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Unambiguous discrimination of fermionic states through local operations
and classical communication
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The paper studies unambiguous discrimination of fermionic states through local operations and classical
communication (LOCC). In the task of unambiguous discrimination, no error is tolerated but an inconclusive
result is allowed. We show that contrary to the quantum case, it is not always possible to distinguish two
fermionic states through LOCC unambiguously with the same success probability as if global measurements
were allowed. Furthermore, we prove that we can overcome such a limit through an ancillary system made of
two fermionic modes, independently of the dimension of the system, prepared in a maximally entangled state:
in this case, LOCC protocols achieve the optimal success probability.
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I. INTRODUCTION

The quest for state discrimination has been thoroughly
investigated in the quantum realm [1–6]. When dealing with
composite systems, the peculiar nature of entanglement,
which quantum systems can exhibit, gives rise to counter-
intuitive situations where the information is encoded in a
delocalized fashion, contradicting the common wisdom ac-
cording to which any information carried by a system should
be encoded in its own local degrees of freedom. As a conse-
quence, in order to discriminate a full basis of entangled pure
states, a delocalized measurement is required. However, when
processing distributed information, a reliable channel for the
exchange of quantum systems is an expensive resource and
one is thus willing to accept lower performances if it is possi-
ble to achieve a reasonable result using only local operations
and classical communication (LOCC) (for a comprehensive
reference on LOCC protocols, see Ref. [7]).

For this reason, discrimination of two pure states via LOCC
is twice counterintuitive: indeed, classic results in quantum
information theory proved that LOCC discrimination of pure
states can be as good as the optimal one, both in a minimum-
error scenario [8,9] and in a zero-error scenario, where one
accepts an inconclusive outcome [10].

In the present work, we study the problem of opti-
mal unambiguous discrimination of pure states via LOCC
in fermionic theory. This theory describes systems, states,
measurements, and transformations on fermions, or, more pre-
cisely, on fermionic modes. The interest in fermionic theory is
clearly due to the fact that elementary matter fields in quantum
physics are actually collections of fermionic modes. While
it is well known that from a computational point of view,
fermionic modes are equivalent to qubits [11], to the extent
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that quantum algorithms have been devised for the simulation
of scattering processes involving fermions [12], still the dif-
ferences between the two theories are relevant from the point
of view of the complexity of geometric structures required
for such simulation: indeed, there is no local encoding of
fermionic modes in qubit networks, or vice versa [13–15]. As
a matter of fact, then, while the computational equivalence of
qubits and fermions holds asymptotically, modulo a polyno-
mial overhead of program complexity, for finite-size problems
it is relevant to study simple information-processing tasks
with fermionic modes autonomously. Among many options
for the description of fermionic modes through a suitable
choice of algebraic structures [16,17], it is often convenient to
resort to the use of the Jordan-Wigner isomorphism [18–20],
which allows one to map the algebra of N canonically an-
ticommuting field operators into strings of Pauli operators
acting on the Hilbert space of N qubits, with a parity superse-
lection rule [21–23].

When dealing with state discrimination, where all the rele-
vant formulas come from the application of the Born rule for
the calculation of probabilities, the Jordan-Wigner representa-
tion is particularly convenient, and the only care that must be
taken in representing fermions with qubits is an appropriate
account for parity superselection [17], as shown in Ref. [24]
where the task of optimal minimum-error discrimination was
studied.

Here we take a similar approach to the problem of optimal
unambiguous state discrimination. One of the key features
of LOCC discrimination is that unlike the case of binary
quantum state discrimination, ancilla-assisted protocols [25]
prove to be useful. More precisely, in the minimum-error sce-
nario, one entangled pair is sufficient to make optimal LOCC
discrimination equivalent to its unconstrained counterpart.

The present work extends that of Ref. [24], which deals
with both perfect and optimal conclusive discrimination of
fermionic states. In order to distinguish between two quantum
nonorthogonal preparations, the further strategy of unambigu-
ous discrimination has been proposed by Jaeger and Shimony
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in Ref. [26]: we require the outcomes to flawlessly determine
the true state. However, due to the essential nature of quantum
theory, the whole protocol must make allowance for a third
inconclusive result, for which no intelligence is attained from
the measurement. In Refs. [10,27,28], the authors prove that
restricting ourselves to LOCC protocols is no real limit to
the performances of unambiguous discrimination. We briefly
discuss the protocol in the fermionic realm and prove that
fermionic local discrimination is typically suboptimal with
respect to the unconstrained one, contrary to the quantum
case. The necessary and sufficient conditions on the states are
derived for achieving optimal local discrimination. Moreover,
we prove that LOCC protocols accomplish the same dis-
crimination performances as the unconstrained ones, once we
provide an ancillary system in a maximally entangled state.

II. PRELIMINARY NOTIONS

A. Unambiguous quantum states discrimination

We are interested in discriminating between two non-
normalized and pure states ρ = p |ψ〉 〈ψ | and σ = q |φ〉 〈φ|,
where {p, q} is the prior probability distribution and |ψ〉, |φ〉
are normalized vectors. In quantum theory, we know that if the
two states are orthogonal, we may perfectly distinguish be-
tween the two. If we release such a condition, on the contrary,
the discrimination protocol becomes probabilistic and subject
to errors. We remind the reader that a quantum measure-
ment is generally represented by a positive-operator valued
measure (POVM), namely, a collection of positive operators
0 � S � I—called effects—that sums to the identity operator
I . Every operator �i in a POVM is associated with a possible
outcome i, and the probability of outcome i, provided that the
measurement is performed on a system prepared in state ρ, is
given by the Born rule

Pr(i|ρ) = Tr[ρ�i]. (1)

If there exist operators 0 � Ai, Bi � I such that S =∑
i Ai ⊗ Bi, we call the effect S separable. If a POVM is

made of separable effects, then we call it separable as well,
and denote with SEP the set of separable POVMs. Moreover,
we recall that LOCC measurements are a proper subset of
SEP POVMs [29] (for further details on LOCC protocols, see
Ref. [7]).

In the following, we deal with discrimination strategies
that unambiguously distinguish between the two provided
states ρ and σ , though allowing for an inconclusive result.
We describe the measurement through the POVM made of
�ψ , �φ , and �?, where each operator corresponds to one of
the three possible outcomes. The requirement for a POVM to
represent an unambiguous discrimination protocol is given by
the following conditions:

Pr(φ|ψ ) = Tr[|ψ〉 〈ψ | �φ] = 0,

Pr(ψ |φ) = Tr[|φ〉 〈φ| �ψ ] = 0, (2)

and 0 � �ψ + �φ � I . Under these circumstances, we define
�? := I − �ψ − �φ . The success probability of the protocol
is then given by

Ps := Tr[(p |ψ〉 〈ψ | + q |φ〉 〈φ|)(�ψ + �φ )]

or Ps = 1 − Perr, where Perr := Tr[(p |ψ〉 〈ψ | +
q |φ〉 〈φ|)�?] is the error probability.

