at the time
t = 2π/�2.

B. CZ gate using a strong amplitude-modulated field on the
control atom

The gate of combining cyclic Rabi and Raman transitions
is not robust. On the one hand, the RAB condition V = ω

should be satisfied strictly. On the other hand, it is possible
to exist a strong interatomic DDF that can induce mechani-
cal motion and decoherence because the doubly excited state
|rr〉 may be occupied during the gate process. Therefore, we
explore a more robust scenario where the two atoms are not
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FIG. 3. (a) Population evolutions of the four computational states and the gate fidelity evolution; (b) Phase evolutions of the four
computational states. �m = 100�2 and V = ω = 500�2.

excited simultaneously and the RAB condition can be loos-
ened to some extent. To this end, it is a solution to suppress the
evolution of |11〉, i.e., to remain C11(t ) � 1. From Eq. (7) we
know that �m � 2�2 is an advisable choice, which prevents
the transition from |11〉.

The condition V = ω works only for the process |1r〉 ↔
|rr〉, so under the condition �m � 2�2, it can be moder-
ately relaxed and the gate is improved to be insensitive to
the fluctuations in the RRI strength, which will be discussed
later. We simulate the population evolutions of the four com-
putational states and the gate fidelity in Fig. 3(a), and the
phase evolutions of the four computational states in Fig. 3(b).
Compared with Fig. 2(a), the population of |11〉 in Fig. 3(a)
becomes unchanged. The phase evolutions in Fig. 3(b) of the
four computational states are almost the same as Fig. 2(b), and
the gate fidelity also reaches unity at t = 2π/�2.

C. CZ gate with an LZS transition

In this subsection, we investigate an alternative robust
CZ gate through introducing a frequency-modulated field
to induce an LZS transition in the target atom. We change
the constant-frequency field on Atom 2 into a frequency-
modulated field so that the Rabi transition |1〉 ↔ |r〉 is of
a periodical detuning 	 = 	0 + 	̄ cos(ω̄t ) and becomes an
LZS transition. Thus the full Hamiltonian of the two-atom
system becomes

ĤI =
( ∑

j=1,2

� j

2
|1〉 j〈r| + H.c.

)
+ 	|r〉2〈r| + V |rr〉〈rr|.

(8)

In the context of the condition �m � �2, (	0 + 	̄), the
evolution of the two-atom system can be governed by the
following effective Hamiltonian

Ĥe = Ĥ01 + Ĥd(t ), (9)

where Ĥ01 is given by Eq. (5) and Ĥd(t ) = [	0 +
	̄ cos(ω̄t )]|0r〉〈0r|. It will be convenient to move the Hamil-
tonian (9) into the rotating frame with a unitary operator

exp[i
∫ t

0 Ĥd(t ′) dt ′] [45], then Ĥe becomes

Ĥ ′
e = �2

2

∞∑
n=−∞

Jn

(
	̄

ω̄

)
exp[i(	0 + nω̄)t]|0r〉〈01| + H.c.,

(10)

for which we have used the Jacobi-Anger expansion
exp [i 	̄

ω̄
sin(ω̄t )] = ∑∞

n=−∞ Jn( 	̄
ω̄

) exp(inω̄t ) with Jn(·) denot-
ing the nth-order Bessel function of the first kind.

The Hamiltonian (10) can be comprehended as the two-
level dynamics driven by polychromatic fields, each field
corresponding to a Rabi frequency �2Jn( 	̄

ω̄
) and detuning

(	0 + nω̄), where the condition of the resonance field is
	0 + nω̄ = 0. The dynamics strongly relies on the frequency-
modulation parameters which determine whether or not a
robust CZ gate can be implemented. For achieving a CZ gate,
a full Rabi-like cycle between |01〉 and |0r〉 is supposed to be
finished so as to make |01〉 evolve back to itself and get an
extra π phase. Therefore, a resonance field with the condition
	0 + nω̄ = 0 is necessary to dominate the evolution. Besides,
in order to make the gate robust against the deviation in the
gate time and the drift in the pulse amplitude, there must
be some near-resonance fields to interfere with the resonance
field so that the gate can not be heavily damaged by the error
in the resonance field, which requires ω̄ ∼ �2/2. Also, the
resonance-field Rabi frequency should be as large as possible
to ensure a fast operation.

