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The entanglement structure between different frequency components within broadband quantum light pulses,
forged at entanglement creation, represents a promising route to the practical delivery of many multipartite
quantum information applications. However, the scalability of such applications is largely limited by the entan-
glement decoherence caused by photon loss. One promising method to combat such losses is noiseless linear
amplification. However, while there have been various procedures that implement noiseless linear amplification
on single-mode states, no realization has thus far been proposed for noiseless linear amplification on quantum
states carrying a multimode structure. In this work we close this gap, proposing a noiseless linear amplifier (NLA)
with photon catalysis (PC), namely, the PC-NLA. Constructing a multimode version of an existing NLA that uses
quantum scissors (QS), the QS-NLA, we then show how the PC-NLA is compatible with the QS-NLA, even
though the former uses half the physical resources of the latter. We then apply our multimode NLA frameworks
to the problem of continuous-variable (CV) entanglement distillation, determining how the multimode structure
of the entanglement impacts the performance of the NLAs. Different from single-mode NLA analyses, we find
that a multimode NLA is only effective as a CV entanglement distillation strategy when the channel loss is
beyond some threshold—a threshold largely dependent on the multimode structure. The results provided here
will be valuable for real-world implementations of multipartite quantum information applications that utilize
complex entanglement structure within broadband light pulses.
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I. INTRODUCTION

In general, a quantum state encapsulated within a light
pulse consists of multiple frequency modes (a multimode)—a
reality of special importance for a plethora of continuous-
variable (CV) quantum information applications that utilize
high-pulse-rate laser sources. For example, entanglement be-
tween different supermodes (linear combinations of frequency
modes) of ultrafast light pulses could allow for a practical
route to higher quantum information throughput [1–3], be
used as a resource for quantum computing [4–7], enable
improved quantum sensing [8–11], and be used in quantum
secret sharing [12]. State-of-the art laser sources are now
in the 100-MHz regime with pulse rates of 1 GHz and be-
yond, anticipated as mainstream in the coming years [13].
In addition to random entanglement between supermodes, the
broadband nature of ultrafast light pulses represents a fertile
ground for developing precisely engineered CV entanglement
across frequency space [14]. Parametric down-conversion of
ultrafast frequency combs provides one convenient single-step
path to specifically engineered entangled-supermode states
[15,16].

Like any other entangled states, multimode states suf-
fer from decoherence over lossy channels. One route open
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to compensate such loss is amplification of the states. Ide-
ally, such amplifiers would be noiseless and linear (phase
insensitive)—a goal that is impossible in a deterministic sense
[17]. However, it is known that a noiseless linear amplifier
(NLA) acting on quantum states is possible in a nondetermin-
istic, or probabilistic, fashion (e.g., [18]). What remains to be
determined is how to construct a probabilistic NLA for mul-
timode states, and what the performance of such a multimode
NLA is relative to a single-mode (single-frequency) NLA,
especially with regard to important CV information protocols
such as entanglement distillation. This task forms the focus of
this work.

In order to proceed towards a multimode NLA, we con-
sider two approaches previously developed for single-mode
systems: a quantum scissors (QS) approach [18] and a photon
catalysis (PC) approach [19]. QS, a technique which oper-
ates using beam splitters and single-photon detectors [20],
is known to operate as an NLA under the limitation of low-
energy input states [18]. PC, which requires half the number
of beam splitters and single-photon detectors required by QS,
is also known to act as an NLA for low-energy input states,
but with higher probabilities of success relative to QS [19].1

In order to overcome the limitation of QS-based NLAs being

1A cascaded application of PC was investigated in terms of en-
tanglement distillation in [21], but found to bring insignificant
enhancement relative to the single use of PC.
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applicable only to low-energy inputs, the notion of parallel-
processing QS was proposed [18]. Experimental realizations,
at least in part, based on the ideas in [18] have been undertaken
(e.g., [22–27]). Different schemes have also been proposed for
implementing the NLA (e.g., [28–33]). All of the above work,
however, is designed with the single-mode picture in view. To
analyze the more generic picture, extensions to a multimode
framework are required.

The key contributions of this work can be summarized as
follows: We propose an NLA based on parallel processing of
PC, the PC-NLA. We show that when applied to a range of
coherent states, the PC-NLA is compatible with the QS-NLA
even though the former requires fewer physical resources than
the latter. We then assess how the multimode structure of
states impacts the performance of the PC-NLA and QS-NLA
when applied to entanglement distillation, showing how a
multimode analysis can lead to outcomes quite distinct from
a single-mode analysis. A multimode framework for QS is
developed in order to carry out this assessment.

The rest of this paper is organized as follows. In Sec. II we
present the multimode version of the QS-NLA. We then show
how PC can be utilized to build the multimode PC-NLA. In
Sec. III we compare the performances of the QS-NLA and
the PC-NLA with regard to entanglement enhancement. In
Sec. IV we compare our PC-NLA and a recently proposed
cascaded processing of PC. Section V concludes our work.