In Ref. [26], the authors describe the optimal POVM that
maximizes the probability of discrimination success Ps for the
provided states ρ, σ . Due to the effects being dominated by the
identity, the set of optimal POVMs splits into two classes de-
pending on the relationship between the scalar product 〈ψ |φ〉
of the two preparations and the relevant quantity of

�(p, q) :=
√

min{p, q}
max{p, q} , p, q > 0. (3)

Indeed, the optimal POVM achieves

Ps(ρ, σ ) = 1 − 2
√

pq| 〈ψ |φ〉 | (4)

for | 〈ψ |φ〉 | � �(p, q), whereas

Ps(ρ, σ ) = max{p, q}(1 − | 〈ψ |φ〉 |2) (5)

otherwise. In the latter case, the probabilities are so unbal-
anced that it is convenient to renounce detection of the least
probable state, by letting its POVM operator be null. Hence-
forward, we will denote such a protocol as binary since the
measurement consists of only two effects. Consistently, the
former optimal strategy will be deemed ternary. One may
prove with ease that the two success probabilities of Eqs. (4)
and (5) satisfy the following inequality:

max{p, q}(1 − | 〈ψ |φ〉 |2) � 1 − 2
√

pq| 〈ψ |φ〉 |, (6)

where equality is achieved iff | 〈ψ |φ〉 | = �(p, q).
Here we focus on states representing preparations of a bi-

partite system AB shared between Alice and Bob. In Ref. [10],
the authors show that the optimal success probability, given
by Eq. (4) or (5), depending on the circumstances, can be
achieved in the bipartite scenario by an LOCC protocol.
Namely, Alice has to carry out a measurement on her party in a
suitably chosen orthonormal basis, and then send the outcome
through a classical channel to Bob. At this stage, Bob either
perfectly or unambiguously discriminates between two local
states and estimates the correct result.

B. Fermionic quantum theory

The fermionic quantum theory describes states
and transformations of local fermionic modes (see
Refs. [11,13,14,16,17]) that satisfy the parity superselection
rule [11,15,21–23,30,31]. A fermionic mode can be either
empty or “excited” and vectors representing fermionic
systems are allowed to be superimposed only if they
exhibit the same parity, namely, the excitation numbers
are all either even or odd. Such a rule is equivalent to
requiring that local fermionic transformations are described
by Kraus operators belonging to the fermionic algebra F.
The generators of F are the operators ϕi, for i from 1 to N
number of modes, fulfilling the canonical anticommutation
relations {ϕi, ϕ

†
j } = δi j and {ϕi, ϕ j} = {ϕ†

i , ϕ
†
j } = 0, ∀i, j.

The fermionic operators enable us to construct the Fock states
as |n1 . . . nN 〉 := (ϕ†

1 )n1 · · · (ϕ†
N )nN |
〉, where the vacuum

state |
〉 is the common eigenvector of operators ϕ
†
i ϕi with

null eigenvalues, and ni corresponds to the occupation number
at the ith mode, i.e., the expectation value of the operator
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ϕ
†
i ϕi. The linear span of all Fock states corresponds to the

antisymmetric Fock space F . We may denote by Fe and Fo

those sectors of the Fock space featuring even and odd parity,
respectively, with F = Fe ⊕ Fo. Every state (or effect) has a
well-defined parity, i.e., states (and effects) satisfy the parity
superselection rule.

Thanks to the Jordan-Wigner isomorphism [18–20], the
Fock space F of N fermionic modes is isomorphic to a
N-qubit Hilbert space, by the trivial identification of the
fermionic occupation number basis |n1 . . . nN 〉 with the qubit
computational basis (eigenvectors of the Pauli matrices σz

with 1 � i � N). The two parities of the set of states (and
effects) are actually isomorphic to the (N − 1)-qubit states
set, with even and odd pure states given by the rank-one
projectors |ψ〉 〈ψ |, with the |ψ〉 normalized superposition of
Fock vectors belonging to Fe and Fo, respectively.

Hereafter, we take advantage of the Jordan-Wigner isomor-
phism to handle transformations and informational protocols
in the fermionic theory. In fact, the isomorphism, which maps,
nonlocally, the fermionic operator algebra to an algebra of
transformations on qubits, allows us to proceed with the usual
quantum notation. In this paper, we will focus on fermionic
state discrimination via LOCC; it is therefore fundamental
to characterize LOCC for fermionic systems. In this respect,
the Jordan-Wigner transformation plays a major role. Indeed,
in Ref. [17], the authors show that every fermionic LOCC
corresponds to a quantum LOCC on qubits by means of the
Jordan-Wigner transformation J . Accordingly, in the study of
LOCC fermionic state discrimination, we will use the fact that
in a fixed parity sector (even or odd), the results of quantum
theory immediately hold in the fermionic case also.

III. FERMIONIC STATE DISCRIMINATION

Let us consider two states representing preparations of
a fermionic system. The theoretical result of Sec. II A, i.e.,
optimal quantum unambiguous discrimination, can be applied
in the fermionic case as well and this allows us to plainly reuse
Eqs. (4) and (5) in the fermionic realm too.

Henceforth, we focus on the optimal discrimination strate-
gies to distinguish two states ρ = p |ψ〉 〈ψ | and σ = q |φ〉 〈φ|
of a fermionic bipartite system AB via LOCC protocols.
First, we point out that if the two vectors |ψ〉, |φ〉 feature a
different parity, e.g., |ψ〉 ∈ Fe(AB) and |φ〉 ∈ Fo(AB), they
are perfectly discriminable, as shown in Ref. [24]. Hence,
we are interested in discriminating states belonging to the
same Fock space sector. Second, since the even and odd sec-
tors are equivalent under LOCC, it is not restrictive to focus
on even vectors only.

In the following, when dealing with a composite system
of N fermionic modes made of two subsystems of N1 and
N2 modes, respectively, with N1 + N2 = N , it is useful to in-
troduce the spaces HE := He1 ⊗ He2 and HO := Ho1 ⊗ Ho2,
so that He = HE ⊕ HO. In other words, HE and HO are the
subspaces where the parities of Alice’s and Bob’s subsystems
are both even or odd, respectively. Operators X with both
support and range in HE will be denoted by XE , and simi-
larly operators X with both support and range in HO will be
denoted by XO. In particular, we will often use the projections
PE and PO on HE and HO, respectively.