Taking a set of frequency-modulation parameters {	̄ =
6�2, 	0 = 5�2, ω̄ = 0.5�2} as an example, the resonance-
field Rabi frequency is �r = �2J−10(12) = 0.3�2, so the
operation time of implementing a CZ gate should be around
2π/�r = 3.33 × 2π/�2. However, because there exist about
thirty non-negligible fields (n ∈ [−25, 5]) that can work sig-
nificantly or slightly for the CZ gate, the gate time may
drift a little bit from 3.33 × 2π/�2. For more concrete il-
lustration, based on the full Hamiltonian (8) we simulate the
population evolutions of the four computational states and
the gate fidelity in Fig. 4(a), and the phase evolutions of
the four computational states in Fig. 4(b). There is a wide
time range �2t/2π ∈ [3.5, 4.5] when |01〉 evolves back to
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FIG. 4. With the LZS transition on Atom 2, (a) population evolutions of the four computational states and the gate fidelity evolution.
(b) Phase evolutions of the four computational states. 	̄ = 6�2, 	0 = 5�2, ω̄ = 0.5�2, �m = 100�2, and V = ω = 500�2.

itself. Correspondingly, although during �2t/2π ∈ [3.5, 4.5]
the phase of |01〉 is not stabilized thoroughly at the level
of π , it deviates insignificantly by below 0.1π . Therefore, a
broad near-unity plateau of the gate fidelity appears during
�2t/2π ∈ [3.5, 4.5], which will make the gate resistant to the
deviation in the gate time T = 8π/�2. In addition, because of
the interference effect of polychromatic fields, the drift in the
pulse amplitude of the frequency-modulated field will hardly
affect the gate fidelity, which will be discussed in the next
subsection.

D. Resilience to parameter inaccuracy

In former subsections, it is foretold that the gate schemes
with the condition �m � 2�2 have robustness to the fluctua-
tions in the RRI strength. In particular, the scheme using the
LZS transition is robust against the deviation in the gate time
and the drift in the pulse amplitude. For further illustration, we
investigate the influence on the gate fidelity of the inaccuracy
of parameters including the gate time T , the amplitude of �2,
and the RRI strength V .

We define a relative error δX/X for a parameter X with
δX being the deviation value from X . Then we simulate the
influences on the gate fidelity of relative errors in T , �2,
and V in Figs. 5(a), 5(b), and 5(c), respectively. As foretold
above, within the relative error range δX/X ∈ [−0.1, 0.1],
the gate schemes with the condition �m � 2�2 are robust
to the error in the RRI strength. In particular, errors in all
the three parameters can not affect significantly the gate fi-
delity in the scheme of the LZS transition. On the contrary,
the gate scheme of combining the cyclic Rabi and Raman
transitions (�m = 2

√
3�2) is sensitive to errors in all the

three parameters. For the error in V , it has a similar situa-
tion to the conventional RAB gate schemes where the gate
fidelity has extreme sensitivity to the RRI strength fluctua-
tions [18–24,34,35]. In most schemes of Rydberg gates, the
spatial positions of the interacting atoms are taken to be fixed,
thus providing the fixed RRI strength. However, the atoms
have finite temperatures and thus their positions can not be

fixed actually due to residual thermal motion of the atoms
[46,47], so it is scarcely possible to control accurately the
RRI strength. Therefore, the present schemes with �m � 2�2

could be helpful for promoting robust quantum computation
in neutral atoms.

IV. EXPERIMENTAL CONSIDERATIONS

For the implementation of the phase gates in a concrete
experiment, the Rydberg excitation from the ground state |1〉
to the Rydberg state |r〉 can be achieved by a two-photon
process [3,42,42] in Rb atoms or a single-photon process [48]
in Cs atoms. In the schemes of suppressing the evolution
from |11〉, because of the condition V � �m � 2�2 a strong
RRI strength that is chosen as over three orders of magni-
tudes larger than �2 for numerical simulations. Therefore,
a Rydberg state with a sufficiently large principal quantum
number or a relatively small interatomic separation is desired
so as to ensure a strong RRI strength [2]. Here we consider
87Rb atoms interacting with each other through the van der
Waals interaction, and mainly focus on two candidate Ryd-
berg states |r〉 = |70S1/2〉 and |r〉 = |100S1/2〉, respectively,
with the interaction coefficients C6/2π = 858.4 GHz μm6