II. NOISELESS LINEAR AMPLIFIERS FOR CV
QUANTUM STATES

A. NLA with QS

In this section, we propose an NLA with parallel QS for
multimode states. But first let us briefly review the well-
studied QS operation for single-mode states.

1. Single-mode case

Let a, b, and c label the single modes involved in the QS
operation. The operation is successful when a single photon at
output a and zero photons at output c, |0〉c |1〉a [as shown in
Fig. 1(a)], or a single photon at output c and zero photons at
output a, |1〉c |0〉a, are detected. In the Fock basis, on detecting
|0〉c |1〉a the QS operation is written as

M̂ = 〈0|c 〈1|a Ûac(T1)Ûbc(T2) |0〉b |1〉c , (1)

where Ûac(T1) = exp[arccos(
√

T1)(â†ĉ − âĉ†)] and
Ûbc(T2) = exp[arccos(

√
T2)(b̂†ĉ − b̂ĉ†)] are the unitary

operators of the beam splitters [shown in Fig. 1(a)], and T1

and T2 are their transmissivities. In the rest of the paper, we
use the setting T1 = 1/2 (see [18] on the reason for this) and
use T2 = T for convenience. Henceforth, for the QS operation
when we refer to the transmissivity T we refer to the T2 in
Fig. 1. The operator M̂ is then written as [32]

M̂ =
√

T

2
|0〉b 〈0|a +

√
1 − T

2
|1〉b 〈1|a . (2)

On detecting |1〉c |0〉a the QS operation is written as

M̂ ′ =
√

T

2
|0〉b 〈0|a −

√
1 − T

2
|1〉b 〈1|a . (3)

FIG. 1. QS for (a) single-mode states and (b) multimode states.
For the multimode case the single-photon detector implements a
joint detection on the single-mode components of the multimode
state and clicks when a photon with a specific multimode structure
(determined by the weighting coefficients γ1, γ2, . . .) is detected. An
implementation of the multimode detector is discussed in Sec. III.

Although not shown in Fig. 1(a), in the complete implementa-
tion of the QS operation, if the latter outcome occurs a phase
shifting will be applied to the output state |φ〉out to remove the
phase flip. The complete implementation of the QS operation,
which can be represented by an equivalent operator

√
2M̂, is

used in the rest of the paper.
A limitation for QS is that it can only operate as an NLA for

weak states,2 i.e., |ψ〉in ≈ |0〉 + α |1〉, where α is a complex
number. A device, which we refer to as the QS-NLA, was
proposed in [18] to overcome this limitation. As is depicted
in Fig. 2, one major component of the QS-NLA is the N
splitter, which consists of an array of beam splitters. The first
N splitter, in conjunction with the vacuum ancillas, evenly
divides the input state into N paths. Parallel QS operations are
then applied to each path. The transmissivities T for the beam
splitters in the QS operations are identical. The second N split-
ter adopts an inverse to the arrangement of the beam splitters
in the first N splitter. The paths after the QS operations are
interferometrically recombined at the second N splitter. The
amplification is successful when all the output ports except
the first port (|ψ〉out) of the second N splitter register zero
photons. The QS-NLA approaches an ideal NLA when N is
large, but its success probability vanishes as N grows. For a
coherent state input, the QS-NLA implements the following
transformation (when N �

√
1−T

T |α|) [18]:

|α〉 → 1√
P

√
T

N
e− (1−g2

s )|α|2
2 |gsα〉 , (4)

which has the success probability

P = T N e−(1−g2
s )|α|2 , (5)

where the equivalent gain is gs = √
(1 − T )/T .

The QS-NLA can be directly extended to the multimode
case by replacing the single-mode QS with the multimode QS
as discussed next.

2NLAs are normally considered with reference to amplification of
a coherent state |α〉. In this context a weak state means |α| 	 1.
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FIG. 2. The schematic for the QS-NLA.

2. Multimode case

In the terminology adopted in this work, a multimode is
simply a generic collection of single modes. A supermode
refers to a specific linear superposition of single modes, with
a sequence of such supermodes forming an orthonormal basis.
Let â†

m be the creation operator of a single mode at a specific
frequency (indexed with m ∈ {1, 2, . . . ,∞});3 then a new cre-
ation operator can be defined as

Â† =
∞∑

m=1

γmâ†
m, (6)

where the γm’s are normalized complex weighting coefficients
satisfying

∑∞
m=1 |γm|2 = 1. The composed mode created by

Â† is what we refer to as a supermode.
For the multimode QS, two major components appearing

in the single-mode QS need to be generalized. These are the
Fock state and the beam-splitter operator. We first define the
multimode Fock state as

|n〉A = Â†n

√
n!