Let us consider, for instance, the vector |ψ〉 and introduce
the bases {|ei〉A} and {|o j〉A} for Alice, where |ei〉A ∈ Fe(A)
and |o j〉A ∈ Fo(A). Thanks to the superselection rule and the
Schmidt decomposition, we can write the vector as

|ψ〉 = |ψE 〉 + |ψO〉 ,

where |ψE 〉 = ∑
i |ei〉A ⊗ |e′

i〉B and |ψO〉 = ∑
j |o j〉A ⊗ |o′

j〉B
for some |e′

i〉B ∈ Fe(B) and |o′
j〉B

∈ Fo(B). Due to the above
assumption, the scalar product between the two states |ψ〉, |φ〉
reads

〈ψ |φ〉 = 〈ψE |φE 〉 + 〈ψO|φO〉 . (7)

Before dealing with fermionic discrimination protocols, we
first discuss some relevant properties of SEP effects in the
fermionic theory. In order to satisfy the parity superselection
rule, any SEP POVM must be made of positive operators
0 � S � I of the form

S = SE + SO, (8)

where SE = ∑
i ei ⊗ e′

i, SO = ∑
j o j ⊗ o′

j for 0 �
ei, e′

i, o j, o′
j � I . More precisely, the latter operators fulfill

Supp(ei ) ⊆ Fe(A), Supp(e′
i ) ⊆ Fe(B), Supp(o j ) ⊆ Fo(A),

and Supp(o′
j ) ⊆ Fo(B). The probability of the outcome s

corresponding to the effect S, given that the fermionic system
is prepared in state τ ∈ St(AB), is provided by the Born rule

Pr(s|τ ) = Tr[τS] = Tr[PEτPE SE + POτPOSO],

which shows us that any separable POVM operates on the E
and O parts of τ independently.

We can now establish that as in quantum theory, in
fermionic theory SEP and LOCC unambiguous discrimination
also achieve the same performances.

Theorem 1. Let ρ := p |ψ〉 〈ψ | and σ := q |φ〉 〈φ| be two
pure and non-normalized states for p, q � 0 and p + q =
1. The optimal SEP unambiguous discrimination is imple-
mentable through LOCC, i.e., PSEP

s = PLOCC
s , and its success

probability reads

PSEP
s = Pr(E )Ps(ρE , σE ) + Pr(O)Ps(ρO, σO), (9)

where Pr(E ) := Tr[(ρ + σ )PE ], PE is the projector onto HE ,
ρE := PEρPE/ Pr(E ), σE := PEσPE/ Pr(E ), and the same def-
initions apply for the O sector.

Proof. We now require that the three elements of the POVM
are separable, i.e., �ψ,�φ,�? ∈ SEP. From Eq. (8), a nec-
essary condition for separability is that the operators can
be written as �ψ = �E

ψ + �O
ψ , �φ = �E

φ + �O
φ and �? =

�E
? + �O

? , and thus the conditions for unambiguous discrimi-
nation of Eq. (2) read

Tr
[
p|ψE 〉〈ψE | �E

φ

] + Tr
[
p|ψO〉〈ψO| �O

φ

] = 0

and

Tr
[
q|φE 〉〈φE | �E

ψ

] + Tr
[
q|φO〉〈φO| �O

ψ

] = 0.

Since all the operators involved are positive, the terms
Tr[p |ψi〉 〈ψi| �i

φ] and Tr[q |φi〉 〈φi| �i
ψ ] for i = E , O must be

null altogether. In other words, the optimization procedure
runs independently on the E and O sectors, and the optimal
strategy corresponds then to first measuring the projectors PE ,
PO and, depending on the outcome, optimally distinguishing

012416-3



LUGLI, PERINOTTI, AND TOSINI PHYSICAL REVIEW A 103, 012416 (2021)

between ρE , σE or ρO, σO, respectively. Both steps are locally
implementable through SEP; therefore they lead us to the
success probability of Eq. (9).

As proved in Ref. [10], in quantum theory Ps = PSEP
s =

PLOCC
s . Namely, there exists a LOCC quantum protocol for

distinguishing between ρi, σi for i = E , O, such that its suc-
cess probability equals the optimal one. On the other hand, as
shown in Ref. [17], LOCC POVMs on a fixed parity sector
correspond to LOCC fermionic POVMs in the Jordan-Wigner
representation, and thus the quantum LOCC protocol provides
a fermionic LOCC protocol. Since the optimal unambiguous
discrimination between states belonging to the same E or O
sector is LOCC implementable, we achieve PSEP

s = PLOCC
s in

the fermionic case as well. �
Theorem 1 provides us a key result to determine the

necessary and sufficient condition for optimal unambigu-
ous discrimination of SEP and LOCC protocols in the
fermionic theory. Since we pointed out at the beginning of the
section that the optimal unconstrained fermionic discrimina-
tion protocol is the quantum one, in the following we will
compare the unconstrained success probabilities of Eqs. (4) or
(5) to that of SEP protocols given by Eq. (9). Under the partic-
ular hypotheses, the SEP optimal strategy achieves the same
performance as the unconstrained one, which indeed proves
optimality. Furthermore, Lemma 1 tells us that if a separable
protocol is optimal, then there always exists a LOCC one
that achieves the same success probability, thus inextricably
linking the performances of the two classes. It is not restrictive
to focus only on the SEP discrimination strategies, which is
a real advantage since their mathematical definition is much
clearer than that of LOCC [7].

The next lemma introduces the most significant difference
with respect to quantum theory, proving a necessary condition
for a pair of fermionic states to be optimally discriminable
through LOCC POVMs.

Lemma 1. Necessary condition. Let ρ := p |ψ〉 〈ψ | and
σ := q |φ〉 〈φ| be two pure and non-normalized states, with
p, q � 0 and p + q = 1. The discrimination protocol through
SEP is optimal only if

arg 〈ψE |φE 〉 = arg 〈ψO|φO〉 (10)

or if any scalar product 〈ψE |φE 〉 , 〈ψO|φO〉 is null.
Proof. Both success probabilities in Eqs. (4) and (5) are

functions of | 〈ψ |φ〉 | =
√

| 〈ψ |φ〉 |2 or

| 〈ψ |φ〉 |2 = | 〈ψE |φE 〉 |2 + | 〈ψO|φO〉 |2
+ 2| 〈ψE |φE 〉 | | 〈ψO|φO〉 | cos �,

where � = arg 〈ψE |φE 〉 − arg 〈ψO|φO〉. From the expressions
in Eqs. (4) and (5), it is clear that for fixed |ψi〉 , |φi〉 such that
〈ψi|φi〉 �= 0, with i = E , O, the unconstrained success prob-
ability is a function Ps(�), whose minimum is achieved for
� ∈ 2πZ. On the other hand, PSEP

s in Eq. (9) is independent
of the phase shift �. Since PSEP

s � Ps(�) for any value of
�, the SEP discrimination for 〈ψi|φi〉 �= 0, with i = E , O,
can achieve the performances of the optimal one only if
� ∈ 2πZ. The case where 〈ψE |φE 〉 = 0 or 〈ψO|φO〉 = 0 is
straightforward since the component of | 〈ψ |φ〉 | depending
on � vanishes and one has PSEP

s = Ps(�). In conclusion,
the SEP protocol achieves optimal performances only if the

unconstrained one cannot take advantage from the relative
phase of the E and O parts. �

Necessary and sufficient conditions for optimal LOCC
discrimination

Based on Lemma 1, we now assume the complex argu-
ments of the two scalar products being equal, as in Eq. (10),
and proceed to derive the necessary and sufficient conditions
for optimal discrimination through LOCC POVMs. As in the
quantum case, the optimal unconstrained discrimination of
the states {ρ, σ } can be ternary or binary. Moreover, in the
fermionic case, one has a broader range of cases since the
ternary and binary strategies could be applied to distinguish
the states {ρE , σE } and {ρO, σO} in the even and odd sector,
respectively. In the following, we consider all possible cases.