[49,50] and C6/2π = 56.2 THz μm6 [13,49]. The excitation
of a Rydberg state in 87Rb atoms with a principal quantum
number n = 70 [3,42,50] or near n = 100 [51,52] has been
demonstrated. The computational states can be encoded on
the hyperfine ground states |0〉 = |5S1/2, F = 1, mF = 1〉 and
|1〉 = |5S1/2, F = 2, mF = 2〉 [53]. Then assisted by an in-
termediate state |p〉 = |5p3/2〉 or |p〉 = |6p3/2〉, the atomic
transition |1〉 ↔ |r〉 can be achieved through a two-photon
process, as shown in Fig. 1(c) (see the Appendix for more
details).

In the following, we investigate the intrinsic gate error. It is
noted that the intrinsic gate error here does not contain errors
caused by atomic decay that will be discussed separately.
In addition, other important decoherence factors, including
interatomic DDF and Doppler effects, will be considered,
respectively. We use Ein, Ede, Edd, and Edo to label the intrinsic
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FIG. 5. Influences on the gate fidelity of relative errors in (a) gate time T , (b) Rabi frequency �2, and (c) RRI strength V . The gate time is
T = 2π/�2 for the case �m = 2

√
3�2 in Fig. 2, T = 2π/�2 for �m � �2 in Fig. 3, or T = 8π/�2 for the LZS transition in Fig. 4.

error, atomic decay error, DDF error, and Doppler dephasing
error, respectively. Each decoherence factor is addressed sep-
arately, and superscripts (1), (2), and (3) are used to label
the three schemes based on the conditions �m = 2

√
3�2,

�m � 2�2 without the LZS transition, and �m � 2�2 with
the LZS transition, respectively.

A. Intrinsic error

Since the gate schemes are based on the parameter regime
V � �m,�2 (and �m � 2�2 for the latter two schemes),
there are intrinsic gate errors for the three schemes, similar
to the blockade errors in the Rydberg-blockade-based gates,
due to the rotating-wave approximation even when any de-
coherence factors are not entailed, and such intrinsic errors
strongly depends on the parameter setting. Here we set the
interatomic distance as d = 4.8 μm for n = 70 (d = 9.6 μm
for n = 100), yielding the RRI strength V/2π = 70.18 MHz
(V/2π = 71.79 MHz) [49,50]. The Rabi frequency of the
target-atom Rydberg pumping is set as �2/2π = 0.1 MHz.
In Fig. 6 we plot the intrinsic gate errors Ein = 1 − F for the
three schemes changed with the evolutionary gate time, where
at the ideal gate time E (1)

in and E (2)
in are of the same order of

magnitudes, that is, ∼10−6, while E (3)
in ∼ 10−3. These intrinsic

errors can be further reduced by using parameters that can en-
sure more strictly the relation V � �m,�2 (and �m � 2�2

for the latter two schemes). In the later subsections, we discuss
gate errors caused by several decoherence factors, and it is
noted that those errors do not contain the intrinsic gate errors.

B. Atomic decay

Atomic decay from the excited states into ground states
will spoil the coherence of the desired dynamics. In addition
to the atomic decay rate, the gate fidelity reduction caused
by the atomic decay is proportional to the gate time and the
population of excited states. Therefore, the scheme based on
�m � �2 without the LZS transition will suffer from the least
fidelity reduction for a finite atomic decay rate, because it is
of not only the shortest gate time but also the least population
of excited states. The LZS-transition scheme is also of the
least population of excited states, but it consumes longer gate

time that is four multiple of that for the other two schemes. In
order to clearly know whether or not a high-fidelity gate can
be attained when the atomic decay is taken into account, we
carry out numerical simulations based on the Lindblad master
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FIG. 6. Intrinsic gate errors with the evolutionary gate time of
the schemes based on (a) �m = 2