|0〉A , (7)

where n is a nonnegative integer,

|0〉A =
∞⊗

m=1

|0〉am
, (8)

and we have used capital letters as subscripts to label the
supermodes. Specifically, a multimode single-photon state can
be represented by

|1〉A =
∞∑

m′=1

γm′

∞⊗
m=1

|δm,m′ 〉am
, (9)

where δm,m′ = 1 for m = m′, and δm,m′ = 0 for m �= m′.
We assume the beam splitter in the multimode QS oper-

ation is frequency independent such that the transmissivities
associated with each single-mode component of the mul-
timode state are identical. The multimode beam-splitter

3In experiments m will be an index labeling a limited number of
discrete frequency bins, the bandwidth of each bin being determined
by the resolution of the detectors.

operator can then be written as

ÛAB(T ) =
∞⊗

m=1

Ûambm (T ), (10)

where Ûambm (T ) is the single-mode beam-splitter operator
coupling two single modes am and bm.

As illustrated in Fig. 1(b), let A, B, and C label the su-
permodes involved in the QS operation. The multimode QS
can then be represented by an operator (see Appendix A for
details)

M̂ = 〈0|C 〈1|A ÛAC (1/2)ÛBC (T ) |0〉B |1〉C

=
√

T

2
|0〉B 〈0|A +

√
1 − T

2
|1〉B 〈1|A , (11)

where

|1〉B = B̂† |0〉B =
∞∑

m=1

γmb̂†
m |0〉B , (12)

and |1〉C = ∑∞
m=1 γmĉ†

m |0〉C . The multimode QS operator re-
duces to the single-mode QS operator in Eq. (2) in the special
case where each supermode only has one single-mode com-
ponent. The complete implementation of the multimode QS
operation is represented by

√
2M̂.

Consider a multimode coherent state, which can be ex-
pressed in the multimode Fock basis by

|α〉A = e− |α|2
2

∞∑
n=0

αn

√
n!

|n〉A

= e− |α|2
2

∞∑
n=0

(αÂ†)n

n!
|0〉A , (13)

where Â† is the supermode mode creation operator defined
in Eq. (6). Similar to the single-mode case, a multimode QS-
NLA can implement the following transformation,

|α〉A → 1√
P

√
T

N
e− (1−g2

s )|α|2
2 |gsα〉A , (14)

with the same success probability as in Eq. (5), where again
gs = √

(1 − T )/T .

B. NLA with PC

We now propose an NLA with parallel PC operations.
Noticing that the single-mode case can be viewed as a special
case in the multimode setting, we discuss this new amplifier in
the multimode setting only. In the rest of the paper, for brevity
we will omit the subscripts for the supermodes.

An NLA can be constructed with PC. We refer to this type
of NLA as a PC-NLA, a schematic of which is given in Fig. 3.
An advantage of the PC-NLA is that each PC module only
requires one beam splitter and one single-photon detector,
which is half of the apparatus required by a QS module. This
reduction in apparatus can be important, especially in confined
environments (e.g., on board a satellite).

We now investigate a scenario where the state to be ampli-
fied is the multimode coherent state defined in Eq. (13). The
first N splitter of Fig. 3 divides the input coherent state into
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FIG. 3. The schematic for the PC-NLA.

the product state, that is,

|α〉 −→ |α′〉⊗N
, (15)

where α′ = α/
√

N . Parallel PC operations are then applied on
each |α′〉, where each PC operation can be represented by an
operator [34]

R̂ =
√

T

(
−1 − T

T
Â†Â + 1

) ∞⊗
m=1

√
T

â†
mâm

, (16)

and where T is now the transmissivity for the beam splitter in
the PC operation. Henceforth, when we refer to PC operations,
the transmissivity will be the T shown in Fig. 3 (for QS
operations T will still refer to the T2 shown in Fig. 1). The
rightmost factor in the above equation satisfies the following
identities:

∞⊗
m=1

√
T

â†
mâm |n〉 =

√
T

Â†Â |n〉 =
√

T
n |n〉 . (17)

Similar to the QS-NLA, the transmissivities T for the beam
splitters in the PC operations are identical. Each PC operation
will alter each |α′〉 to (unnormalized)