In order to use Eqs. (4) and (5) for calculating Ps(ρE , σE )
and Ps(ρO, σO), it is convenient to introduce the conditional
probability distributions {pi, qi}, and the normalized states
|ψ̃i〉 := |ψi〉 /‖ψi‖, |φ̃i〉 := |φi〉 /‖φi‖, with i = E , O, such
that

ρi = pi |ψ̃i〉 〈ψ̃i| , pi := Tr[ρi] = p‖ψi‖2

p‖ψi‖2 + q‖φi‖2
,

σi = qi |φ̃i〉 〈φ̃i| , qi := Tr[σi] = q‖φi‖2

p‖ψi‖2 + q‖φi‖2
,

i = E , O. (11)

Given the probability distribution {pi, qi}, the condition for the
optimal discrimination strategy between ρi and σi being bi-
nary rather than ternary becomes | 〈ψ̃i|φ̃i〉 | � �(pi, qi ). One
can prove with ease that if both pE � qE and pO � qO, then
we have p � q. The same relation applies for the reverse and
strict ordering.

Hereafter, we assume that at least one scalar product be-
tween 〈ψE |φE 〉 , 〈ψO|φO〉 is non-null. Otherwise, we have
〈ψ |φ〉 = 〈ψE |φE 〉 + 〈ψO|φO〉 = 0 and the unambiguous dis-
crimination problem reduces to a perfect discrimination one,
which was solved in Ref. [24]. Moreover, if both states
|ψ〉 , |φ〉 belong to the same E or O sector, e.g., |ψ〉 = |ψE 〉
and |φ〉 = |φE 〉, one can straightforwardly apply the corre-
sponding results in quantum theory [10,27,28]. Indeed, since
in that case one has | 〈ψ |φ〉 | = | 〈ψ̃E |φ̃E 〉 |, Pr(O) = 0 and
Pr(E ) = 1, Eq. (9) leads to Ps = PSEP

s .

1. Ternary case

We begin with the unconstrained discrimination being
ternary.

Theorem 2. Ternary case. Let ρ := p |ψ〉 〈ψ | and σ :=
q |φ〉 〈φ| be two pure and non-normalized states, with p, q � 0
and p + q = 1. If |ψ〉 and |φ〉 satisfy

| 〈ψ |φ〉 | � �(p, q),

then the discrimination protocol through SEP is optimal if and
only if arg 〈ψE |φE 〉 = arg 〈ψO|φO〉 and

| 〈ψ̃i|φ̃i〉 | � �(pi, qi ) (12)

for both i = E , O. See Eqs. (3) and (11) for the definition of
� and |ψ̃i〉 , |φ̃i〉 , pi, qi, i = E , O.
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Proof. (⇒) In Lemma 1, we have already proved that
Eq. (10) is a necessary condition for optimal SEP discrimi-
nation. Hence, let us consider the case where Eq. (12) is not
satisfied, i.e., the optimal discrimination strategy is binary in
at least one of the E or O sectors. Without loss of generality,
we assume that | 〈ψE |φE 〉 | > �(pE , qE ), and compare the
unconstrained success probability of Eq. (4) with

PSEP
s = Pr(E ) max{pE , qE }(1 − | 〈ψ̃E |φ̃E 〉 |2)

+ Pr(O)(1 − 2
√

pOqO| 〈ψ̃O|φ̃O〉 |).

The above relation arises from Lemma 1 where we substituted
Eq. (5) for Ps(ρE , σE ) and Eq. (4) for Ps(ρO, σO). Since from
Eq. (6) the binary case is strictly less performing than the
ternary, one has

PSEP
s < Pr(E )(1 − 2

√
pE qE | 〈ψ̃E |φ̃E 〉 |)

+ Pr(O)(1 − 2
√

pOqO| 〈ψ̃O|φ̃O〉 |)
= 1 − 2

√
pq(| 〈ψE |φE 〉 | + | 〈ψO|φO〉 |)

� Ps(ρ, σ ),

with the latter inequality being due to the triangle inequality.
The above relation applies as well when the binary discrimi-
nation occurs on the O sector or on both.

(⇐) Suppose now that the states fulfill Eqs. (10), and (12).
Using again Lemma 1, where we substituted Eq. (4) for both
Ps(ρE , σE ) and Ps(ρO, σO), the optimal success probability
for a separable discrimination protocol reads

PSEP
s = 1 − 2

√
pq(| 〈ψE |φE 〉 | + | 〈ψO|φO〉 |)

= 1 − 2
√

pq| 〈ψ |φ〉 | = Ps,

where the last equality one is due to (12) [the triangle inequal-
ity achieves equality if and only if Eq. (10) is satisfied]. �

2. Binary case

We are now left with the case where the optimal uncon-
strained strategy is binary. We point out that if | 〈ψ |φ〉 | >

�(p, q), then p �= q and, analogously, if | 〈ψ̃i|φ̃i〉 | >

�(pi, qi ), one has pi �= qi. In the binary scenario, | 〈ψ |φ〉 | >

�(p, q) and we take p �= q hereafter.
Before providing the necessary and sufficient conditions

for optimal discrimination through LOCC POVMs, we prove
the following lemma.

Lemma 2. Let ρ := p |ψ〉 〈ψ | and σ := q |φ〉 〈φ| be two
pure and non-normalized states, with p, q � 0 and p + q = 1.
If |ψ〉 and |φ〉 satisfy | 〈ψ̃i|φ̃i〉 | � �(pi, qi ) for i = E and O,
then | 〈ψ |φ〉 | � �(p, q).

Proof. Thanks to the triangle inequality applied to Eq. (7),
we know that

| 〈ψ |φ〉 | � ‖ψE‖‖φE‖| 〈ψ̃E |φ̃E 〉 | + ‖ψO‖‖φO‖| 〈ψ̃O|φ̃O〉 |,

and, due to our hypothesis,

| 〈ψ |φ〉 | � ‖ψE‖‖φE‖�(pE , qE ) + ‖ψO‖‖φO‖�(pO, qO).