√
3�2, (b) �m/2π = 10 MHz

without the LZS transition, and (c) �m/2π = 10 MHz with the LZS
transition. V/2π ∼ 70 MHz and �2/2π = 0.1 MHz.
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FIG. 7. Decay error of the CZ gate for the three schemes with
varying the Rydberg state lifetime. n and Ta denote the principle
quantum number of the Rydberg state and the atomic temperature, re-
spectively. Four vertical lines label the lifetimes of |r〉 = |70S1/2〉 and
|r〉 = |100S1/2〉, respectively, at the atomic temperatures Ta = 300 K
and Ta = 10 μK [13,54]. Parameters are the same as the Fig. 6.

equation

˙̂ρ = −i[ĤFull, ρ̂] − 1

2

∑
j=1,2

∑
k=0,1,g

(
L̂ j†

k L̂ j
k ρ̂ − 2L̂ j

k ρ̂L̂
j†
k

+ ρ̂L̂ j†
k L̂ j

k

)
, (11)

where ρ̂ is the density operator and ˙̂ρ the time derivative of
the density operator. ĤFull denotes the full Hamiltonian of the
two-atom system, Eq. (1) for the first and second schemes, or
Eq. (8) for the LZS-transition scheme. The Lindblad operator
is defined by L̂ j

k ≡ √
γk|k〉 j〈r|, describing the decay of the

jth atom from the Rydberg state |r〉 into a ground state |k〉
with a decay rate γk , for which an additional ground state
|g〉 is introduced to denote those Zeeman magnetic sublevels
out of the computational states |0〉 and |1〉. For convenience,
we assume that decay rates from a Rydberg state of 87Rb
atoms into the eight Zeeman ground states are identical, so
γ0 = γ1 = 1/8τ and γg = 3/4τ with τ being the lifetime of
the Rydberg state.

In Fig. 7 we show the decay errors of the three schemes
with different Rydberg state lifetimes, and the result indicates
that without the LZS transition, the condition �m � 2�2 en-
sures the least decay error. However, when the LZS transition
is entailed, the CZ gate suffers from the most decay error,
even much more than the case of �m = 2

√
3�2 which has the

largest excited-state population. This is attributed to a longer
gate time of the LZS-transition scheme. Nevertheless, the
LZS-transition scheme may still be experimentally feasible
to achieve a CZ gate with fidelity F > 0.99 over the error
correction threshold in a surface code scheme [55], when the
Rydberg state with a relatively high principal quantum num-
ber is employed, for example, n = 100, or when the atoms
are cooled sufficiently to, for example, an atomic temperature
Ta = 10 μK that has been reached in experiment [3,42].
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FIG. 8. Dependence of the DDF error on σd for the three gate
schemes with (a) n = 70 and di = 4.8 μm, or (b) n = 100 and di =
9.6 μm. Each point denotes the average of 201 results originated
from 201 samples of d that are picked randomly according to a
Gaussian probability distribution with the mean di and the standard
deviation σd . Other parameters are the same as Fig. 6.

C. Interatomic dipole-dipole force

When two adjacent atoms are both excited to the Rydberg
state, the gradient of the RRI potential between the two atoms
leads to a strong interatomic DDF that further induces me-
chanical motion and decoherence of the atoms [26], which
is one of the intractable issues that make the implementation
challenging of quantum gate in the RAB regime. When this
interatomic DDF is taken into account, an extra term Ĥdd =
∂V
∂d |d=di

(d − di )|rr〉〈rr| should be added into the Hamiltonian
in Eq. (1) or Eq. (8) [56], where di = 4.8 μm for n = 70
or di = 9.6 μm for n = 100 is the (preset) ideal interatomic
distance. di can also be regarded as the mean interatomic
distance when considering that the interatomic distance d
is a random variable with a Gaussian probability distribu-
tion P(d ) = exp [−(d − di )2/2σ 2

d ]/
√

2πσd with σd being the
standard deviation.

In Fig. 8 we plot the dependence of the DDF error on σd for
the three gate schemes with n = 70 or n = 100, respectively.
On one hand, comparing Fig. 8(a) with Fig. 8(b), using the
Rydberg state with n = 100 can give a smaller DDF error,
because the ratio σd/d is smaller. On the other hand, the
schemes based on the condition �m � 2�2 are always of
smaller DDF errors at least one order than the first scheme,
which is attributed to the suppression of excitation of the
Rydberg pair state |rr〉. For even a small standard deviation
of the interatomic distance, σd = 0.01 μm, E (1)