R̂ |α′〉 = e− (1−T )|α′ |2
2

√
T

(
−1 − T

T
α′′Â† + 1

)
|α′′〉 , (18)

where α′′ = √
T α/

√
N . The photon-catalyzed coherent state

is then coherently recombined at the second N splitter. Posts-
electing the state in the |ψ〉out port only when the other output
ports register zero photons leads to an output state

|ψ〉out = 1√
P

√
T

N
e− |α|2

2

×
(

−1 − T√
T

α

N
Â† + 1

)N

e
√

T αÂ† |0〉 , (19)

where P is the success probability for the PC-NLA. In the
limit of N � 1−T√

T
|α|, we have

lim
N� 1−T√

T
|α|

(
−1 − T√

T

α

N
Â† + 1

)N

e
√

T αÂ† |0〉

= e− 1−T√
T

αÂ†

e
√

T αÂ† |0〉
= e

|gcα|2
2 |−gcα〉 , (20)

where the equivalent gain reads gc = (1 − 2T )/
√

T . Putting
everything together we conclude, in the limit of N � 1−T√

T
|α|,

the PC-NLA implements the transformation

|α〉 → 1√
P

√
T

N
e− (1−g2

c )|α|2
2 |−gcα〉 , (21)

where

P = T N e−(1−g2
c )|α|2 . (22)

The PC-NLA acts as an NLA up to an irrelevant global phase.
The equivalent gain of the PC-NLA satisfies gc > 1 when
T < 1/4.

From Eq. (14) and Eq. (21) it can be observed that the QS-
NLA and the PC-NLA implement similar transformations.
At fixed T , the only difference for the two NLAs is their
equivalent gains (gs and gc). For an input coherent state, it
can be shown that the QS-NLA always has a higher success
probability than the PC-NLA when gs = gc.

C. Comparison of the two NLAs for finite N

Since the success probabilities for both QS-NLA and PC-
NLA vanish as N grows, for practical purposes it is only
meaningful to compare the QS-NLA and the PC-NLA when
N is finite.

In the multimode Fock basis, the transformation of the QS-
NLA can be expressed as [35]

M̂s =
N∑

n=0

√
T

N N!

(N − n)!Nn

√
1 − T

T

n

|n〉 〈n| . (23)

We note M̂s will truncate |n〉 ,∀n > N . In the multimode Fock
basis, the PC-NLA implements the transformation

M̂c =
∞∑

n=0

√
T

N+n
N∑

k=0

(
N
k

)
n!

(n − N + k)!
Nk−N pN−k |n〉 〈n| ,

(24)

where p = T −1
T . The derivation for Eq. (24) can be found in

Appendix B.
We now numerically calculate (for finite N) the fidelity

between a target coherent state, |gtα〉, and the state after
amplification, |ψ〉out. Here, gt is the target amplification gain.
Note that for the PC-NLA the target coherent state is |−gtα〉,
due to the global phase shift. Since both |gtα〉 and |ψ〉out are
pure states, the fidelity is simply the overlap of the two states,

F = |〈gtα|ψout〉|2. (25)

The results are shown in Fig. 4. In the left column of Fig. 4
we vary the value of gt , and for each gt we find the T that
maximizes F . The maximizations on F for the two NLAs are
carried out independently. We can see for each NLA, at fixed
gt , the maximal fidelity increases as N grows. To achieve a
certain level of fidelity, input coherent states with a higher
amplitude require larger N . The success probability for the
NLAs when achieving the maximal fidelity are illustrated in
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FIG. 4. Left: The maximal fidelity of the amplified states vs the target amplification gain. The numbers connected to the curves indicate the
cases for different N (from N = 1 to N = 8). Middle: The corresponding success probabilities of the left column. Right: The maximal success
probabilities that guarantee certain levels of fidelity Ftarget. For different Ftarget the curves in the right column are disjointed since the success
probabilities are maximized in terms of N . In all figures the dashed curves correspond to the QS-NLA and the solid curves correspond to the
PC-NLA.

the middle column of Fig. 4. When N and gt are both fixed,
the QS-NLA always provides higher maximal fidelity at larger
success probabilities than the PC-NLA. In the right column of
Fig. 4 we investigate the maximal success probabilities that
guarantee a certain level of fidelity,

Pmax = max
0<T�1, 1�N�8

{P}, such that F � Ftarget, (26)

where Ftarget < 1 is the target fidelity. From the results shown
we can conclude at fixed gt the QS-NLA always has a higher
success probability with regard to achieving a target fidelity.
The difference of the probabilities of the two NLAs is insignif-
icant when |α| is small. All these conclusions also hold for
N = 1.

We also investigate the use of inefficient single-photon
detectors, which can be modeled by a positive operator-valued
measure (POVM) with the elements [36]