Furthermore, we point out that the quantities �(pi, qi ) for i =
E , O do satisfy

‖ψi‖‖φi‖�(pi, qi ) = ‖ψi‖‖φi‖�(p‖ψi‖2, q‖φi‖2)

=
{

q‖φi‖2
√

qp for p‖ψi‖2 � q‖φi‖2

p‖ψi‖2
√

pq for p‖ψi‖2 < q‖φi‖2

= min{p‖ψi‖2, q‖φi‖2}√
pq

,

so the sum of the above expressions leads us to

| 〈ψ |φ〉 | � 1√
pq

∑
i=E ,O

min{p‖ψi‖2, q‖φi‖2}

� min{p, q}√
pq

= �(p, q),

and the thesis follows. �
The previous result tells us that when | 〈ψ |φ〉 | > �(p, q),

at least one of the two discrimination protocols for {ρE , σE }
or {ρO, σO} has to be binary. In particular, either (A) they are
both binary or (B) one is binary and the other is ternary. We
analyze case (A) in Theorem 3 and Proposition 1, whereas
case (B) is discussed in Theorem 4.

Theorem 3. Binary case A. Let ρ := p |ψ〉 〈ψ | and σ :=
q |φ〉 〈φ| be two pure and non-normalized states with p, q � 0,
p + q = 1, fulfilling

| 〈ψ |φ〉 | > �(p, q).

If we further assume that pE , qE , pO, qO > 0 and

| 〈ψ̃i|φ̃i〉 | � �(pi, qi ), (13)

for either i = E or O, then SEP discrimination is optimal if
and only if arg 〈ψE |φE 〉 = arg 〈ψO|φO〉, and

| 〈ψ |φ〉 | − �(p, q) = �ī, (14)

where ī = O, E for i = E , O, respectively. The quantity � and
|ψ̃i〉 , |φ̃i〉 , pi, qi, i = E , O, are defined in Eqs. (3) and (11),
respectively, while

�i :=
√

max{p‖ψi‖2, q‖φi‖2}
max{p, q} [| 〈ψ̃i|φ̃i〉 | − �(pi, qi )].

Proof. Without loss of generality, we assume that Eq. (13)
holds for i = E . Therefore, due to Lemma 2, one has
| 〈ψ̃O|φ̃O〉 | > �(pO, qO). We now compare the unconstrained
success probability Ps of Eq. (5) to

PSEP
s = Pr(E )(1 − 2

√
pE qE | 〈ψ̃E |φ̃E 〉 |)

+ max{p‖ψO‖2, q‖φO‖2}(1 − | 〈ψ̃O|φ̃O〉 |2),

of Eq. (9) in Lemma 1, where we replaced the expressions of
Eqs. (4) and (5) for Ps(ρE , σE ) and Ps(ρO, σO), respectively.
If the two scalar products 〈ψE |φE 〉 and 〈ψO|φO〉 have the same
complex argument, the condition for optimality Ps = PSEP

s
can be written in the form

ax2 + by2 + cx + dy + f xy + g = 0, (15)
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where x = | 〈ψ̃E |φ̃E 〉 |, y = | 〈ψ̃O|φ̃O〉 |, and

a = − max{p, q}‖ψE‖2‖φE‖2,

b = max{p‖ψO‖2, q‖φO‖2} − max{p, q}‖ψO‖2‖φO‖2,

c = 2
√

pq‖ψE‖‖φE‖,
d = 0,

f = −2 max{p, q}‖ψE‖‖φE‖‖ψO‖‖φO‖,
g = max{p, q} − max{p‖ψO‖2, q‖φO‖2} − Pr(E ). (16)

Since a �= 0 by hypothesis, we can solve Eq. (15) as a second
degree equation in x, as explicitly done in Appendix A. Upon
dividing the solution, whose explicit expression can be found
in Eq. (A3), by − max{p, q}‖ψE‖‖φE‖, one obtains the thesis.

On the other hand, if we consider the case where solving
Eq. (13) is fulfilled for i = O, Eq. (15) in the variable y (see
Appendix A) with the appropriate substitution of parameters,
then we obtain the solution in Eq. (A4), instead. For a full
derivation of the quantity �i, see Appendix B. �

In Theorem 3, we assume all four vectors |ψE 〉, |ψO〉,
|φE 〉, and |φO〉 are non-normalized, but with the norm strictly
greater than zero. Since we are interested in discriminating
between two states ρ, σ , we must require that at least one
probability among pE , pO and qE , qO is non-null. If both
states belong to the same sector, i.e., either pE = qE = 0 or
pO = qO = 0, then the protocol reduces to the quantum one,
and therefore it is optimally LOCC implementable. On the
contrary, if they belong to different sectors, they are orthog-
onal and thus perfectly distinguishable even with LOCC; see
Ref. [24]. Hereafter, we discuss the cases that are not included
in Theorem 3, namely, where only one of the probabilities pE ,
pO, qE , qO is equal to zero.

Proposition 1. Binary case A. Let ρ := p |ψ〉 〈ψ | and σ :=
q |φ〉 〈φ| be two pure and non-normalized states for p, q � 0
and p + q = 1 fulfilling

| 〈ψ |φ〉 | > �(p, q).

If either pE , qE , pO, or qO is null, then SEP discrimination is
optimal if and only if any of the following conditions applies:

(1) pi � qi for both i = E , O,
(2) qi � pi for both i = E , O,
(3) qi = 0, p ī < q ī and | 〈ψ̃ ī|φ̃ ī〉 | = min{1, p/q},
(4) pi = 0, q ī < p ī and | 〈ψ̃ ī|φ̃ ī〉 | = min{1, q/p},

with |ψ̃i〉 , |φ̃i〉 , pi, qi, i = E , O, defined as in Eq. (11).
Proof. Without loss of generality, we consider the case

where qE = 0, i.e., ‖φE‖ = 0 and ‖φO‖ = 1, namely, in
Eq. (A2) a, c, d, f , and | 〈ψE |φE 〉 | are null. Thus, we are left
with the following condition for optimal SEP discrimination:

b| 〈ψ̃O|φ̃O〉 |2 + g = 0.

Now, if pO � qO, we necessarily have p � q; then, b = g = 0
and thus SEP discrimination is always optimal. On the other
hand, if pO < qO, i.e., p‖ψO‖2 < q, we have

b =
{

q − p‖ψO‖2, p � q
q‖ψE‖2, p < q,

g =
{−(q − p‖ψO‖2), p � q
−p‖ψE‖2, p < q.

(17)

The condition for optimality in the hypothesis of pO < qO is
then

| 〈ψ̃O|φ̃O〉 | = min{1, p/q}.
We can analogously evaluate Eq. (A2) for the remaining cases
and the thesis follows. �

Finally, we deal with the necessary and sufficient condition
for optimal SEP discrimination if the protocol is binary for
both the E and O sectors.