dd is over 0.13
that makes the CZ gate inefficient. For an experimentally
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FIG. 9. (a) Doppler dephasing errors for the three CZ gate schemes with varying the atomic temperature. Two sets of parameters are
used: {V/2π = 70.18 MHz (n = 70, d = 4.8 μm), �m/2π = 10 MHz, �2/2π = 0.1 MHz} and {V/2π = 467 MHz (n = 70, d = 3.5 μm),
�m/2π = 80 MHz, �2/2π = 1 MHz}. (b) Doppler dephasing errors for the first and second CZ gate schemes with varying the atomic
temperature, using parameters {V/2π = 467 MHz, �m/2π = 80 MHz, �2/2π = 5 MHz}. ERB

do denotes the Doppler dephasing error of
the standard Rydberg-blockade CZ gate in Ref. [1], using parameters {V/2π = 467 MHz, �r/2π = 10 MHz}. (c) Time dependence of
the intrinsic error of the LZS-transition scheme, using parameters {V/2π = 467 MHz, �m/2π = 80 MHz, �2/2π = 5 MHz}. Each point
in (a) and (b) denotes the average of 201 results originated from 201 pairs of δ1 and δ2 that are separately picked randomly according to a
Gaussian probability distribution with the mean δ0 = 0 and the standard deviation σδ .

accessible standard deviation of the interatomic distance, for
example σd = 0.14 μm reported in a recent experiment [8],
the scheme based on �m � 2�2 without the LZS transition
ensures a DDF error E (2)

dd < 10−2.

D. Doppler effects

Doppler effects originated from atomic motion due to finite
atomic temperature cause motional dephasing of ground-
Rydberg transitions, which is an important resource of
technical errors [53,57,58], and some works have been con-
tributed recently to suppressing Dopplor dephasing errors in
implementing Rydberg-mediated quantum gates [13,59–61].
In this subsection, we study Doppler dephasing errors of the
three gate schemes. In order to incur less Doppler dephasing
errors, we use two counterpropagating laser beams to excite
the atoms, which can reduce the effective wave vector of
magnitude, and thus the standard deviation of atomic positions
can be decreased effectively [13,58,62]. To drive Rydberg
excitation through a two-photon process, we use two coun-
terpropagating laser fields with wavelengths λ1 = 420 nm
and λ2 = 1013 nm for using the Rydberg state |r〉 = |70S1/2〉
and the intermediate state |p〉 = |6P3/2〉, yielding an effective
wave vector of magnitude keff = 8.76 × 106 m−1 [3]. Due to
the presence of the Doppler effects, the Rabi frequencies for
the Rydberg excitation are changed, as [63]

�1(t ) → �1(t )eiδ1t , �2 → �2eiδ2t .

The detunings δ1,2 of the excitation lasers seen by the atoms
are two random variables following a Gaussian probability
distribution of the mean δ0 = 0 and the standard deviation
σδ = keff	v where 	v = √

kBTa/m denotes the atomic root-
mean-square velocity with kB, Ta, and m being the Boltzmann
constant, atomic temperature, and atomic mass, respectively.

When the atomic species is determined, the Doppler de-
phasing errors of the three CZ gate schemes are determined by
the atomic temperature. In Fig. 9(b) we use two sets of param-
eters, {V/2π = 70.18 MHz (n = 70, d = 4.8 μm), �m/2π =

10 MHz, �2/2π = 0.1 MHz} and {V/2π = 467 MHz (n =
70, d = 3.5 μm), �m/2π = 80 MHz, �2/2π = 1 MHz} that
cause intrinsic gate errors with the same order of magnitudes
E (1,2)

in ∼ 10−6 and E (3)
in ∼ 10−3, to study the effect of the

atomic temperature on the Doppler dephasing errors for the
three CZ gate schemes. The set of parameters with �2/2π =
0.1 MHz corresponds to very high Doppler dephasing er-
rors for all the three gate schemes even with a very low
atomic temperature, because �2/2π = 0.1 MHz corresponds
to long Rydberg excitation durations, especially for the LZS-
transition scheme. When the set of parameters with �2/2π =
1 MHz is used, the Rydberg excitation duration of the each
gate scheme is reduced by a order of magnitudes, and accord-
ingly the Doppler dephasing error is slashed. For the scheme
based on �m � 2�2 without the LZS transition, E (2)