�̂0 =
∞∑

n=0

(1 − η)n |n〉 〈n| ,

�̂1 =
∞∑

n=1

nη(1 − η)n−1 |n〉 〈n| ,
(27)

where η represents the detection efficiency, and |n〉 is the mul-
timode Fock state defined by Eq. (7). We note, different from
Eqs. (11) and (18), in Eq. (27) we adopt the POVM formalism
since the output states of the QS and PC will be impure when
inefficient (i.e., η < 1) single-photon detectors are used. De-
tails on the transformations of the QS and PC (with inefficient
single-photon detectors) can be found in Appendix C. Let us
denote σ̂η as the output state with inefficient single-photon
detectors, and Pη as the corresponding success probability. We
use the fidelity of the output state, Fd = tr{σ̂ησ̂1}, and the ratio
of the success probabilities, R = Pη/P1, to quantify the impact

of the detection efficiency. In these relations, σ̂1 is the output
state for the case with efficient (i.e., η = 1) single-photon
detectors, and P1 is the corresponding success probability. Our
parameter space of interest is 0 < T � 1 and 0 � |α| � 0.5,
where the upper limit on |α| is set to ensure reasonable success
probabilities of the QS-NLA and the PC-NLA. We find that
the impact of the detection efficiency on Fd is small (<5%
reduction) for both NLAs when η > 0.3. When single-photon
detectors with η > 0.9 (e.g., [37]) are used, the impact is
insignificant (<1% reduction) for both NLAs. The decrease of
the maximal fidelity shown in Fig. 4 is also insignificant when
η drops from unity to 0.9. In terms of success probability,
we find both NLAs provide ηN < R < 1 for η < 1. These
results illustrate the general trends expected for inefficient
single-photon detectors. Resetting η = 1, we also investigate
the use of on/off detectors, which can be modeled by a POVM
with the elements [38]

�̂off = |0〉 〈0| , �̂on =
∞∑

n=1

|n〉 〈n| , (28)

where again |n〉 is the multimode Fock state. Considering
the same parameter space just mentioned, we find on/off
detectors have a small impact (<5% reduction) on Fd for both
NLAs.

III. ENTANGLEMENT DISTILLATION

In this section we study the use of NLAs in the context of
entanglement distillation over lossy channels. We first briefly
review the type-II parametric down-conversion (PDC) pro-
cess, which is commonly used to generate entangled states.

In reality, the PDC process does not generate a sin-
gle Einstein-Podolsky-Rosen (EPR) state with two entangled
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single modes, but rather an ensemble of orthogonal EPR states
each consisting of two entangled supermodes (the orthogo-
nalized Gram-Schmidt modes [14]). In the PDC process, a
pump laser is first fed into a nonlinear crystal. Two correlated
beams, labeled A and B, are then created. Let Â†

k and B̂†
k be

the creation operators of the supermodes in beams A and B,
respectively, where we use the subscript k ∈ {1, 2, . . . ,∞}
to index the supermodes (or equivalently, the EPR states).
The supermode operators satisfy the commutation relations
[Âk, Â†

k′ ] = [B̂k, B̂†
k′ ] = δk,k′ . The output state of the PDC pro-

cess, which we refer to as a PDC state, can be written as [1]

|PDC〉AB =
∞⊗

k=1

exp[Gλk (Â†
kB̂†

k − ÂkB̂k )] |0〉

=
∞⊗

k=1

|EPRk〉 , (29)

where G is the overall gain of the PDC process, the λk’s
are normalized real-valued coefficients, and rk = Gλk is the
squeezing parameter for the kth EPR state.

Consider a scenario where one beam of a PDC state, say,
beam A, is to be distributed over a pure photon-loss channel
while beam B is kept at the transmitter. We assume the channel
is frequency independent such that the supermode structure
of the distributed beam is retained after passing through the
channel. The channel can then be modeled by a beam splitter
with transmissivity ηt . The channel attenuation in decibels is
given by −10 log10 ηt . We assume the number of orthogonal
EPR states of the PDC state is K = 5.4

For the supermode structure of the PDC state we consider
three scenarios. For the first scenario, the PDC state only
contains one nontrivial EPR state, i.e., rk ≈ 0, ∀k �= 1. For the
second scenario, the PDC state contains five EPR states with
squeezing parameters (r1 to r5) following an exponentially
decaying distribution. For the third scenario, the PDC state
contains five EPR states with the same amount of squeezing.

We assume an NLA (with efficient single-photon detectors)
is applied to the first supermode (k = 1) of the received beam.
We first consider an amplification strategy where the super-
mode to be amplified is not filtered out (spatially separated
from the other supermodes) before the amplification. This
strategy is commonly adopted for various multimode non-
Gaussian operations, such as photon subtraction and photon
addition [39–43]. We focus on this strategy also because in
experiments the supermodes cannot be easily separated [44].

We use the QS-NLA as an example to explain how the
NLA works. The received beam is fed into the QS-NLA and
divided into N beams by the N splitter. Parallel QS operations
are then applied to all N beams. In each QS operation, the
multimode single-photon detector, which implements a joint
detection on the frequency bins,5 clicks if and only if a photon

4In experiments K can be considered as the number of frequency-
resolved bins for the specific detector used.