Theorem 4. Binary case B. Let ρ := p |ψ〉 〈ψ | and σ :=
q |φ〉 〈φ| be two pure and non-normalized states for p, q � 0,
p + q = 1 fulfilling

| 〈ψ |φ〉 | > �(p, q)

and

| 〈ψ̃i|φ̃i〉 | > �(pi, qi ) (18)

for both i = E , O. Then, SEP discrimination is optimal if and
only if

|‖ψE‖‖φO‖| 〈ψ̃E |φ̃E 〉 | − ‖ψO‖‖φE‖| 〈ψ̃O|φ̃O〉 || =�−
E + �−

O
(19)

for p > q, otherwise if and only if

‖ψO‖‖φE‖| 〈ψ̃E |φ̃E 〉 | = ‖ψE‖‖φE‖| 〈ψ̃O|φ̃O〉 |±(�+
E + �+

O ),
(20)

where

�±
i :=

√
Pr(i)

max{p,q}

√
(pi − qi )±(1 − | 〈ψ̃X |φ̃X 〉 |2),

and (·)± denote the positive and negative parts. The quantity
� and |ψ̃i〉 , |φ̃i〉 , pi, qi, i = E , O, are defined in Eqs. (3) and
(11), respectively.

Remark 1. We observe that for p > q, one has �−
E �−

O = 0,
and for p < q, �+

E �+
O = 0. The reason is that if we assume,

e.g., p > q, we have either pE > qE , pO > qO; pE < qE ,
pO > qO; or pE > qE , pO < qO. Hence, at least one of the
factors (pi − qi )− for i = E , O is null. The same argument
applies for the case p < q.

Proof. (Theorem 4). Thanks to Lemma 1, we know that

PSEP
s = max{p‖ψE‖2, q‖φE‖2}(1 − | 〈ψ̃E |φ̃E 〉 |2)

+ max{p‖ψO‖2, q‖φO‖2}(1 − | 〈ψ̃O|φ̃O〉 |2), (21)

which has to be compared to Eq. (5) for the unconstrained
case. The condition of optimality Ps = PSEP

s may be rewritten
in the form of Eq. (A2), where c, d are null and

a = max{p‖ψE‖2, q‖φE‖2} − max{p, q}‖ψE‖2‖φE‖2,

b = max{p‖ψO‖2, q‖φO‖2} − max{p, q}‖ψO‖2‖φO‖2,

f = −2 max{p, q}‖ψE‖‖φE‖‖ψO‖‖φO‖,
g = max{p, q} − max{p‖ψE‖2, q‖φE‖2}

− max{p‖ψO‖2, q‖φO‖2}.
The solutions satisfy either Eq. (A3) or (A4), namely,

2a| 〈ψ̃E |φ̃E 〉 | = − f | 〈ψ̃O|φ̃O〉 |

±
√

( f 2 − 4ab)| 〈ψ̃O|φ̃O〉 |2 − 4ag (22)
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or
2b| 〈ψ̃O|φ̃O〉 | = − f | 〈ψ̃E |φ̃E 〉 |

±
√

( f 2 − 4ab)| 〈ψ̃E |φ̃E 〉 |2 − 4bg (23)

We now have

a =
{

p‖ψE‖2‖φO‖2, pE > qE

‖φE‖2(q − p‖ψE‖2), pE < qE ,

b =
{

p‖ψO‖2‖φE‖2, pO > qO

‖φO‖2(q − p‖ψO‖2), pO < qO,

g =
⎧⎨
⎩

0, pE > qE , pO > qO

p‖ψO‖2 − q‖φO‖2, pE > qE , pO < qO

p‖ψE‖2 − q‖φE‖2, pE < qE , pO > qO.

Moreover, we estimate the following quantity in the radicands
of Eqs. (22) and (23):

f 2 − 4ab =
⎧⎨
⎩

0, pE > qE , pO > qO

4ag, pE > qE , pO < qO

4bg, pE < qE , pO > qO.

We now consider the three cases compatible with the re-
quirements discussed in the text, viz., that pE �= qE , pO �=
qO due to the hypotheses in Eq. (18) and that pE > qE or
pO > qO, due to p > q. Thus, we first point out that for
pE > qE , pO > qO, both Eqs. (22) and (23) reduce to

‖ψE‖‖φO‖| 〈ψ̃E |φ̃E 〉 | = ‖ψO‖‖φE‖| 〈ψ̃O|φ̃O〉 |.
Indeed, in such a case, we have that �−

E , �−
O = 0 and the

thesis follows. Second, for pE > qE , pO < qO, we consider
the expression of Eq. (22) and rewrite it as

a| 〈ψ̃E |φ̃E 〉 | = − f

2
| 〈ψ̃O|φ̃O〉 | ±

√
ag(| 〈ψ̃O|φ̃O〉 |2 − 1)

or, equivalently,

‖ψE‖‖φO‖| 〈ψ̃E |φ̃E 〉 | = ‖ψO‖‖φE‖| 〈ψ̃O|φ̃O〉 |

± 1√
p

√
(q‖φO‖2 − p‖ψO‖2)(1 − | 〈ψ̃O|φ̃O〉 |2). (24)

Due to our hypotheses, we have that �−
E = 0 and, thus,

Eq. (24) reduces to the thesis. In the case where pE < qE ,
pO > qO, we rewrite Eq. (23) as

b| 〈ψ̃O|φ̃O〉 | = − f

2
| 〈ψ̃E |φ̃E 〉 | ±

√
bg(| 〈ψ̃E |φ̃E 〉 |2 − 1),

such that

‖ψO‖‖φE‖| 〈ψ̃O|φ̃O〉 | = ‖ψE‖‖φO‖| 〈ψ̃E |φ̃E 〉 |

± 1√
p

√
(q‖φE‖2 − p‖ψE‖2)(1 − | 〈ψ̃E |φ̃E 〉 |2). (25)

The same argument as in the previous case applies here: �−
O =

0 since pO > qO, and Eq. (25) becomes the thesis. Exactly the
same steps can be taken for p < q. We only point out that
one has to consider Eq. (22) when pE < qE , pO > qO and
Eq. (23) for pE > qE , pO < qO, instead. The final result is the
condition in the statement. �

IV. ANCILLA-ASSISTED DISCRIMINATION

In this section, we prove that the limits to the performances
of unambiguous LOCC discrimination in fermionic theory
may be overcome by taking advantage of an ancillary system
shared by Alice and Bob. Let us take the simplest sharable
system, i.e., two local fermionic modes, in the pure and nor-
malized state,

|ω〉 := a |00〉 + b |11〉 , |a|, |b| �= 0. (26)

We are now interested in distinguishing between the two
pure and non-normalized states, ρ ′ := ρ ⊗ |ω〉 〈ω|, σ ′ := σ ⊗
|ω〉 〈ω|. In the following result, we prove that any pair ρ, σ

can be optimally discriminated via LOCC if and only if the
ancillary system is in a maximally entangled state.