do < 10−2

when Ta < 46 μK.
Furthermore, when we use a larger �2, the Doppler de-

phasing errors will be suppressed to a lower level. As shown
in Fig. 9(b), we use an alternative set of parameters {V/2π =
467 MHz, �m/2π = 80 MHz, �2/2π = 5 MHz} that gives
E (1,2)

in ∼ 10−4 to calculate numerically E (1,2)
do with different

Ta. When using such a set of parameters, the LZS-transition
scheme is nearly inefficient because of a high intrinsic gate er-
ror E (3)

in > 5% [see Fig. 9(c)], so E (3)
do is not shown. Figure 9(b)

shows very small Doppler dephasing errors for the first and
second schemes, E (1)

do � 0.6 × 10−3 and E (2)
do � 0.4 × 10−3

when Ta ∈ (0, 50] μK. For the sake of contrast, we also
calculate the Doppler dephasing error ERB

do of the standard
Rydberg-blockade CZ gate in a three-pulse π–2π–π scheme
proposed first in Ref. [1], using a set of parameters {V/2π =
467 MHz, �r/2π = 10 MHz} with �r being the Rabi fre-
quencies of Rydberg excitation driven by the three sequential
pulses, which gives an intrinsic blockade error ERB

in ∼ 10−4

and ensures the same gate time as the present first and second
schemes shown in Fig. 9(b). From Fig. 9(b), we learn that the
Doppler dephasing errors of the CZ gates in the present first
and second schemes are of the same order as but lower than
the standard Rydberg-blockade CZ gate.
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FIG. 10. (a) Schematic diagram of the three-qubit phase gate.
Atom 3 is located at the perpendicular bisection plane of the line
segment from Atom 1 to Atom 2. (b) Fidelity evolution of the
three-qubit phase gate based on �m � 2�2 without or with the
LZS transition. 	̄ = 6�2, 	0 = 5�2, ω̄ = 0.5�2, �m = 100�2, and
V ′ = V = ω = 500�2.

V. MULTIQUBIT PHASE GATES

A. Three-qubit phase gate

The direct implementation of multiqubit gates can sig-
nificantly improve the efficiency of quantum computing in
contrary to the composition with a set of single- and two-qubit
gates. Therefore, the feasibility of generalizing a two-qubit
gate to multiqubit cases manifests the scalability and capa-
bility of quantum computing schemes. In this section, we
generalize the gate schemes to multiatom cases.

First of all, we introduce a three-atom system where Atom
1 and Atom 2 play the roles of control atoms driven by the
amplitude-modulated fields and Atom 3 is the target atom
driven by the constant-amplitude field. We specify Atom 3 lo-
cated at the perpendicular bisection plane of the line segment
from Atom 1 to Atom 2 such that the RRI strength between
Atom 3 and Atom 1 and that between Atom 3 and Atom 2 are
identical V = ω. We label the RRI strength between Atom 1
and Atom 2 with V ′. The schematic diagram of such a system
is shown in Fig. 10(a), which is described by the Hamiltonian

ĤI3 =
( ∑

j=1,2

�1

2
|1〉 j〈r| + H.c. + V |rr〉 j3〈rr|

)
+ 	|r〉3〈r|

+
(

�2

2
|1〉3〈r| + H.c.

)
+ V ′|rr〉12〈rr|, (12)

where 	 = 0 (	 = 	0 + 	̄ cos ω̄t) corresponds to the
scheme without (with) the LZS transition. For convenience,
we use 	 = 0 to interpret the construction of a three-qubit
phase gate. It is easy to understand that when Atom 1 or Atom
2 is in |0〉 initially, the evolution of the other two atoms is
the same as the two-atom case, which means the following
transformations (omitting the subscript of the state |·〉123):

|000〉 	→ |000〉, |001〉 	→ −|001〉, |010〉 	→ |010〉,
|011〉 	→ |011〉, |100〉 	→ |100〉, |101〉 	→ |101〉. (13)

FIG. 11. (a) Schematic diagram of the N-qubit phase gate. (N −
1) control atoms are set very close to each other. (b) Fidelity evolu-
tion of the four-qubit phase gate based on �m � 2�2 without or with
the LZS transition. 	̄ = 6�2, 	0 = 5�2, ω̄ = 0.5�2, �m = 100�2,
V14 = V24 = V34 = ω = 500�2, V12 = 100V , V13 = 200V , and V23 =
500V .