5The measurement of a supermode can be realized by a multipixel
detection method (e.g., [5,14,45,46]), in which the supermode is
fanned out by a diffraction grating onto homodyne detectors, each
having a resolution of one frequency bin (i.e., one pixel). The joint

with the same multimode structure as the first supermode of
the beam is detected. This also means no photon in the rest
of the supermodes is detected. In this case, the transformation
of the QS on the rest of the supermodes can be represented
by 〈0| 〈0| Û(1/2)Û(T ) |0〉 |0〉 = |0〉 〈0|. The transformation of
the QS-NLA on these supermodes is also |0〉 〈0| (i.e., a trunca-
tion to the vacuum state). The transformation by the QS-NLA
on the first supermode is M̂s as given by Eq. (23).

Similarly, it can be shown that when a PC-NLA [M̂c as
given by Eq. (24)] is applied to the first supermode the rest
of the supermodes will be attenuated. The attenuation can be

described by an operator
√

T
Â†Â+N

.
Let ρ̂tot = ⊗5

k=1 ρ̂k be the density operator for the PDC
state after the distribution and amplification, where ρ̂k is the
density operator for the kth distributed (and possibly ampli-
fied) EPR state. We compare the QS-NLA and the PC-NLA
in terms of the maximal logarithmic negativity of ρ̂tot, which
is defined as

E tot
ln = max

0<T�1

{
5∑

k=1

Eln[ρ̂k]

}
, (30)

where the logarithmic negativity for each ρ̂k is defined as [47]

Eln[ρ̂k] = log2[1 + 2ε(ρ̂k )], (31)

where ε(ρ̂k ) stands for the absolute value of the sum of
negative eigenvalues of the partially transposed ρ̂k . At each
channel attenuation level, the maximization in E tot

ln is per-
formed on the transmissivity T of the beam splitters in the
NLAs. We note in both NLAs, T , which is the only adjustable
parameter, determines the amplification gain.

The results are illustrated in Fig. 5. For the first scenario
(only one nontrivial EPR state), at fixed N , the PC-NLA
provides larger E tot

ln than the QS-NLA when the channel atten-
uation is below certain thresholds (i.e., less photon loss). The
two NLAs show similar performances when the attenuation
is above these thresholds. Both NLAs can achieve a certain
level of E tot

ln , independent of the channel attenuation level. The
truncation effect of the QS-NLA degrades E tot

ln significantly
when the initial squeezing of the EPR state is large. For the
second and third scenarios (more than one nontrivial EPR
state), the increase of Eln from the amplified EPR state is
negated by the decrease of Eln from the other EPR states,
making the thresholds above which the NLAs can enhance
E tot

ln higher than the first scenario.
For the amplification strategy where the supermode to be

amplified is first filtered out before the amplification, the rest
of the supermodes remain unchanged after the amplification
process. Under this strategy the performances of each NLA
will be less dependent on the supermode structure of the PDC
states.

In summary, the NLAs can only enhance the entanglement
when the channel attenuation is above some thresholds (i.e.,
more photon loss). These thresholds depend on the supermode

single-photon detection on the frequency bins can be implemented
by a similar method, in which the homodyne detectors are replaced
with mode-nonselective single-photon detectors.

012414-6



NOISELESS LINEAR AMPLIFIERS FOR MULTIMODE … PHYSICAL REVIEW A 103, 012414 (2021)

FIG. 5. The maximized logarithmic negativity of the amplified states vs the channel attenuation. The dashed curves correspond to the
QS-NLA and the solid curves correspond to the PC-NLA. The value of N is indicated by the number connected to the curves. The edge of the
gray area (also marked as a dash-dotted gray curve) represents the reference case without NLAs. The squeezing in decibels is calculated by
r1[dB] ≈ 8.67r1 = 8.67Gλ1. The insets illustrate the supermode structure of the PDC state.

structure, the squeezing levels, and the number of amplifying
units (QS or PC) N in the NLAs. In general, the thresholds in-
crease as the entanglement of the initial PDC states increases.

IV. COMPARISON OF THE PC-NLA AND THE CASCADED
PROCESSING OF PC

In this section, we compare the performance of our
PC-NLA (the parallel processing of PC) and the cascaded pro-
cessing of PC proposed in [21] in the context of entanglement
distillation of EPR states. To better study the impact of the two
processes on EPR states, we restrict ourselves to the scenario
where the PDC state only contains one EPR state. We note
our conclusions in this section will also apply to the scenario
where the PDC state contains more than one EPR state.