Theorem 5. We can always optimally and unambiguously
discriminate through SEP every pair of pure and non-
normalized states ρ := p |ψ〉 〈ψ |, σ := q |φ〉 〈φ|, for p, q � 0
and p + q = 1, by means of an ancillary system in the state
|ω〉 as in Eq. (26), if and only if

|ω〉 = 1√
2

(|00〉 + eiϕ |11〉), ϕ ∈ [0, 2π ).

Proof. We can write ρ ′ = p |ψ ′〉 〈ψ ′| and σ ′ = q |φ′〉 〈φ′|
for

|ψ ′〉 := |ψ〉 ⊗ |ω〉 = |ψ ′
E 〉 + |ψ ′

O〉 ,

|φ′〉 := |φ〉 ⊗ |ω〉 = |φ′
E 〉 + |φ′

O〉
with |ψ ′

E 〉 = a |ψE 00〉 + b |ψO11〉, |ψ ′
O〉 = b |ψE 11〉 +

a |ψO00〉, |φ′
E 〉 = a |φE 00〉 + b |φO11〉, and |φ′

O〉 =
b |φE 11〉 + a |φO00〉. Hence, the scalar products of the E
and O parts read

〈ψ ′
E |φ′

E 〉 = |a|2 〈ψE |φE 〉 + |b|2 〈ψO|φO〉 ,

〈ψ ′
O|φ′

O〉 = |a|2 〈ψO|φO〉 + |b|2 〈ψE |φE 〉 .

(⇒) Lemma 1 requires Eq. (10) to be satisfied by the states
for SEP discrimination to be optimal. Namely,

arg 〈ψ ′
E |φ′

E 〉 = arg 〈ψ ′
O|φ′

O〉 ,

which may be rewritten as

(|a|4 − |b|4)(ei� − e−i�) = 0, (27)

where � = arg 〈ψE |φE 〉 − arg 〈ψO|φO〉; see Ref. [32]. The
above expression is satisfied by any � if and only if |a|2 =
|b|2 = 1/2, i.e., for a maximally entangled ancilla.

(⇐) We now suppose |a|2 = |b|2 = 1/2 and prove suffi-
ciency. The new states satisfy the following properties:

(1) 〈ψ ′|φ′〉 = 〈ψ |φ〉, hence | 〈ψ ′|φ′〉 | � �(p, q) if and
only if | 〈ψ |φ〉 | � �(p, q).

(2) ‖ψ ′
E‖ = ‖ψ ′

O‖ = ‖φ′
E‖ = ‖φ′

O‖ = 1/
√

2.
(3) Pr′(E ) = Tr[(ρ ′ + σ ′)PE ] = 1/2 = Pr′(O).
(4) p′

E = Tr[ρ ′PE ]/Pr′(E ) = p = p′
O and q′

E = q′
O = q.

Thus, �(p, q) = �(p′
E , q′

E ) = �(p′
O, q′

O).
(5) 〈ψ ′

E |φ′
E 〉 = 1/2(〈ψE |φE 〉 + 〈ψO|φO〉) = 〈ψ ′

O|φ′
O〉. [See

Eq. (3) for the definition of �.] Thanks to properties (2) and
(5), we have that

〈ψ ′|φ′〉 = 〈ψ ′
E |φ′

E 〉 + 〈ψ ′
O|φ′

O〉 = 2 〈ψ ′
E |φ′

E 〉
= 2‖ψ ′

E‖‖φ′
E‖ 〈ψ̃ ′

E |φ̃′
E 〉 = 〈ψ̃ ′

E |φ̃′
E 〉 ,

〈ψ ′|φ′〉 = 2 〈ψ ′
O|φ′

O〉 = 〈ψ̃ ′
O|φ̃′

O〉 .
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The above results lead us to the fact that either | 〈ψ |φ〉 |,
| 〈ψ ′|φ′〉 |, | 〈ψ̃ ′

E |φ̃′
E 〉 |, and | 〈ψ̃ ′

O|φ̃′
O〉 | are all smaller than

�(p, q) or they are all greater. We observe that if the uncon-
strained discrimination between the two original states ρ, σ

is ternary, then Theorem 2 ensures us that SEP discrimina-
tion between ρ ′ and σ ′ is optimal. Otherwise, if | 〈ψ |φ〉 | >

�(p, q), we have to further prove the validity of either Eq. (19)
or (20). However, property (4) tells us that either pE , p′

E , p′
O >

qE , q′
E , q′

O or vice versa. Therefore, the quantities �±
i = 0 for

both i = E and O, as we have shown in Remark 1. Eventually,
both equations

‖ψ ′
E‖‖φ′

O‖| 〈ψ̃ ′
E |φ̃′

E 〉 | = ‖ψ ′
O‖‖φ′

E‖| 〈ψ̃ ′
O|φ̃′

O〉 |
and

‖ψ ′
O‖‖φ′

E‖| 〈ψ̃ ′
E |φ̃′

E 〉 | = ‖ψ ′
E‖‖φ′

E‖| 〈ψ̃ ′
O|φ̃′

O〉 |
are satisfied by the states ρ ′ and σ ′, which proves
sufficiency. �

V. DISCUSSION

As we have seen so far, the behavior of fermionic unam-
biguous discrimination strategies genuinely differs from their
quantum counterparts when we focus on their performances
under locality restriction. Fermionic protocols optimally dis-
tinguish two states through LOCC only if strict conditions on
the preparations are fulfilled. However, we remark that the
relationship between the LOCC and SEP classes still remains
unchanged in terms of binary discrimination and, as we have
seen in Lemma 1, the two classes achieve an identical maxi-
mum probability of success in unambiguous discrimination.

We proved that the limits of fermionic LOCC discrimi-
nation are completely overcome if we take advantage of an
ancillary system. A rather striking result, which echoes a
similar constraint in the case of minimum-error discrimination
[24], is that the ancilla is required to be maximally entangled
in order to attain optimality for every pair of preparations.

The comparison between the current results and those
pertaining to the unambiguous discrimination of quantum
states through LOCC leaves room for some remarks. In
Ref. [10], the authors prove the existence of a particular basis
for Alice that allows Bob to either perfectly or unambiguously

distinguish between two local states, thus achieving the op-
timal unconstrained performance. However, in the fermionic
case, Theorems 2–4 and Proposition 1 show that such a basis
does not exist in those cases where the conditions of the
theorems are not met. Most notably, if we consider a pair of
fermionic states for which the LOCC unambiguous discrimi-
nation is strictly suboptimal, the strategy of Ref. [10] would
inevitably involve vectors for Alice or Bob that are forbidden
by the parity superselection rule.