When the three atoms are in |110〉 initially, the three-atom
system can be dominated by the Hamiltonian

Ĥ110 =
√

2�m

4
[|110〉〈φ|(e−iωt + eiωt ) + |φ〉〈rr0|

× (e−i(ω+V ′ )t + ei(ω−V ′ )t )] + H.c., (14)

with |φ〉 ≡ (|r10〉 + |1r0〉)/
√

2. As long as the condition
V ′ = ±2ω for the two-atom two-photon process |110〉 ↔
|rr0〉 can not be strictly satisfied, the state of the three atoms
remains unchanged [21,23], that is, |110〉 	→ |110〉. Finally, if
the three atoms are in |111〉 initially, after neglecting highly
oscillating terms similar to the derivation of Eq. (4), an effec-
tive Hamiltonian of the three-atom system can be obtained,

Ĥ111 = �2

2
|111〉〈11r| +

√
2�m

4
|11r〉〈�| + H.c., (15)

with |�〉 ≡ (|r1r〉 + |1rr〉)/
√

2. When �m � �2 is consid-
ered, the evolution from |111〉 is prohibited.

According to the process above we can achieve a three-
qubit phase gate with the value of V ′ being not close to 2V .
For testing the performance of the three-qubit phase gate,
based on the Hamiltonian Eq. (12) with V ′ = V we simulate
in Fig. 10(b) the fidelity evolution for the scheme without or
with the LZS transition, for which the three-atom initial state
is chosen as 1

2
√

2

⊗3
m=1(|0〉m + |1〉m). Figure 10(b) shows that

the high-fidelity three-qubit phase gate can be constructed
with the same gate time as the two-atom CZ gate.

B. N-qubit phase gate

For N-qubit phase gates, we can consider that (N − 1) con-
trol atoms are set close enough to each other to make the RRI
strengths between each of them and Atom N are equivalent
approximatively, as shown in Fig. 11(a), which can enable an
N-qubit phase gate. When the (N − 1) control atoms are put
within a relatively small region, the Rydberg blockade works
for them and thus this ensemble of the (N − 1) atoms serves
as a Rydberg superatom [6,64]. Except the collective state⊗N−1

j=1 |0〉 j where all the (N − 1) atoms are in |0〉, all of other
collective states will make the atomic ensemble equivalent to
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FIG. 12. (a) Schematic diagram of implementing a four-qubit
phase gate. Four atoms are located inhomogeneously at a one-
dimensional chain. (b) Dependence of the gate fidelity on the radius
of the ensemble of the control atoms. |r〉 = |100S1/2〉, �m/2π =
10 MHz, and �2/2π = 0.1 MHz.

a two-level atom, where only one of the atoms in |1〉 can be ex-
cited. Therefore, the evolution of the N-atom system shown in
Fig. 11(a) is similar to that of the two-atom case. Hence at the
time T = 2π/�2 only the collective state

⊗N−1
j=1 |0〉 j ⊗ |1〉N

of the N-atom system evolves back to itself but gets a π phase,
while other collective states remain unchanged. As an exam-
ple, we simulate the implementation of a four-qubit phase gate
with a four-atom system governed by the Hamiltonian

ĤI4 =
( ∑

j=1,2,3

�1

2
|1〉 j〈r| + H.c. + Vj4|rr〉 j4〈rr|

)

+	|r〉4〈r| +
(

�2

2
|1〉4〈r| + H.c.

)
+ V12|rr〉12〈rr|

+V13|rr〉13〈rr| + V23|rr〉23〈rr|. (16)

Taking an example of V12 = 100 V, V13 = 200 V, and V23 =
500 V, in Fig. 11(b) we plot the fidelity evolution of the four-
qubit phase gate based on the condition �m � 2�2 without or
with the LZS transition, for which the four-atom initial state is
chosen as 1

4

⊗4
m=1(|0〉m + |1〉m). Figure 11(b) shows that the

high-fidelity multiqubit phase gate can be attained with the
same gate time as the two-atom CZ gate, and the performance
is almost as fine as that of the two-atom CZ gate.