We first generalize the cascaded PC to the multimode
setting so as to compare the two processes. Recall that the
PC operation, which we repeat here for completeness, can be
represented by

R̂ =
√

T

(
−1 − T

T
Â†Â + 1

)√
T

Â†Â
. (32)

The cascaded PC, which contains N repetitions of the same
PC operation, can then be represented by

R̂N =
√

T
N
(

−1 − T

T
Â†Â + 1

)N√
T

NÂ†Â
, (33)

where we have used the fact that
√

T
Â†Â

and Â†Â commute.
In Figs. 6 and 7 we compare the logarithmic negativity for

the two processes in the absence of channel losses. For the
two processes the beam splitter transmissivity T is optimized
individually so as to maximize Eln. In Fig. 6 the maximal loga-
rithmic negativity, Emax

ln , is plotted against the initial squeezing
r of the EPR state. In Fig. 7 we plot Emax

ln against the num-

ber of PC operations in each process. From the figures we
can see the parallel PC can achieve much higher Emax

ln than
the cascaded PC. The difference between Emax

ln for the two
processes becomes more significant as N grows. However,
there is a trade-off between the success probabilities and the
achievable Emax

ln . The cascaded PC can be orders of magnitude

FIG. 6. The maximal logarithmic negativity Emax
ln (black curves)

and the success probability P (red curves) against r[dB] for (a) N = 2
and (b) N = 3. The black dashed curve represents the reference case
without any PC operations.
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FIG. 7. The maximal logarithmic negativity Emax
ln (black curves)

and the success probability P (red curves) against N for (a) r = 1 dB
and (b) r = 3 dB. The black dashed curve represents the reference
case without any PC operations.

more successful than the parallel PC in terms of probability at
the price of a drop in Emax

ln . The success probabilities for both
processes are unity when T = 1.

We attempt to better explain why for the cascaded PC the
entanglement increases insignificantly (and even decreases) as
N grows. From Eq. (32) it can be observed that the operator

for PC can be factorized into
√

T (− 1−T
T Â†Â + 1) and

√
T

Â†Â
.

The latter factor is the operator for a noiseless linear attenu-
ator, which only decreases the entanglement of an EPR state
[48]. When multiple cascaded PC operations are applied, the

attenuation factor scales as
√

T
NÂ†Â

[the rightmost factor in
Eq. (33)]. The detrimental impact of the attenuation factor
will eventually negate the entanglement. For the parallel PC
the attenuation factor is independent of N . Therefore, the
entanglement grows steadily as N grows.

V. CONCLUSIONS

In this work, we proposed an NLA that uses parallel pro-
cessing of PC, the PC-NLA. We also constructed a multimode
version of an existing NLA that uses QS, namely, the QS-
NLA. We showed that when applied to a range of coherent
states, the PC-NLA, which can be built with much simpler
linear optics, is compatible with the QS-NLA. In the context
of entanglement distillation of PDC states, we found that
both NLAs can enhance the entanglement when the chan-
nel attenuation is above certain thresholds. Distinct from the
single-mode NLA analysis, these thresholds largely depend
on the supermode structure of the PDC states. An interesting
finding is that the two NLAs can maintain certain levels of
entanglement, independent of the channel attenuation level.

We also compare the PC-NLA with the cascaded processing
of PC, showing that the PC-NLA can distill more entangle-
ment, albeit at lower success probabilities. Our results will
be important for next-generation real-world implementations
of multipartite quantum information applications that utilize
broadband pulses of lights.
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APPENDIX A: THE DERIVATION FOR EQ. (11)

In this section, for conciseness we omit the subscripts that
label the spatial modes (a, b, c, etc.) but keep the subscripts
that index the single modes (m ∈ {1, 2, . . . ,∞}). We can
show

M̂ = 〈0|C 〈1|A ÛAC (T1)ÛBC (T2) |0〉B |1〉C

=
∞∑

m′=1

γ ∗
m′γm′M̂ (11)

m′

∞⊗
m=1,m �=m′

M̂ (00)
m

+
∞∑

m′=1,m′′=1,m′ �=m′′
γ ∗

m′γm′′
[
M̂ (10)

m′ ⊗ M̂ (01)
m′′

]

×
∞⊗

m=1,m �=m′,m �=m′′
M̂ (00)

m ,

(A1)

where (·)∗ stands for the complex conjugate, and

M̂ (n1n2 )
m := 〈0|m 〈n1|m Ûm(T1)Ûm(T2) |0〉m |n2〉m , (A2)

for n1, n2 ∈ {0, 1}. After some algebraic manipulations, we
find

M̂ (11)
m =

√
(1 − T1)T2 |0〉m 〈0|m +

√
T1(1 − T2) |1〉m 〈1|m ,

M̂ (00)
m = |0〉m 〈0|m ,

M̂ (10)
m = √

T1 |0〉m 〈1|m ,

M̂ (01)
m =

√
1 − T2 |1〉m 〈0|m . (A3)

Substituting Eq. (A3) into Eq. (A1) it follows that

M̂ =
√

(1 − T1)T2

∞⊗
m=1

|0〉m 〈0|m

+
∞∑

m′=1

γ ∗
m′γm′

√
T1(1 − T2)

∞⊗
m=1

|δm,m′ 〉m 〈δm,m′ |m

+
∞∑

m′=1,m′′=1,m′ �=m′′
γ ∗

m′γm′′
√

T1(1 − T2)