In this paper, we obtained the condition for optimal un-
ambiguous discrimination through LOCC of fermionic states.
Our proof is based on the comparison between the success
probability of the constrained and unconstrained strategies.
We may wonder if another proof could be derived where the
conditions on the states were expressed in a more algebraic
form, as those developed for the conclusive case of Ref. [24].
This is left as an open question for further development.

A natural sequel of the present work would address the
conditions for unambiguous discrimination through local re-
sources in the case of mixed fermionic states. Nonetheless,
such a task remains unresolved even in the quantum realm
[33–36], where strict conditions on the preparations have been
derived only for particular circumstances. From full rigorous
development, we would expect the conditions on the den-
sity matrices in the fermionic case to be stronger than in
the quantum one. Since we have already observed that some
further requirements arise to unambiguously distinguish be-
tween two pure fermionic states, we have evidence that mixed
fermionic preparations are subject to more stringent prerequi-
sites. In Ref. [34], Chefles derives a necessary and sufficient
condition for the feasibility of unambiguous discrimination
of mixed quantum states through LOCC, i.e., for a non-null
success probability. However, the superselection rule cannot
but increase the chances of having states not unambiguously
distinguishable to any extent.
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APPENDIX A: GENERAL CONDITION FOR SEP DISCRIMINATION

In Theorems 3 and 4 and in Proposition 1, we derive the necessary and sufficient conditions for SEP unambiguous
discriminations by taking advantage of Theorem 1. Indeed, the latter states that the optimal SEP discrimination protocol is
LOCC implementable with success probability

PSEP
s = Pr(E )Ps(ρE , σE ) + Pr(O)Ps(ρO, σO). (A1)

We then compare the success probability of the SEP protocol given by Eq. (9) with the unconstrained one of Eq. (5). Moreover,
since we know from Lemma 1 that we can optimally distinguish between two states only if

arg 〈ψE |φE 〉 = arg 〈ψO|φO〉 ,

in the proofs of the aforementioned results we take for granted that such a condition is satisfied. As a result, we have that the
SEP discrimination is optimal if and only if

a| 〈ψ̃E |φ̃E 〉 |2 + b| 〈ψ̃O|φ̃O〉 |2 + c| 〈ψ̃E |φ̃E 〉 | + d| 〈ψ̃O|φ̃O〉 | + f | 〈ψ̃E |φ̃E 〉 | | 〈ψ̃O|φ̃O〉 | + g = 0, (A2)
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where the parameters a, b, c, d , f , and g depend on the case under scrutiny. In the most general case, Eq. (A2) has the following
solutions:

−2a| 〈ψ̃E |φ̃E 〉 | = f | 〈ψ̃O|φ̃O〉 | + c ±
√

( f 2 − 4ab)| 〈ψ̃O|φ̃O〉 |2 + (2c f − 4ad )| 〈ψ̃O|φ̃O〉 | + c2 − 4ag for a �= 0, (A3)

−2b| 〈ψ̃O|φ̃O〉 | = f | 〈ψ̃E |φ̃E 〉 | + d ±
√

( f 2 − 4ab)| 〈ψ̃E |φ̃E 〉 |2 + (2df − 4bc)| 〈ψ̃E |φ̃E 〉 | + d2 − 4bg for b �= 0. (A4)

In Theorems 3 and 4 and in Proposition 1, we take advantage of the additional hypothesis on the states to further simplify the
above expressions.

The choice between Eqs. (A3) and (A4) is only based on a simplification and convenience criterion in the analysis of the
discrimination cases.

APPENDIX B: DERIVATION OF QUANTITY �i

In Theorem 3, we covered the case where the SEP discrimination is binary on either the E or O sector and ternary in the
other. In particular, in the proof of the theorem, we assumed | 〈ψ̃E |φ̃E 〉 | � �(pE , qE ) and | 〈ψ̃O|φ̃O〉 | > �(pO, qO), so that the
necessary and sufficient condition for optimal SEP discrimination reads

2a| 〈ψ̃E |φ̃E 〉 | = − f | 〈ψ̃O|φ̃O〉 | − c ±
√

( f 2 − 4ab)| 〈ψ̃O|φ̃O〉 |2 + 2c f | 〈ψ̃O|φ̃O〉 | + c2 − 4ag.

The values for parameters a, b, c, f , and g are expressed in Eq. (16) so that

f 2 − 4ab = 4max2{p, q}‖ψE‖2‖φE‖2‖ψO‖2‖φO‖2 + 4 max{p, q}‖ψE‖2‖φE‖2(max{p‖ψO‖2, q‖φO‖2}
− max{p, q}‖ψO‖2‖φO‖2).

Since we assumed pE , qE �= 0, i.e., ‖ψE‖, ‖φE‖ �= 0, we may reformulate the above expression as

‖ψE‖‖φE‖| 〈ψ̃E |φ̃E 〉 | = −‖ψO‖‖φO‖| 〈ψ̃O|φ̃O〉 | +
√

pq

max2{p, q} ±
√

�

max{p, q} ,

for

� = α| 〈ψ̃O|φ̃O〉 |2 + β| 〈ψ̃O|φ̃O〉 | + γ ,

where we define

α = max{p‖ψO‖2, q‖φO‖2},
β = −2

√
pq‖ψO‖‖φO‖,

γ = max{p, q} − Pr(E ) − max{p‖ψO‖2, q‖φO‖2} + pq

max{p, q} .

We prove with ease that

pq

max{p, q} = min{p, q},

so that we find

‖ψE‖‖φE‖| 〈ψ̃E |φ̃E 〉 | = − ‖ψO‖‖φO‖| 〈ψ̃O|φ̃O〉 | + �(p, q) ±
√

�

max{p, q}
and

γ = max{p, q} + min{p, q} − Pr(E ) − max(p‖ψO‖2, q‖φO‖2) = Pr(O) − max(p‖ψO‖2, q‖φO‖2) = min(p‖ψO‖2, q‖φO‖2).

Now we can rewrite the above condition as

| 〈ψE |φE 〉 | + | 〈ψO|φO〉 | − �(p, q) = ±
√

�

max{p, q} ,

and remembering that by the hypotheses of Theorem 3, one has | 〈ψE |φE 〉 | + | 〈ψO|φO〉 | = | 〈φ|ψ〉 | > �(p, q), we obtain

| 〈ψ |φ〉 | − �(p, q) =
√

�

max{p, q} .
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The term � eventually reads

� = (
√

max(p‖ψO‖2, q‖φE‖2)| 〈ψ̃O|φ̃O〉 | −
√

min(p‖ψO‖2, q‖φO‖2))2

=
√

max{p‖ψO‖2, q‖φO‖2}[| 〈ψ̃O|φ̃O〉 | − �(pO, qO)],

and we finally achieve Eq. (14).
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