For the implementation of multiqubit phase gates shown
in Fig. 11, the control atoms can be set as close as possible
to each other so that they can be driven by solely one field
(or two fields for the two-photon process). To investigate the
influence of the radius of the ensemble of the control atoms
on the performance of the multiqubit phase gates, we take an
example of a four-atom system shown in Fig. 12(a), where the
four atoms are located inhomogeneously at a one-dimensional
chain. The distance between Atom 1 (Atom 3) and Atom 2 is R
(i.e., the radius of the ensemble of the control atoms), and that

between Atom 2 and Atom 4 is 9.6 μm for |r〉 = |100S1/2〉.
The Hamiltonian of the four-atom system is given in Eq. (16).
Then in Fig. 12(b) using �m/2π = 10 MHz and �2/2π =
0.1 MHz without the LZS transition, we plot the dependence
of the gate fidelity at the operation time T = 10 μs on the ra-
dius of the ensemble of the control atoms. With the increase of
the control-atom ensemble radius the gate fidelity is reduced,
because the inequality error in the RRI strengths between
each control atom and the target atom increase with growing
R. Figure 12(b) manifests that for achieving a high-fidelity
multiqubit phase gate the radius of the ensemble of the control
atoms is supposed to be less than 15 nm.

VI. CONCLUSION

We have proposed to implement resilient quantum phase
gates on Rydberg atoms. The gates are based on an unconven-
tional Rydberg antiblockade (RAB) regime that can provide
the fast first-order dynamics. This RAB regime is induced
through offsetting the Rydberg-Rydberg interaction (RRI) by
a periodical amplitude modulation of the field on the control
atom. The sensitivity of the phase gates to the fluctuations
in the RRI strength can be slashed through strengthening the
amplitude-modulated field. Furthermore, the Landau-Zener-
Stückelberg transition is introduced on the target atom, which
makes the phase gate resilient to the deviation in the gate
time and the drift in the pulse amplitude. Through estimating
gate errors caused by atomic decay, interatomic dipole-dipole
force, and Doppler effects, it is of great potential to implement
a high-fidelity quantum gate with suitable parameters under
the state-of-the-art experimental conditions. Finally, we gen-
eralize the two-atom gate to N-atom cases, multiqubit phase
gates can also be constructed in one step with the unchanged
gate time.
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APPENDIX: TWO-PHOTON RYDBERG PUMPING

The two-photon process in each atom is achieved by
two laser fields. For a control (target) atom, one field is
imposed for the optical excitation |1〉 ↔ |p〉 with Rabi fre-
quency �1p (�2p) and a red detuning 	1 (	2), and the
other for the Rydberg excitation |p〉 ↔ |r〉 with Rabi fre-
quency �1r (�2r) and a blue detuning 	1 (	2). The field
on the control atoms for |p〉 ↔ |r〉 is modulated in ampli-
tude �1r = �̃m cos ωt , while the field on the target atom
for |p〉 ↔ |r〉 is, for only the LZS transition, modulated
in frequency. Figure 1(c) shows the schematic diagram
for the two-photon Rydberg excitations. Corresponding to
the model in Fig. 1(a), the quantities in the Hamiltonian
(1) are �m = �̃m�1p/2	1 and �2 = �2r�2p/2	2. If the
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center-to-center distance between the control and target
atoms is set as d = 9.6 μm (d = 4.8 μm) for |r〉 = |100S1/2〉
(|r〉 = |70S1/2〉) that is within the range of the van der
Waals interaction, correspondingly the RRI strength V/2π =
71.79 MHz (70.18 MHz). We assume �1p/2π = �̃m/2π =
200 MHz, 	1/2π = 2 GHz, �2r/2π = �2p/2π = 10 MHz,
and 	2/2π = 500 MHz, which indicates �m/2π = 10 MHz

and �2/2π = 0.1 MHz. It should be also noted that in addi-
tion to the two-photon effective coupling |1〉 ↔ |r〉 there are
Stark-shift terms �2

1p/4	1|1〉1〈1|, �̃2
m cos2 ωt/4	1|r〉1〈r|,

�2
2p/4	2|1〉2〈1|, and �2

2r/4	2|r〉2〈r|. These unwanted en-
ergy shifts can be eliminated through some manners, such as
auxiliary fields [65], detuning compensations [66], and phase
corrections [67].
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