×
∞⊗

m=1

|δm,m′′ 〉m 〈δm,m′ |m

=
√

(1 − T1)T2 |0〉B 〈0|A +
√

T1(1 − T2) |1〉B 〈1|A . (A4)
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Setting T1 = 1/2 we arrive at Eq. (11). Similarly, we can also
show that

M̂ ′ = 〈1|C 〈0|A ÛAC (T1)ÛBC (T2) |0〉B |1〉C

= √
T1T2 |0〉B 〈0|A −

√
(1 − T1)(1 − T2) |1〉B 〈1|A . (A5)

APPENDIX B: THE DERIVATION FOR EQ. (24)

In this section, for conciseness we omit the subscripts for
the supermodes. We consider an N splitter that implements
the following transformation:

[Â1, Â2, . . . , ÂN ]T
out = U [Â1, Â2, . . . , ÂN ]T

in, (B1)

where U is an N × N unitary matrix whose entries satisfy
u1 j = ui1 = 1/

√
N, ∀i, j ∈ {1, 2, . . . , N}, and Â1 to ÂN are

the annihilation operators of the supermodes in the N paths.
For an input multimode Fock state |n〉, the ensemble state after
the first N splitter can be written as

|ψ ′〉 = N− n
2 (Â†

1 + Â†
2 + · · · + Â†

N )n

√
n!

|0〉

= N− n
2√

n!

∑
n1+n2+···+nN =n

(
n

n1, n2, . . . , nN

)

×
N∏

i=1

Â†ni
i |0〉 , (B2)

where the sum is taken over all combinations of nonnegative
integer indices n1 through nN such that the sum of all ni is n,
and (

n
n1, n2, . . . , nN

)
= n!

n1!n2! · · · nN !
. (B3)

The state after the PC operations can be written as

|ψ ′′〉 = N− n
2√

n!

∑
n1+n2+···+nN =n

(
n

n1, n2, . . . , nN

)

×
N∏

i=1

√
T qni Â

†ni
i |0〉 , (B4)

where

qni =
(

−1 − T

T
ni + 1

)√
T

ni
. (B5)

The output state, which is the postselected state after the
second N splitter, can be written as

|ψ〉out =
√

T
N c

Nn
|n〉 , (B6)

where

c =
∑

n1+n2+···+nN =n

(
n

n1, n2, . . . , nN

) N∏
i=1

qni . (B7)

After some algebraic manipulations, we find

c =
√

T
n

N∑
k=0

(
N
k

)
n!

(n − N + k)!
Nn−N+k

(
T − 1

T

)N−k

.

(B8)
Putting Eq. (B8) into Eq. (B6), we arrive at Eq. (24).

APPENDIX C: QS AND PC WITH INEFFICIENT
SINGLE-PHOTON DETECTORS AND ON/OFF

DETECTORS

With inefficient single-photon detectors, the transforma-
tion for a QS operation can be written as

ρ̂out = 1

Pη,QS

∞∑
n=1, n′=0

nη(1 − η)n′+n−1M̂n,n′ ρ̂inM̂†
n,n′ , (C1)

where Pη,QS is the success probability, η is the detection effi-
ciency, ρ̂in and ρ̂out are the density operators for the input and
output states, respectively, and

M̂n,n′ = (−1)n′
2− n+n′−1

2 (n − n′)

√
(n + n′ − 1)!

n!n′!

×
√

T |0〉B 〈n + n′ − 1|A

+ (−1)n′
2− n+n′−1

2

√
(n + n′)!

n!n′!

√
1 − T |1〉B 〈n + n′|A .

(C2)

For a PC operation the corresponding transformation can be
written as

ρ̂out = 1

Pη,PC

∞∑
n=1

[nη(1 − η)n−1]R̂nρ̂inR̂†
n, (C3)

where Pη,PC is the success probability, and

R̂n =
√

T
(−1)n

√
n!

min(1, n)∑
l=0

(−n)l (t Â†Â)1−l (
√

t Â)n−1
√

T
Â†Â

,

(C4)
where t = 1−T

T .
With on/off detectors, the transformation for a QS opera-

tion can be written as

ρ̂out = 1

Pon/off,QS

∞∑
n=1

M̂n,0ρ̂inM̂†
n,0, (C5)

where Pon/off,QS is the success probability, and

M̂n,0 = 2− n−1
2 (

√
n
√

T |0〉B 〈n − 1|A + √
1 − T |1〉B 〈n|A).

(C6)
With on/off detectors, the transformation for a PC operation
can be written as

ρ̂out = 1

Pon/off,PC

∞∑
n=1

R̂nρ̂inR̂†
n, (C7)

where Pon/off,PC is the success probability, and R̂n is the oper-
ator given by Eq. (C4).
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